Methane Production Using Olive Tree Pruning Biomass Under H2O2 Pretreatment Enhanced with UV and Alkali
Abstract
1. Introduction
2. Results and Discussion
2.1. Effects of Pretreatments on OTP Characteristics
2.1.1. Analysis of the Solid Fraction
2.1.2. Analysis of the Liquid Fraction
2.2. Effects of Pretreatments on the BMP of OTP
2.2.1. BMP on the Whole Pretreatment Slurry
2.2.2. BMP on the Liquid and Solid Fractions Remained After Pretreatment
2.2.3. Comparison of the BMPs of the Whole Slurries with the Separated Fractions
2.2.4. Energy Balances
3. Materials and Methods
3.1. Pretreatments of OTP
3.2. BMP Tests
3.3. Analytical Methods
3.4. Calculations
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiz, H.A.; Conrad, M.; Sun, S.-N.; Sanchez, A.; Rocha, G.J.M.; Romaní, A.; Castro, E.; Torres, A.; Rodríguez-Jasso, R.M.; Andrade, L.P.; et al. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour. Technol. 2020, 299, 122685. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Data: Food and Agriculture Organization of the United Nations. 2017. Available online: https://www.fao.org/faostat/en/#home (accessed on 1 January 2024).
- Negro, M.J.; Álvarez, C.; Ballesteros, I.; Romero, I.; Ballesteros, M.; Castro, E.; Manzanares, P.; Moya, M.; Oliva, J.M. Ethanol production from glucose and xylose obtained from steam exploded water-extracted olive tree pruning using phosphoric acid as catalyst. Bioresour Technol. 2014, 153, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, E.; Romero-García, J.M.; Romero, I.; Manzanares, P.; Negro, M.J.; Castro, E. Olive derived biomass as a source of energy and chemicals. Biofuels Bioprod. Bio. 2017, 11, 1077–1094. [Google Scholar] [CrossRef]
- Alexandropoulou, M.; Antonopoulou, G.; Ntaikou, I.; Lyberatos, G. The impact of alkaline/hydrogen peroxide pretreatment on hydrogen and methane production from biomasses of different origin: The case of willow sawdust and date palm fibers. Sustain. Chem. Pharm. 2023, 32, 100971. [Google Scholar] [CrossRef]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar] [CrossRef]
- Bhatia, L.; Sarangi, P.K.; Singh, A.K.; Prakash, A.; Shadangi, K.P. Lignocellulosic waste biomass for biohydrogen production: Future challenges and bio-economic perspectives. Biofuels Bioprod. Bio. 2022, 16, 838–858. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Cui, Q.; Feng, Y.; Xuan, Y. Composition of lignocellulose hydrolysate in different biorefinery strategies: Nutrients and inhibitors. Molecules 2024, 29, 2275. [Google Scholar] [CrossRef]
- Maurya, D.P.; Singla, A.; Negi, S. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 2015, 5, 597–609. [Google Scholar] [CrossRef]
- Monlau, F.; Barakat, A.; Steyer, J.P.; Carrere, H. Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour. Technol. 2012, 120, 241–247. [Google Scholar] [CrossRef]
- Guan, R.; Yuan, X.; Wu, Z.; Jiang, L.; Li, Y.; Zeng, G. Principle and application of hydrogen peroxide based advanced oxidation processes in activated sludge treatment: A review. Chem. Eng. J. 2018, 339, 519–530. [Google Scholar] [CrossRef]
- Niju, S.; Nishanthini, T.; Balajii, M. Alkaline hydrogen peroxide-pretreated sugarcane tops for bioethanol production—A process optimization study. Biomass Conv. Bioref. 2020, 10, 149–165. [Google Scholar] [CrossRef]
- Cabrera, E.; Muñoz, M.J.; Martín, R.; Caro, I.; Curbelo, C.; Díaz, A.B. Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresour. Technol. 2014, 167, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, J.; Yang, Y.; Xie, G. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem. Bioresour. Technol. 2016, 208, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Ben Atitallah, I.; Antonopoulou, G.; Ntaikou, I.; Soto Beobide, A.; Dracopoulos, V.; Mechichi, T.; Lyberatos, G. A comparative study of various pretreatment approaches for bio-ethanol production from willow sawdust, using co-cultures and mono-cultures of different yeast strains. Molecules 2022, 27, 1344. [Google Scholar] [CrossRef] [PubMed]
- Gould, J.M. Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol. Bioeng. 1984, 26, 46–52. [Google Scholar] [CrossRef]
- Damaurai, J.; Preechakun, T.; Raita, M.; Champreda, V.; Laosiripojana, N. Investigation of alkaline hydrogen peroxide in aqueous organic solvent to enhance enzymatic hydrolysis of rice straw. BioEnergy Res. 2021, 14, 122–134. [Google Scholar] [CrossRef]
- Li, G.; Sun, Y.; Guo, W.; Yuan, L. Comparison of various pretreatment strategies and their effect on chemistry and structure of sugar beet pulp. J. Clean. Prod. 2018, 181, 217–223. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Y.; Zhang, J.; Chang, V.W.C.; Lim, T.-T. Degradation of cyclophosphamide and 5-fluorouracil in water using UV and UV/H2O2: Kinetics investigation, pathways and energetic analysis. J. Environ. Chem. Eng. 2017, 5, 1133–1139. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Cao, J.; Wang, Z. Pretreatment with concurrent UV photocatalysis and alkaline H2O2 enhanced the enzymatic hydrolysis of sisal waste. Bioresour. Technol. 2018, 267, 517–523. [Google Scholar] [CrossRef]
- Hu, J.J.; He, Z.; Zhang, Q.; Dang, J.T.; Zhao, S.H.; Yang, S.; Yang, P.B.; Yan, X.Y. Simultaneous pretreatment with ultraviolet light and alkaline H2O2 to promote enzymatic hydrolysis of corn stover. BioResources 2023, 18, 4754–4770. [Google Scholar] [CrossRef]
- Tareen, A.K.; Punsuvon, V.; Parakulsuksatid, P. Investigation of alkaline hydrogen peroxide pretreatment to enhance enzymatic hydrolysis and phenolic compounds of oil palm trunk. 3 Biotech 2020, 10, 179. [Google Scholar] [CrossRef]
- Chan, E.; Epelle, E.I. Advanced oxidation for optimising biomass-to-biofuel conversion. J. Environ. Chem. Eng. 2025, 13, 118517. [Google Scholar] [CrossRef]
- Michalska, K.; Miazek, K.; Krzystek, L.; Ledakowicz, S. Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass. Bioresour. Technol. 2012, 119, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, K.O.; Ahmed, N.A.; Ogunkunle, O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: A review. Biotechnol. Biofuels 2021, 14, 159. [Google Scholar] [CrossRef]
- Fonseca, B.G.; Mateo, S.; Roberto, I.C.; Sanchez, S.; Moya, A.J. Bioconversion in batch bioreactor of olive-tree pruning biomass optimizing treatments for ethanol production. Biochem. Eng. J. 2020, 164, 107793. [Google Scholar] [CrossRef]
- Santos, H.J.; Fillat, U.; Martín-Sampedro, M.; Eugenio, M.E.; Negro, J.M.; Ballesteros, I.; Rodríguez, A.; Ibarra, D. Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping. Int. J. Biol. Macromol. 2017, 105, 238–251. [Google Scholar] [CrossRef]
- Oliva, J.M.; José Negro, M.; Álvarez, C.; Manzanares, P.; Moreno, A.D. Fermentation strategies for the efficient use of olive tree pruning biomass from a flexible biorefinery approach. Fuel 2020, 277, 118171. [Google Scholar] [CrossRef]
- Mattonai, M.; Nardella, F.; Zaccaroni, L.; Ribechini, E. Effects of milling and UV pretreatment on the pyrolytic behavior and thermal stability of softwood and hardwood. Energy Fuels 2021, 35, 11353–11365. [Google Scholar] [CrossRef]
- Benitez, F.J.; Acero, J.L.; Gonzalez, T.; Garcia, J. Organic matter removal from wastewaters of the black olive industry by chemical and biological procedures. Process Biochem. 2001, 37, 257–265. [Google Scholar] [CrossRef]
- Azbar, N.; Keskin, T.; Catalkaya, E. Improvement in anaerobic degradation of olive mill effluent (OME) by pre-treatment using H2O2, UV-H2O2 and Fenton’s process. Int. J. Green Energy 2008, 5, 189–198. [Google Scholar] [CrossRef]
- Ben Atitallah, I.; Ntaikou, I.; Antonopoulou, G.; Bradai, C.; Mechichi, T.; Lyberatos, G. Effect of alkaline/hydrogen peroxide pretreatment on date palm fibers: Induced chemical and structural changes and assessment of ethanol production capacity via Pichia anomala and Pichia stipitis. Biomass Convers. Bio. 2022, 12, 4473–4489. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, J.; Shen, F.; Mei, Z.; Yang, G.; Zhang, Y.; Hu, Y.; Zhang, J.; Deng, S. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes. Bioresour. Technol. 2016, 199, 245–257. [Google Scholar] [CrossRef]
- Yang, L.; Ru, Y.; Xu, S.; Liu, T.; Tan, L. Features correlated to improved enzymatic digestibility of corn stover subjected to alkaline hydrogen peroxide pretreatment. Bioresour. Technol. 2021, 325, 124688. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulou, G.; Vayenas, D.; Lyberatos, G. Biogas production from physicochemically pretreated grass lawn waste: Comparison of different process schemes. Molecules 2020, 25, 296. [Google Scholar] [CrossRef]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Carvalho, L.; Beber, J.; Souza, D.; Magno, C.; Vidal, D.S.; Thomsett, L.; Viviane, K.; Souza, D.; Geronazzo, K.; Jonathan, B. Ecotoxicology and environmental safety phytotoxicity indexes and removal of color, COD, phenols and ISA from pulp and paper mill wastewater post-treated by UV/H2O2 and photo-Fenton. Ecotoxicol. Environ. Saf. 2020, 202, 110939. [Google Scholar] [CrossRef]
- Nitsos, C.; Matsakas, L.; Triantafyllidis, K.; Rova, U.; Christakopoulos, P. Evaluation of Mediterranean agricultural residues as a potential feedstock for the production of biogas via anaerobic fermentation. BioMed Res. Int. 2015, 2015, 171635. [Google Scholar] [CrossRef]
- APHA; AWWA; WPCF. Standard Methods for the Examination of Water and Wastewater; Franson, M.A., Ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Joseffson, B. Rapid spectrophotometric determination of total carbohydrates. In Methods of Seawater Analysis; Grasshoff, K., Ehrhardt, M., Kremling, K., Eds.; Verlag Chemie GmbH: Weinheim, Germany, 1983; pp. 340–342. [Google Scholar]
- Waterman, P.G.; Mole, S. Analysis of phenolic plant metabolites. In Methods in Ecology; Lawton, J.H., Likens, G.E., Eds.; Oxford Blackwell Scientific Publications: Oxford, UK, 1994. [Google Scholar]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass. In Technical Report NREL/TP-510-42619 January 2008; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. In Technical Report NREL/TP-510-42618 January 2008; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]





| Pretreatment | Concentration (% w/w) | Time (h) | Carbohydrates (g/100 g TS) | Phenolics (g/100 g TS) | COD (g/100 g TS) |
|---|---|---|---|---|---|
| UV/H2O2 | 0 | 8 | 4.6 ± 0.2 | 1.2 ± 0.2 | 13.2 ± 0.9 |
| 14 | 5.3 ± 0.5 | 1.5 ± 0.2 | 14.1 ± 1.1 | ||
| 20 | 5.6 ± 0.3 | 1.5 ± 0.4 | 15.4 ± 1.2 | ||
| 1 | 8 | 5.5 ± 0.4 | 0.6 ± 0.1 | 20.1 ± 0.9 | |
| 14 | 6.6 ± 0.4 | 0.5 ± 0.0 | 24.4 ± 1.2 | ||
| 20 | 7.1 ± 0.8 | 0.4 ± 0.1 | 24.7 ± 1.2 | ||
| 3 | 8 | 7.4 ± 0.9 | 0.6 ± 0.0 | 35.5 ± 0.6 | |
| 14 | 7.6 ± 0.2 | 0.3 ± 0.0 | 39.2 ± 2.2 | ||
| 20 | 8.9 ± 0.2 | 0.3 ± 0.0 | 42.4 ± 1.1 | ||
| H2O2 | 0 | 20 | 3.4 ± 0.5 | 0.9 ± 0.0 | 9.8 ± 0.9 |
| 1 | 20 | 4.5 ± 0.3 | 0.7 ± 0.0 | 17.0 ± 1.2 | |
| 3 | 20 | 6.8 ± 0.9 | 1.1 ± 0.12 | 21.7 ± 1.3 | |
| UV/H2O2/NaOH | 1, 1 | 20 | 9.4 ± 0.6 | 2.0 ± 0.2 | 41.3 ± 2.2 |
| NaOH | 1 | 20 | 12.6 ± 0.9 | 6.2 ± 0.5 | 45.2 ± 3.7 |
| Pretreatment | Concentration (% w/w) | Time (h) | Liquids (L CH4/kg TSin) | Solids (L CH4/kg TSin) | Whole Slurries (L CH4/kg TSin) |
|---|---|---|---|---|---|
| UV/H2O2 | 0 | 8 | 45.0 ± 5.2 | 185.9 ± 6.3 | 245.6 ± 0.2 |
| 14 | 60.8 ± 5.5 | 189.5 ± 2.8 | 247.2 ± 6.6 | ||
| 20 | 49.6 ± 3.3 | 184.1 ± 5.3 | 230.4 ± 4.1 | ||
| 1 | 8 | 29.2 ± 3.4 | 190.7 ± 11.1 | 219.1 ± 9.9 | |
| 14 | 36.1 ± 4.5 | 196.4 ± 6.0 | 228.6 ± 8.8 | ||
| 20 | 49.8 ± 3.9 | 200.4 ± 13.2 | 163.5 ± 9.5 | ||
| 3 | 8 | 9.4 ± 0.9 | 188.8 ± 12.2 | 164.0 ± 8.3 | |
| 14 | 24.6 ± 2.3 | 193.7 ± 2.8 | 175.9 ± 5.4 | ||
| 20 | 38.3 ± 3.7 | 188.7 ± 0.6 | 152.8 ± 8.6 | ||
| H2O2 | 0 | 20 | 56.3 ± 1.3 | 186.4 ± 2.7 | 264.7 ± 4.3 |
| 1 | 20 | 24.3 ± 0.3 | 202.3 ± 3.5 | 288.3 ± 2.5 | |
| 3 | 20 | 0.0 ± 0.0 | 184.0 ± 5.3 | 170.5 ± 5.8 | |
| UV/H2O2/NaOH | 1, 1 | 20 | 147.3 ± 9.9 | 190.63 ± 1.6 | 268.5 ± 2.0 |
| NaOH | 1 | 20 | 167.6 ± 5.7 | 162.96 ± 5.5 | 278.4 ± 3.7 |
| Pretreatment Conditions | Energy Gained from CH4 (kJ) | Energy Supply for Pretreatment (kJ) | Net Energy (kJ) |
|---|---|---|---|
| UV/H2O2/NaOH | 65.51 | 22.99 | 42.52 |
| NaOH | 66.98 | 0.328 | 66.65 |
| Symbol | Concentration (% w/w) | Temperature (°C) | Time (h) |
|---|---|---|---|
| UV/H2O2 | 0, 1, 3 | 25 | 8, 14, 20 |
| H2O2 | 0, 1, 3 | 25 | 20 |
| UV/H2O2/NaOH | 1 (H2O2), 1 (NaOH) | 25 | 20 |
| NaOH | 1 | 80 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniou, F.; Apostolopoulos, I.; Tekerlekopoulou, A.G.; Antonopoulou, G. Methane Production Using Olive Tree Pruning Biomass Under H2O2 Pretreatment Enhanced with UV and Alkali. Molecules 2025, 30, 4379. https://doi.org/10.3390/molecules30224379
Antoniou F, Apostolopoulos I, Tekerlekopoulou AG, Antonopoulou G. Methane Production Using Olive Tree Pruning Biomass Under H2O2 Pretreatment Enhanced with UV and Alkali. Molecules. 2025; 30(22):4379. https://doi.org/10.3390/molecules30224379
Chicago/Turabian StyleAntoniou, Fotini, Ilias Apostolopoulos, Athanasia G. Tekerlekopoulou, and Georgia Antonopoulou. 2025. "Methane Production Using Olive Tree Pruning Biomass Under H2O2 Pretreatment Enhanced with UV and Alkali" Molecules 30, no. 22: 4379. https://doi.org/10.3390/molecules30224379
APA StyleAntoniou, F., Apostolopoulos, I., Tekerlekopoulou, A. G., & Antonopoulou, G. (2025). Methane Production Using Olive Tree Pruning Biomass Under H2O2 Pretreatment Enhanced with UV and Alkali. Molecules, 30(22), 4379. https://doi.org/10.3390/molecules30224379

