Theoretical-Experimental Analysis to Elucidate the Mechanism of Action of Novel Anabolic Agents
Abstract
1. Introduction
2. Results
2.1. Flow Cytometry Analysis
2.2. Molecular Docking
2.2.1. Molecular Docking with MasR in Agonist-Bound Conformation
2.2.2. Molecular Docking with MasR in Antagonist-Bound Conformation
2.2.3. Molecular Docking Results with ACVR1 and ACVR2A (Antagonist Conformation)
2.2.4. Molecular Docking to Less Probable Targets: TNFa and IGF-1 Receptors
3. Discussion
3.1. MasR-Mediated Proliferative Signaling
3.2. Antagonism of Myostatin/SMAD Signaling
3.3. Context-Dependent Myostatin Interactions
3.4. Perspectives and Limitations
4. Materials and Methods
4.1. Docking Preparation
4.2. Molecular Docking Procedure
4.3. Flow Cytometry Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Severinsen, M.C.K.; Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef]
- Suresh, E.; Wimalaratna, S. Proximal Myopathy: Diagnostic Approach and Initial Management. Postgrad. Med. J. 2013, 89, 470–477. [Google Scholar] [CrossRef]
- Cordeiro, A.C.; Isenberg, D.A. Treatment of Inflammatory Myopathies. Postgrad. Med. J. 2006, 82, 417–424. [Google Scholar] [CrossRef]
- Greenberg, S. Inflammatory Myopathies: Evaluation and Management. Semin. Neurol. 2008, 28, 241–249. [Google Scholar] [CrossRef]
- Dalakas, M.C.; Illa, I.; Dambrosia, J.M.; Soueidan, S.A.; Stein, D.P.; Otero, C.; Dinsmore, S.T.; McCrosky, S. A Controlled Trial of High-Dose Intravenous Immune Globulin Infusions as Treatment for Dermatomyositis. N. Engl. J. Med. 1993, 329, 1993–2000. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.X.; Shu, X.M.; Tian, X.L.; Chen, F.; Zu, N.; Ma, L.; Wang, G.C. Intravenous Immunoglobulin Therapy in Adult Patients with Polymyositis/Dermatomyositis: A Systematic Literature Review. Clin. Rheumatol. 2012, 31, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Flores-Manuel, F.; Guerrero-Luna, G.; Quiroga-Montes, I.; Salvador-Atonal, K.; Domínguez-Bahena, A.; Cárdenas-García, M.; Hernández-Linares, M.G. Steroid-Based Hydrazones as Anabolic Agents: Design, Synthesis, Computational Studies, and Biological Evaluation in Human Skeletal Muscle Cell Line. Tetrahedron 2024, 168, 134305. [Google Scholar] [CrossRef]
- Attwaters, M.; Hughes, S.M. Cellular and Molecular Pathways Controlling Muscle Size in Response to Exercise. FEBS J. 2022, 289, 1428–1456. [Google Scholar] [CrossRef] [PubMed]
- Egerman, M.A.; Glass, D.J. Signaling Pathways Controlling Skeletal Muscle Mass. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 59–68. [Google Scholar] [CrossRef]
- Masuzawa, R.; Takahashi, K.; Takano, K.; Nishino, I.; Sakai, T.; Endo, T. DA-Raf and the MEK Inhibitor Trametinib Reverse Skeletal Myocyte Differentiation Inhibition or Muscle Atrophy Caused by Myostatin and GDF11 through the Non-Smad Ras–ERK Pathway. J. Biochem. 2022, 171, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Wetzlich, B.; Nyakundi, B.B.; Yang, J. Therapeutic Applications and Challenges in Myostatin Inhibition for Enhanced Skeletal Muscle Mass and Functions. Mol. Cell. Biochem. 2025, 480, 1535–1553. [Google Scholar] [CrossRef]
- Sishi, B.J.N.; Engelbrecht, A.-M. Tumor Necrosis Factor Alpha (TNF-α) Inactivates the PI3-Kinase/PKB Pathway and Induces Atrophy and Apoptosis in L6 Myotubes. Cytokine 2011, 54, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Dirks, A.J.; Leeuwenburgh, C. Tumor Necrosis Factor α Signaling in Skeletal Muscle: Effects of Age and Caloric Restriction. J. Nutr. Biochem. 2006, 17, 501–508. [Google Scholar] [CrossRef]
- Bodine, S.C.; Baehr, L.M. Skeletal Muscle Atrophy and the E3 Ubiquitin Ligases MuRF1 and MAFbx/Atrogin-1. Am. J. Physiol.-Endocrinol. Metab. 2014, 307, E469–E484. [Google Scholar] [CrossRef]
- Sun, S.-C. The Non-Canonical NF-κB Pathway in Immunity and Inflammation. Nat. Rev. Immunol. 2017, 17, 545–558. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Panguluri, S.K.; Gupta, S.K.; Dahiya, S.; Lundy, R.F.; Kumar, A. Tumor Necrosis Factor-α Regulates Distinct Molecular Pathways and Gene Networks in Cultured Skeletal Muscle Cells. PLoS ONE 2010, 5, e13262. [Google Scholar] [CrossRef]
- Dinan, L.; Dioh, W.; Veillet, S.; Lafont, R. 20-Hydroxyecdysone, from Plant Extracts to Clinical Use: Therapeutic Potential for the Treatment of Neuromuscular, Cardio-Metabolic and Respiratory Diseases. Biomedicines 2021, 9, 492. [Google Scholar] [CrossRef]
- Bajguz, A.; Bąkała, I.; Talarek, M. Ecdysteroids in Plants and Their Pharmacological Effects in Vertebrates and Humans. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; Volume 45, pp. 121–145. ISBN 978-0-444-63473-3. [Google Scholar]
- Morales, M.G.; Abrigo, J.; Meneses, C.; Cisternas, F.; Simon, F.; Cabello-Verrugio, C. Expression of the Mas Receptor Is Upregulated in Skeletal Muscle Wasting. Histochem. Cell Biol. 2015, 143, 131–141. [Google Scholar] [CrossRef]
- Aldecoa, F.; Ávila, J. La Vía Canónica PI3K/AKT/mTOR y Sus Alteraciones En Cáncer. Horiz. Méd. 2021, 21, e1547. [Google Scholar] [CrossRef]
- Glass, D.J. PI3 Kinase Regulation of Skeletal Muscle Hypertrophy and Atrophy. In Phosphoinositide 3-Kinase in Health and Disease; Rommel, C., Vanhaesebroeck, B., Vogt, P.K., Eds.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2010; Volume 346, pp. 267–278. ISBN 978-3-642-13662-7. [Google Scholar]
- Fukada, S.; Ito, N. Regulation of Muscle Hypertrophy: Involvement of the Akt-Independent Pathway and Satellite Cells in Muscle Hypertrophy. Exp. Cell Res. 2021, 409, 112907. [Google Scholar] [CrossRef]
- Yoon, M.-S. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass. Front. Physiol. 2017, 8, 788. [Google Scholar] [CrossRef]
- Jaiswal, N.; Gavin, M.G.; Quinn, W.J.; Luongo, T.S.; Gelfer, R.G.; Baur, J.A.; Titchenell, P.M. The Role of Skeletal Muscle Akt in the Regulation of Muscle Mass and Glucose Homeostasis. Mol. Metab. 2019, 28, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. mTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.P.; Canning, P.; Sanvitale, C.E.; Krojer, T.; Allerston, C.K.; von Delft, F.; Arrowsmith, C.H.; Edwards, A.M.; Bountra, C.; Bullock, A.N. Crystal Structure of the Kinase Domain of the Q207E Mutant of ACVR1 (ALK2) in Complex with a 2-Aminopyridine Inhibitor K02288. 2017. Available online: https://www.rcsb.org/structure/6EIX (accessed on 17 October 2025).
- He, M.M.; Smith, A.S.; Oslob, J.D.; Flanagan, W.M.; Braisted, A.C.; Whitty, A.; Cancilla, M.T.; Wang, J.; Lugovskoy, A.A.; Yoburn, J.C.; et al. Small-Molecule Inhibition of TNF-α. Science 2005, 310, 1022–1025. [Google Scholar] [CrossRef]
- Li, J.; Choi, E.; Yu, H.; Bai, X. Structural Basis of the Activation of Type 1 Insulin-like Growth Factor Receptor. Nat. Commun. 2019, 10, 4567. [Google Scholar] [CrossRef]
- Mukai, Y.; Nakamura, T.; Yoshikawa, M.; Yoshioka, Y.; Tsunoda, S.; Nakagawa, S.; Yamagata, Y.; Tsutsumi, Y. Solution of the Structure of the TNF-TNFR2 Complex. Sci. Signal. 2010, 3, ra83. [Google Scholar] [CrossRef] [PubMed]
- Alenina, N.; Xu, P.; Rentzsch, B.; Patkin, E.L.; Bader, M. Genetically Altered Animal Models for Mas and Angiotensin-(1–7). Exp. Physiol. 2008, 93, 528–537. [Google Scholar] [CrossRef]
- Höcht, C.; Mayer, M.; Taira, C.A. Therapeutic Perspectives of Angiotensin-(1–7) in the Treatment of Cardiovascular Disease. Open Pharmacol. J. 2009, 3, 17–20. [Google Scholar] [CrossRef]
- Serova, M.; Didry-Barca, B.; Deloux, R.; Foucault, A.; Veillet, S.; Lafont, R.; Dilda, P.J.; Latil, M. BIO101 Stimulates Myoblast Differentiation and Improves Muscle Function in Adult and Old Mice. J. Cachexia Sarcopenia Muscle 2024, 15, 55–66. [Google Scholar] [CrossRef]
- Lafont, R.; Serova, M.; Didry-Barca, B.; Raynal, S.; Guibout, L.; Dinan, L.; Veillet, S.; Latil, M.; Dioh, W.; Dilda, P.J. 20-Hydroxyecdysone Activates the Protective Arm of the RAAS via the MAS Receptor. J. Mol. Endocrinol. 2022, 68, 77–87. [Google Scholar] [CrossRef]
- Fielding, R.A.; Dao, M.M.; Cannon, K.; Desvarieux, M.; Miller, S.S.; Gimness, M.P.; Brandon, D.M.; Villareal, D.T.; Bruyere, O.; Bautmans, I.; et al. BIO101 in Sarcopenic Seniors at Risk of Mobility Disability: Results of a Double-Blind Randomised Interventional Phase 2b Trial. J. Cachexia Sarcopenia Muscle 2025, 16, e13750. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Lanier, M.; Yeager, A.; Singh, I.; Gumpper, R.H.; Krumm, B.E.; DeLeon, C.; Zhang, S.; Boehm, M.; et al. High-Affinity Agonists Reveal Recognition Motifs for the MRGPRD GPCR. Cell Rep. 2024, 43, 114942. [Google Scholar] [CrossRef]
- Jarajapu, Y.P.R.; Bhatwadekar, A.D.; Caballero, S.; Hazra, S.; Shenoy, V.; Medina, R.; Kent, D.; Stitt, A.W.; Thut, C.; Finney, E.M.; et al. Activation of the ACE2/Angiotensin-(1–7)/Mas Receptor Axis Enhances the Reparative Function of Dysfunctional Diabetic Endothelial Progenitors. Diabetes 2013, 62, 1258–1269. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, W.O.; Souza Dos Santos, R.A.; Faria-Silva, R.; Da Mata Machado, L.T.; Schiffrin, E.L.; Touyz, R.M. Angiotensin-(1–7) Through Receptor Mas Mediates Endothelial Nitric Oxide Synthase Activation via Akt-Dependent Pathways. Hypertension 2007, 49, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Karnik, S.S.; Singh, K.D.; Tirupula, K.; Unal, H. Significance of Angiotensin 1–7 Coupling with MAS1 Receptor and Other GPCRs to the Renin-angiotensin System: IUPHAR Review 22. Br. J. Pharmacol. 2017, 174, 737–753. [Google Scholar] [CrossRef]
- Horbelt, D.; Boergermann, J.H.; Chaikuad, A.; Alfano, I.; Williams, E.; Lukonin, I.; Timmel, T.; Bullock, A.N.; Knaus, P. Small Molecules Dorsomorphin and LDN-193189 Inhibit Myostatin/GDF8 Signaling and Promote Functional Myoblast Differentiation. J. Biol. Chem. 2015, 290, 3390–3404. [Google Scholar] [CrossRef]
- Chen, M.-M.; Zhao, Y.-P.; Zhao, Y.; Deng, S.-L.; Yu, K. Regulation of Myostatin on the Growth and Development of Skeletal Muscle. Front. Cell Dev. Biol. 2021, 9, 785712. [Google Scholar] [CrossRef]
- Emmert, M.E.; Aggarwal, P.; Shay-Winkler, K.; Lee, S.-J.; Goh, Q.; Cornwall, R. Sex-Specific Role of Myostatin Signaling in Neonatal Muscle Growth, Denervation Atrophy, and Neuromuscular Contractures. eLife 2022, 11, e81121. [Google Scholar] [CrossRef]
- Tzavlaki, K.; Moustakas, A. TGF-β Signaling. Biomolecules 2020, 10, 487. [Google Scholar] [CrossRef]
- Yang, W.; Chen, Y.; Zhang, Y.; Wang, X.; Yang, N.; Zhu, D. Extracellular Signal–Regulated Kinase 1/2 Mitogen-Activated Protein Kinase Pathway Is Involved in Myostatin-Regulated Differentiation Repression. Cancer Res. 2006, 66, 1320–1326. [Google Scholar] [CrossRef]
- Burks, T.N.; Cohn, R.D. Role of TGF-β Signaling in Inherited and Acquired Myopathies. Skelet. Muscle 2011, 1, 19. [Google Scholar] [CrossRef]
- Taylor, M.V.; Hughes, S.M. Mef2 and the Skeletal Muscle Differentiation Program. Semin. Cell Dev. Biol. 2017, 72, 33–44. [Google Scholar] [CrossRef]
- Pedretti, A.; Mazzolari, A.; Gervasoni, S.; Fumagalli, L.; Vistoli, G. The VEGA Suite of Programs: An Versatile Platform for Cheminformatics and Drug Design Projects. Bioinformatics 2021, 37, 1174–1175. [Google Scholar] [CrossRef]
- Stewart, J.J.P. MOPAC: A Semiempirical Molecular Orbital Program. J. Comput. Aided Mol. Des. 1990, 4, 1–103. [Google Scholar] [CrossRef]
- Allouche, A. Gabedit—A Graphical User Interface for Computational Chemistry Softwares. J. Comput. Chem. 2011, 32, 174–182. [Google Scholar] [CrossRef]
- Bashford, D.; Case, D.A. Generalized Born Models of Macromolecular Solvation Effects. Annu. Rev. Phys. Chem. 2000, 51, 129–152. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhatt, R.; Bhikadiya, C.; Bi, C.; Biester, A.; Biswas, P.; Bittrich, S.; Blaumann, S.; Brown, R.; Chao, H.; et al. Updated Resources for Exploring Experimentally-Determined PDB Structures and Computed Structure Models at the RCSB Protein Data Bank. Nucleic Acids Res. 2025, 53, D564–D574. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, D.; Sun, J.; Wu, Y.; Gong, J.; Li, X.; Liu, L.; Liu, S.; Liu, J.; Wu, Y.; et al. Visualization of Ligand-Bound Ectodomain Assembly in the Full-Length Human IGF-1 Receptor by Cryo-EM Single-Particle Analysis. Structure 2020, 28, 555–561.e4. [Google Scholar] [CrossRef]
- Xu, Y.; Kong, G.K.-W.; Menting, J.G.; Margetts, M.B.; Delaine, C.A.; Jenkin, L.M.; Kiselyov, V.V.; De Meyts, P.; Forbes, B.E.; Lawrence, M.C. How Ligand Binds to the Type 1 Insulin-like Growth Factor Receptor. Nat. Commun. 2018, 9, 821. [Google Scholar] [CrossRef]
- Han, S.; Loulakis, P.; Griffor, M.; Xie, Z. Crystal Structure of Activin Receptor Type IIB Kinase Domain from Human at 2.0 Å Resolution. Protein Sci. 2007, 16, 2272–2277. [Google Scholar] [CrossRef]
- Chaikuad, A.; Alfano, I.; Kerr, G.; Sanvitale, C.E.; Boergermann, J.H.; Triffitt, J.T.; Von Delft, F.; Knapp, S.; Knaus, P.; Bullock, A.N. Structure of the Bone Morphogenetic Protein Receptor ALK2 and Implications for Fibrodysplasia Ossificans Progressiva. J. Biol. Chem. 2012, 287, 36990–36998. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, C.; Huang, X.-P.; Gumpper, R.H.; Rachman, M.M.; Shih, S.-L.; Krumm, B.E.; Zhang, S.; Shoichet, B.K.; Fay, J.F.; et al. Ligand Recognition and Allosteric Modulation of the Human MRGPRX1 Receptor. Nat. Chem. Biol. 2023, 19, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, J.; Marsili, M. A New Model for Calculating Atomic Charges in Molecules. Tetrahedron Lett. 1978, 19, 3181–3184. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiroga, I.; Cardenas-Garcia, M.; Hernández-Linares, M.G.; Guerrero-Luna, G.; Flores-Manuel, F. Theoretical-Experimental Analysis to Elucidate the Mechanism of Action of Novel Anabolic Agents. Molecules 2025, 30, 4486. https://doi.org/10.3390/molecules30224486
Quiroga I, Cardenas-Garcia M, Hernández-Linares MG, Guerrero-Luna G, Flores-Manuel F. Theoretical-Experimental Analysis to Elucidate the Mechanism of Action of Novel Anabolic Agents. Molecules. 2025; 30(22):4486. https://doi.org/10.3390/molecules30224486
Chicago/Turabian StyleQuiroga, Israel, Maura Cardenas-Garcia, María Guadalupe Hernández-Linares, Gabriel Guerrero-Luna, and Fermín Flores-Manuel. 2025. "Theoretical-Experimental Analysis to Elucidate the Mechanism of Action of Novel Anabolic Agents" Molecules 30, no. 22: 4486. https://doi.org/10.3390/molecules30224486
APA StyleQuiroga, I., Cardenas-Garcia, M., Hernández-Linares, M. G., Guerrero-Luna, G., & Flores-Manuel, F. (2025). Theoretical-Experimental Analysis to Elucidate the Mechanism of Action of Novel Anabolic Agents. Molecules, 30(22), 4486. https://doi.org/10.3390/molecules30224486

