Physicochemical Profiling, Bioactive Properties, and Spectroscopic Fingerprinting of Cow’s Milk from the Pampas Valley (Tayacaja, Peru): A Chemometric Approach to Geographical Differentiation
Abstract
1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of Milk
2.2. Bioactive Compounds
2.2.1. Fatty Acids
2.2.2. Total Phenolic Compounds and Antioxidant Capacity
2.3. Molecular Vibrations
2.3.1. Mid-Infrared (MIR) Spectroscopy Analysis
2.3.2. Raman Spectroscopy Analysis
2.4. Chemometric Analysis
3. Materials and Methods
3.1. Raw Material
3.2. Physicochemical Characteristics
3.3. Bioactive Compounds Determination
3.3.1. Determination of Fatty Acids
3.3.2. Determination of Total Phenolic Compounds (TPC)
3.3.3. Antioxidant Capacity (AC)
3.4. Infrared Spectroscopy
3.5. Raman Spectroscopy
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Fox, P.F.; McSweeney, P.L.H. Advanced Dairy Chemistry—1 Proteins; Springer: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- McPherson, S.; Vasseur, E. Graduate Student Literature Review: The effects of bedding, stall length, and manger wall height on common outcome measures of dairy cow welfare in stall-based housing systems. J. Dairy Sci. 2020, 103, 10940–10950. [Google Scholar] [CrossRef]
- Korhonen, H. Milk-derived bioactive peptides: From science to applications. J. Funct. Foods 2009, 1, 177–187. [Google Scholar] [CrossRef]
- Hsieh, C.; Hernández-Ledesma, B.; Fernández-Tomé, S.; Weinborn, V.; Barile, D.; De Moura Bell, J.M.L.N. Milk Proteins, Peptides, and Oligosaccharides: Effects against the 21st Century Disorders. BioMed Res. Int. 2015, 2015, 146840. [Google Scholar] [CrossRef]
- Kang, M.; Yue, Q.; Jia, S.; Wang, J.; Zheng, M.; Suo, R. Identification of Geographical Origin of Milk by Amino Acid Profile Coupled with Chemometric Analysis. J. Food Qual. 2022, 2022, 2001253. [Google Scholar] [CrossRef]
- Otwinowska-Mindur, A.; Ptak, E. Effects of lactation number, milk yield and milk composition on freezing point of milk of Polish Holstein-Friesian cows. J. Cent. Eur. Agric. 2018, 19, 83–94. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.; Singh, N.; Poonia, M.P. Evaluation of electric conductivity and milk lactose as a pre-indicator of mastitis in Tharparkar dairy cattle. Indian J. Anim. Prod. Manag. 2016, 32, 36–40. [Google Scholar]
- Parmar, P.; Lopez-Villalobos, N.; Tobin, J.T.; Murphy, E.; McDonagh, A.; Crowley, S.V.; Kelly, A.L.; Shalloo, L. The Effect of Compositional Changes Due to Seasonal Variation on Milk Density and the Determination of Season-Based Density Conversion Factors for Use in the Dairy Industry. Foods 2020, 9, 1004. [Google Scholar] [CrossRef]
- Pindešová, I.F.; Fehér, A.; Prus, P.; Zajác, P.; Prčík, M. Farm Level Milk Adulteration: Changes in the Physicochemical Properties of Raw Cow’s Milk after the Addition of Water and NaCl. Agriculture 2022, 12, 136. [Google Scholar] [CrossRef]
- Pesce, A.; Salzano, C.; De Felice, A.; Garofalo, F.; Liguori, S.; De Santo, A.; Palermo, P.; Guarino, A. Monitoring the freezing point of buffalo milk. Ital. J. Food Saf. 2016, 5, 5691. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Deng, D.H.; Cai, C.B.; Yang, H.W. Automatic discrimination of the geographical origins of milks by excitation-emission fluorescence spectrometry and chemometrics. J. Autom. Methods Manag. Chem. 2011, 2011, 323196. [Google Scholar] [CrossRef] [PubMed]
- Kassem, A.; Abbas, L.; Coutinho, O.; Opara, S.; Najaf, H.; Kasperek, D.; Pokhrel, K.; Li, X.; Tiquia-Arashiro, S. Applications of Fourier Transform-Infrared Spectroscopy in Microbial Cell Biology and Environmental Microbiology: Advances, Challenges, and Future Perspectives. Front. Microbiol. 2023, 14, 1304081. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Tugarova, A.V. Specificities of the Fourier Transform Infrared Spectroscopic Methodology and Interpretation of Spectroscopic Data in Microbiological Analyses. J. Anal. Chem. 2023, 78, 1320–1332. [Google Scholar] [CrossRef]
- Pezzotti, G. Raman Spectroscopy in Cell Biology and Microbiology. J. Raman Spectrosc. 2021, 52, 2348–2443. [Google Scholar] [CrossRef]
- Vulchi, R.T.; Morgunov, V.; Junjuri, R.; Bocklitz, T. Artifacts and Anomalies in Raman Spectroscopy: A Review on Origins and Correction Procedures. Molecules 2024, 29, 4748. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Gowen, A.; Luo, J.; O’Donnell, C. Prediction of Milk Composition Using Multivariate Chemometric Modelling of Infrared, Raman, and Fluorescence Spectroscopic Data: A Review. Food Control 2024, 165, 110658. [Google Scholar] [CrossRef]
- Bergamaschi, M.; Cipolat-Gotet, C.; Cecchinato, A.; Schiavon, S.; Bittante, G. Chemometric authentication of farming systems of origin of food (milk and ripened cheese) using infrared spectra, fatty acid profiles, flavor fingerprints, and sensory descriptions. Food Chem. 2020, 305, 125480. [Google Scholar] [CrossRef]
- Ministry of Agrarian Development and Irrigation (MIDAGRI). Peru’s Fresh Milk Production Reached 2.2 Million Tons in 2023. Agraria.pe. 3 June 2024. Available online: https://www.agraria.pe/noticias/produccion-de-leche-fresca-de-peru-alcanzo-las-2-2-millones--35938 (accessed on 1 November 2025).
- Chamorro, G. Comercialización de la leche y Derivados en el Valle de Pampas–Tayacaja. Bachelor’s Thesis, Universidad Nacional del Centro del Perú, Huancayo, Peru, 2008. Available online: http://hdl.handle.net/20.500.12894/2894 (accessed on 1 November 2025).
- Dehghan-Banadaky, M.; Ebrahimi, M.; Motameny, R.; Heidari, S. Effects of live yeast supplementation on mid-lactation dairy cows performances, milk composition, rumen digestion and plasma metabolites during hot season. J. Appl. Anim. Res. 2012, 41, 137–142. [Google Scholar] [CrossRef]
- Slots, T.; Butler, G.; Leifert, C.; Kristensen, T.; Skibsted, L.; Nielsen, J. Potentials to differentiate milk composition by different feeding strategies. J. Dairy Sci. 2009, 92, 2057–2066. [Google Scholar] [CrossRef]
- Poulsen, N.; Giagnoni, G.; Johansen, M.; Lund, P.; Larsen, L. Effect of protein concentrate mixtures and dietary addition of exogenous phytase on major milk minerals and proteins, including casein phosphorylation. J. Dairy Sci. 2021, 104, 9801–9812. [Google Scholar] [CrossRef]
- Ayers, A.; Ziegler, S.; Darby, H.; Bosworth, S.; Alvez, J.; Colby, J.; Kraft, J.; Greenwood, S. Assessment of dietary protein supplementation on milk productivity of commercial organic dairy farms during the grazing season. J. Dairy Sci. 2021, 105, 1099–1114. [Google Scholar] [CrossRef]
- Stanek, P.; Żółkiewski, P.; Januś, E. A Review on Mastitis in Dairy Cows Research: Current Status and Future Perspectives. Agriculture 2024, 14, 1292. [Google Scholar] [CrossRef]
- Maurer, N.E.; Hatta-Sakoda, B.; Pascual-Chagman, G.; Rodriguez-Saona, L.E. Characterization and authentication of a novel vegetable source of omega-3 fatty acids, sacha inchi (Plukenetia volubilis L.) oil. Food Chem. 2012, 134, 1173–1180. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and Animal Factors Influencing Milk Fat Composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Ceciliani, F.; Maggiolino, A.; Biscarini, F.; Dadi, Y.; De Matos, L.; Cremonesi, P.; Landi, V.; De Palo, P.; Lecchi, C. Heat stress has divergent effects on the milk microbiota of Holstein and Brown Swiss cows. J. Dairy Sci. 2024, 107, 11639–11654. [Google Scholar] [CrossRef]
- Wang, F.; Chen, M.; Luo, R.; Huang, G.; Wu, X.; Zheng, N.; Zhang, Y.; Wang, J. Fatty acid profiles of milk from Holstein cows, Jersey cows, buffalos, yaks, humans, goats, camels, and donkeys based on gas chromatography–mass spectrometry. J. Dairy Sci. 2021, 105, 1687–1700. [Google Scholar] [CrossRef] [PubMed]
- Poonia, A.; Shiva. Bioactive compounds, nutritional profile and health benefits of colostrum: A review. Food Prod. Process. Nutr. 2022, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Shingfield, K.; Toivonen, V.; Vanhatalo, A.; Huhtanen, P.; Griinari, J. Short Communication: Indigestible Markers Reduce the Mammary Δ9-Desaturase Index and Alter the Milk Fatty Acid Composition in Cows. J. Dairy Sci. 2006, 89, 3006–3010. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Lock, A.L.; Bauman, D.E. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 2004, 39, 1197–1206. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on Coronary Heart Disease of Increasing Polyunsaturated Fat in Place of Saturated Fat: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS Med. 2010, 7, e1000252. [Google Scholar] [CrossRef]
- Mosley, E.E.; McGuire, M.A. Methodology for the In Vivo Measurement of the Δ9-Desaturation of Myristic, Palmitic, and Stearic Acids in Lactating Dairy Cattle. Lipids 2007, 42, 939–945. [Google Scholar] [CrossRef]
- Loza, C.; Davis, H.; Malisch, C.; Taube, F.; Loges, R.; Magistrali, A.; Butler, G. Ácidos grasos de la leche: El impacto del pastoreo de pastos diversos y el potencial para predecir el metano derivado del rumen. Agriculture 2023, 13, 181. [Google Scholar] [CrossRef]
- Ou, L.; Ip, C.; Lisafeld, B.; Ip, M.M. Conjugated linoleic acid induces apoptosis of murine mammary tumor cells via Bcl-2 loss. Biochem. Biophys. Res. Commun. 2007, 356, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, F.; Song, Z.; Han, D.; Zhang, J.; Chen, L.; Na, L. A high fat diet with a high C18:0/C16:0 ratio induced worse metabolic and transcriptomic profiles in C57BL/6 mice. Lipids Health Dis. 2020, 19, 172. [Google Scholar] [CrossRef]
- Bauman, D.E.; Harvatine, K.J.; Lock, A.L. Nutrigenomics, Rumen-Derived Bioactive Fatty Acids, and the Regulation of Milk Fat Synthesis. Annu. Rev. Nutr. 2011, 31, 299–319. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Ghilardelli, F.; Mosconi, M.; Masoero, F.; Gallo, A. Occurrence of Polyphenols, Isoflavonoids, and Their Metabolites in Milk Samples from Different Cow Feeding Regimens. Dairy 2022, 3, 314–325. [Google Scholar] [CrossRef]
- Vázquez, C.V.; Rojas, M.G.V.; Ramírez, C.A.; Chávez-Servín, J.L.; García-Gasca, T.; Martínez, R.A.F.; García, O.P.; Rosado, J.L.; López-Sabater, C.M.; Castellote, A.I.; et al. Total phenolic compounds in milk from different species. Design of an extraction technique for quantification using the Folin–Ciocalteu method. Food Chem. 2014, 176, 480–486. [Google Scholar] [CrossRef]
- Kuhnen, S.; Moacyr, J.R.; Mayer, J.K.; Navarro, B.B.; Trevisan, R.; Honorato, L.A.; Maraschin, M.; Filho, L.C.P.M. Phenolic content and ferric reducing–antioxidant power of cow’s milk produced in different pasture-based production systems in southern Brazil. J. Sci. Food Agric. 2014, 94, 3110–3117. [Google Scholar] [CrossRef]
- Fleming, A.; Schenkel, F.; Chen, J.; Malchiodi, F.; Bonfatti, V.; Ali, R.; Mallard, B.; Corredig, M.; Miglior, F. Prediction of milk fatty acid content with mid-infrared spectroscopy in Canadian dairy cattle using differently distributed model development sets. J. Dairy Sci. 2017, 100, 5073–5081. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.; Gowen, A.; O’Donnell, C. Vibrational spectroscopy data fusion for enhanced classification of different milk types. Heliyon 2024, 10, e36385. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.; Ayvaz, H. Infrared and Raman Spectroscopy. In Nielsen’s Food Analysis; Ismail, B.P., Nielsen, S.S., Eds.; Springer: Cham, Switzerland, 2024; pp. 153–210. [Google Scholar] [CrossRef]
- Villanueva, E.; Glorio-Paulet, P.; Giusti, M.M.; Sigurdson, G.T.; Yao, S.; Rodríguez-Saona, L.E. Screening for pesticide residues in cocoa (Theobroma cacao L.) by portable infrared spectroscopy. Talanta 2023, 257, 124386. [Google Scholar] [CrossRef]
- Kostovska, R.; Cruz, J.; Drouin, G.; Horan, B.; Tobin, J.T.; O’Callaghan, T.F.; Hettinga, K.; Kelly, A.L.; Gómez-Mascaraque, L.G. Use of Raman spectroscopy as a rapid tool to discriminate milk deriving from different pasture-based diets and breeds in a seasonal, spring-calving dairy production system. J. Dairy Sci. 2025, 108, 9205–9221. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, W.B.; Teixeira, I.A.M.A. Associations between Dietary Fatty Acid Profile and Milk Fat Production and Fatty Acid Composition in Dairy Cows: A Meta-Analysis. Animals 2023, 13, 2063. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Gaiani, C.; Aberkane, L.; Scher, J. Characterization of high-milk-protein powders upon rehydration under various salt concentrations. J. Dairy Sci. 2010, 94, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Berhe, T.; Seifu, E.; Ipsen, R.; Kurtu, M.Y.; Hansen, E.B. Processing Challenges and Opportunities of Camel Dairy Products. Int. J. Food Sci. 2017, 2017, 9061757. [Google Scholar] [CrossRef]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Ross, R.; Stanton, C. Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 185, 317–335. [Google Scholar] [CrossRef]
- Gafour, H.M.; Bouterfas, M. Harmonic Dynamics of α-D-Lactose in the Crystalline State. J. Mol. Imaging Dyn. 2011, 1, 1000102. [Google Scholar] [CrossRef]
- Saji, R.; Ramani, A.; Gandhi, K.; Seth, R.; Sharma, R. Application of FTIR spectroscopy in dairy products: A systematic review. Food Humanit. 2024, 2, 100239. [Google Scholar] [CrossRef]
- Alrhmoun, M.; Zanon, T.; Katzenberger, K.; Holighaus, L.; Gauly, M. Exploring the heights: Impact of altitude on dairy milk composition. JDS Commun. 2023, 5, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Leiber, F.; Kreuzer, M.; Leuenberger, H.; Wettstein, H. Contribution of diet type and pasture conditions to the influence of high altitude grazing on intake, performance and composition and renneting properties of the milk of cows. Anim. Res. 2006, 55, 37–53. [Google Scholar] [CrossRef]
- Almeida, M.R.; De S Oliveira, K.; Stephani, R.; De Oliveira, L.F.C. Fourier-transform Raman analysis of milk powder: A potential method for rapid quality screening. J. Raman Spectrosc. 2011, 42, 1548–1552. [Google Scholar] [CrossRef]
- Khan, H.H.; McCarthy, U.; Esmonde-White, K.; Casey, I.; O’Shea, N. Potential of Raman spectroscopy for in-line measurement of raw milk composition. Food Control 2023, 152, 109862. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Sha, M.; Liu, J. Characterization of Fresh Milk Products Based on Multidimensional Raman Spectroscopy. J. Appl. Spectrosc. 2021, 87, 1206–1215. [Google Scholar] [CrossRef]
- Yazgan, N.N.; Genis, H.E.; Bulat, T.; Topcu, A.; Durna, S.; Yetisemiyen, A.; Boyaci, I.H. Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk. J. Sci. Food Agric. 2020, 100, 4756–4765. [Google Scholar] [CrossRef]
- Song, S.W.; Jeong, Y.C.; Park, C.R.; Kim, H.M. Quantitative Fat Analysis of Milk Using a Line-Illumination Spatially Offset Raman Probe through Carton Packaging. Analyst 2023, 148, 3321–3329. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Y.; Su, J.-S.; Xiong, H.-M. Technology for the Quantitative Identification of Dairy Products Based on Raman Spectroscopy, Chemometrics, and Machine Learning. Molecules 2025, 30, 239. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 18th ed.; Method 991.39, Fatty Acid Methyl Esters; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2006, 101, 492–501. [Google Scholar] [CrossRef]
- Kim, D.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C Equivalent Antioxidant Capacity (VCEAC) of Phenolic Phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef] [PubMed]



| Component | Acraquia | Ahuaycha | Pampas | Daniel Hernández | Pampas Valley * |
|---|---|---|---|---|---|
| Fat (%) | 3.794 ± 0.342 a | 3.778 ± 0.822 a | 2.920 ± 0.075 ab | 2.385 ± 0.789 b | 3.219 ± 0.714 |
| Non-Fat Solids (%) | 8.611 ± 0.929 b | 8.766 ± 0.596 a | 8.719 ± 0.398 ab | 9.075 ± 0.376 a | 8.793 ± 0.632 |
| Density (kg/m3) | 1029.200 ± 5.063 b | 1029.877 ± 3.609 b | 1030.452 ± 1.960 ab | 1032.267 ± 1.801 a | 1030.460 ± 3.526 |
| Lactose (%) | 4.724 ± 0.519 b | 4.809 ± 0.334 ab | 4.787 ± 0.220 ab | 4.976 ± 0.221 a | 4.824 ± 0.354 |
| Salts (%) | 0.704 ± 0.078 b | 0.716 ± 0.050 ab | 0.712 ± 0.033 ab | 0.743 ± 0.032 a | 0.719 ± 0.053 |
| Protein (%) | 3.146 ± 0.353 b | 3.202 ± 0.230 ab | 3.191 ± 0.149 ab | 3.326 ± 0.141 a | 3.216 ± 0.241 |
| Freezing Point (°C) | −0.550 ± 0.058 a | −0.560 ± 0.035 a | −0.552 ± 0.027 a | −0.574 ± 0.025 a | −0.559 ± 0.039 |
| pH | 6.063 ± 0.398 a | 5.914 ± 1.006 a | 6.213 ± 0.613 a | 5.977 ± 0.491 a | 6.042 ± 0.669 |
| Conductivity (mS/cm) | 5.026 ± 0.580 a | 5.134 ± 0.568 a | 5.245 ± 0.595 a | 5.323 ± 0.462 a | 5.182 ± 0.558 |
| Fatty Acids | Concentration (%) |
|---|---|
| Hexanoic acid (C6:0) | 0.746 ± 0.011 g |
| Octanoic acid (C8:0) | 0.605 ± 0.002 g |
| Decanoic acid (C10:0) | 1.508 ± 0.010 f |
| Lauric acid (C12:0) | 1.818 ± 0.015 f |
| Myristic acid (C14:0) | 8.676 ± 0.172 d |
| Myristoleic acid (C14:1) | 0.319 ± 0.001 h |
| Palmitic acid (C16:0) | 27.582 ± 1.623 b |
| Palmitoleic acid (C16:1) | 0.586 ± 0.003 g |
| Stearic acid (C18:0) | 16.379 ± 1.525 c |
| Oleic acid (C18:1) | 31.710 ± 1.820 a |
| Elaidic acid (C18:1 (trans)) | 3.294 ± 0.250 e |
| Linoleic acid (C18:2) | 1.394 ± 0.023 f |
| Component | Acraquia | Ahuaycha | Pampas | Daniel Hernández | Pampas Valley * |
|---|---|---|---|---|---|
| TPC (mg GAE/100 g) | 2.031 ± 0.020 a | 2.335 ± 0.031 a | 2.338 ± 0.016 a | 2.024 ± 0.025 a | 2.182 ± 0.025 |
| AC (µmol Trolox/g) | 5.926 ± 0.048 a | 5.990 ± 0.034 a | 6.022 ± 0.020 a | 5.950 ± 0.054 a | 5.970 ± 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villanueva, E.; Ore-Quiroz, H.P.J.; Prieto-Rosales, G.P.; Veliz-Sagarvinaga, R.N.; Chavez-Solano, Y.M.; Aguirre, E.; Puma-Isuiza, G.; Hurtado-Soria, B.Z. Physicochemical Profiling, Bioactive Properties, and Spectroscopic Fingerprinting of Cow’s Milk from the Pampas Valley (Tayacaja, Peru): A Chemometric Approach to Geographical Differentiation. Molecules 2025, 30, 4484. https://doi.org/10.3390/molecules30224484
Villanueva E, Ore-Quiroz HPJ, Prieto-Rosales GP, Veliz-Sagarvinaga RN, Chavez-Solano YM, Aguirre E, Puma-Isuiza G, Hurtado-Soria BZ. Physicochemical Profiling, Bioactive Properties, and Spectroscopic Fingerprinting of Cow’s Milk from the Pampas Valley (Tayacaja, Peru): A Chemometric Approach to Geographical Differentiation. Molecules. 2025; 30(22):4484. https://doi.org/10.3390/molecules30224484
Chicago/Turabian StyleVillanueva, Eudes, Harold P. J. Ore-Quiroz, Gino P. Prieto-Rosales, Raquel N. Veliz-Sagarvinaga, Yaser M. Chavez-Solano, Elza Aguirre, Gustavo Puma-Isuiza, and Beetthssy Z. Hurtado-Soria. 2025. "Physicochemical Profiling, Bioactive Properties, and Spectroscopic Fingerprinting of Cow’s Milk from the Pampas Valley (Tayacaja, Peru): A Chemometric Approach to Geographical Differentiation" Molecules 30, no. 22: 4484. https://doi.org/10.3390/molecules30224484
APA StyleVillanueva, E., Ore-Quiroz, H. P. J., Prieto-Rosales, G. P., Veliz-Sagarvinaga, R. N., Chavez-Solano, Y. M., Aguirre, E., Puma-Isuiza, G., & Hurtado-Soria, B. Z. (2025). Physicochemical Profiling, Bioactive Properties, and Spectroscopic Fingerprinting of Cow’s Milk from the Pampas Valley (Tayacaja, Peru): A Chemometric Approach to Geographical Differentiation. Molecules, 30(22), 4484. https://doi.org/10.3390/molecules30224484

