Antibiotic–Cyclodextrin Interactions: An Effective Strategy for the Encapsulation of Environmental Contaminants
Abstract
1. Introduction
2. Results and Discussion
2.1. Binary and Ternary Mutual Diffusion Coefficients of Aqueous Systems Containing SMX and TMP
2.2. Density and Volume Data
2.3. Viscosity Data
2.4. Interaction Between β–CD and SMX Studied by UV-Vis Spectroscopy
3. Materials and Methods
3.1. Materials
3.2. Experimental Techniques
3.2.1. Mutual Diffusion Coefficients by Taylor Dispersion Technique
3.2.2. Density Measurements
3.2.3. Viscosity
3.2.4. Ultraviolet–Visible (UV–Vis) Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Correia-Sá, L.; Correia, M.; Figueiredo, S.; Vieira, J.; Jorge, S.; Silva, J.G.; Delerue-Matos, C. Temporal Analysis of Pharmaceuticals as Emerging Contaminants in Surface Water and Wastewater Samples: A Case Study. J. Xenobiot. 2024, 14, 873–892. [Google Scholar] [CrossRef]
- Gaffney, V.; Cardoso, V.; Benoliel, M.J.; Almeida, C. Contaminantes Emergentes—Fármacos: Monitorização, Avaliação Do Risco Ambiental e Do Risco Para a Saúde Humana. Águas Resíduos 2016, 6, 15–27. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide Cases of Water Pollution by Emerging Contaminants: A Review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. Potential Ecological and Human Health Risks Associated with the Presence of Pharmaceutically Active Compounds in the Aquatic Environment. Crit. Rev. Toxicol. 2004, 34, 335–350. [Google Scholar] [CrossRef]
- Adhikari, S.; Lee, H.H.; Kim, D.-H. ‘Primary’ Antibiotics in Wastewater Treatment Plants. iScience 2024, 27, 110789. [Google Scholar] [CrossRef]
- Samrot, A.V.; Wilson, S.; Sanjay Preeth, R.S.; Prakash, P.; Sathiyasree, M.; Saigeetha, S.; Shobana, N.; Pachiyappan, S.; Rajesh, V.V. Sources of Antibiotic Contamination in Wastewater and Approaches to Their Removal—An Overview. Sustainability 2023, 15, 12639. [Google Scholar] [CrossRef]
- Martinez, J.L. Environmental Pollution by Antibiotics and by Antibiotic Resistance Determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the Aquatic Environment—A Review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef]
- Minato, Y.; Dawadi, S.; Kordus, S.L.; Sivanandam, A.; Aldrich, C.C.; Baughn, A.D. Mutual Potentiation Drives Synergy between Trimethoprim and Sulfamethoxazole. Nat. Commun. 2018, 9, 1003. [Google Scholar] [CrossRef]
- Sayed, M.; Pal, H. An Overview from Simple Host–Guest Systems to Progressively Complex Supramolecular Assemblies. Phys. Chem. Chem. Phys. 2021, 23, 26085–26107. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, F.; Li, Z.-T.; Liu, Y. Controllable Macrocyclic Supramolecular Assemblies in Aqueous Solution. Sci. China Chem. 2018, 61, 979–992. [Google Scholar] [CrossRef]
- Loftsson, T.; Duchene, D. Cyclodextrins and Their Pharmaceutical Applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Szejtli, J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev. 1998, 98, 1743–1754. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.H.A.; Barros, R. Pharmaceuticals in Water: Risks to Aquatic Life and Remediation Strategies. Hydrobiology 2023, 2, 395–409. [Google Scholar] [CrossRef]
- Vitagliano, V.; Sartorio, R. Diffusion in Ternary Systems. J. Phys. Chem. 1970, 74, 2949–2956. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Valente, A.J.M.; Santos, C.I.A.V.; Prazeres, P.M.R.A.; Lobo, V.M.M.; Burrows, H.D.; Esteso, M.A.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B. Binary Mutual Diffusion Coefficients of Aqueous Solutions of α-Cyclodextrin, 2-Hydroxypropyl-α-Cyclodextrin, and 2-Hydroxypropyl-β-Cyclodextrin at Temperatures from (298.15 to 312.15) K. J. Chem. Eng. Data 2007, 52, 586–590. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Leaist, D.G.; Esteso, M.A.; Lobo, V.M.M.; Valente, A.J.M.; Santos, C.I.A.V.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B. Binary Mutual Diffusion Coefficients of Aqueous Solutions of β-Cyclodextrin at Temperatures from 298.15 to 312.15 K. J. Chem. Eng. Data 2006, 51, 1368–1371. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Santos, C.I.A.V.; Valente, A.J.M.; Ascenso, O.S.; Lobo, V.M.M.; Burrows, H.D.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B.; Teijeiro, C.; Esteso, M.A. Some Transport Properties of γ-Cyclodextrin Aqueous Solutions at (298.15 and 310.15) K. J. Chem. Eng. Data 2008, 53, 755–759. [Google Scholar] [CrossRef]
- Szente, L.; Singhal, A.; Domokos, A.; Song, B. Cyclodextrins: Assessing the Impact of Cavity Size, Occupancy, and Substitutions on Cytotoxicity and Cholesterol Homeostasis. Molecules 2018, 23, 1228. [Google Scholar] [CrossRef]
- Jansook, P.; Moya-Ortega, M.D.; Loftsson, T. Effect of Self-Aggregation of γ-Cyclodextrin on Drug Solubilization. J. Incl. Phenom. Macrocycl. Chem. 2010, 68, 229–236. [Google Scholar] [CrossRef]
- Del Valle, E.M.M. Cyclodextrins and Their Uses: A Review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Muthu Prabhu, A.A.; Venkatesh, G.; Rajendiran, N. Spectral Characteristics of Sulfa Drugs: Effect of Solvents, PH and β-Cyclodextrin. J. Solut. Chem. 2010, 39, 1061–1086. [Google Scholar] [CrossRef]
- Garnero, C.; Aiassa, V.; Longhi, M. Sulfamethoxazole:Hydroxypropyl-β-Cyclodextrin Complex: Preparation and Characterization. J. Pharm. Biomed. Anal. 2012, 63, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Diez, N.M.; de la Peña, A.M.; García, M.C.M.; Gil, D.B.; Cañada-Cañada, F. Fluorimetric Determination of Sulphaguanidine and Sulphamethoxazole by Host-Guest Complexation in β-Cyclodextrin and Partial Least Squares Calibration. J. Fluoresc. 2007, 17, 309–318. [Google Scholar] [CrossRef]
- Rumble, J. (Ed.) CRC Handbook of Chemistry and Physics, 98th ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Santos, C.I.A.V.; Teijeiro, C.; Ribeiro, A.C.F.; Rodrigues, D.F.S.L.; Romero, C.M.; Esteso, M.A. Drug Delivery Systems: Study of Inclusion Complex Formation for Ternary Caffeine–β-Cyclodextrin–Water Mixtures from Apparent Molar Volume Values at 298.15 K and 310.15 K. J. Mol. Liq. 2016, 223, 209–216. [Google Scholar] [CrossRef]
- Friedman, H.L.; Krishnan, C.V. Thermodynamics of Ionic Hydration. In Water: A Comprehensive Treatise; Franks, F., Ed.; Springer: Boston, MA, USA, 1973. [Google Scholar]
- Robinson, R.A.; Stokes, R.H. Electrolyte Solutions; 2nd revised; Dover Publications, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Valente, A.J.M.; Söderman, O. The Formation of Host–Guest Complexes between Surfactants and Cyclodextrins. Adv. Colloid. Interface Sci. 2014, 205, 156–176. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, H.J.V.; Harris, K.R. Diffusion in Liquids: A Theoretical and Experimental Study; Butterworths: London, UK, 1984. [Google Scholar]
- Ribeiro, A.C.F.; Natividade, J.J.S.; Esteso, M.A. Differential Mutual Diffusion Coefficients of Binary and Ternary Aqueous Systems Measured by the Open Ended Conductometric Capillary Cell and by the Taylor Technique. J. Mol. Liq. 2010, 156, 58–64. [Google Scholar] [CrossRef]
- Callendar, R.; Leaist, D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J. Solut. Chem. 2006, 35, 353–379. [Google Scholar] [CrossRef]


); 0.02 (
); 0.03 (
); 0.06 (
); 0.07 (
); 0.08 (
) mmol·dm−3; (b) Variation of absorbance as a function of the inverse of CD concentration.
); 0.02 (
); 0.03 (
); 0.06 (
); 0.07 (
); 0.08 (
) mmol·dm−3; (b) Variation of absorbance as a function of the inverse of CD concentration.
| m(SMX) /(mol kg−1) | (D ± SD) /(10−9 m2·s−1) | m(TMP) /(mol kg−1) | (D ± SD) /(10−9 m2·s−1) |
|---|---|---|---|
| 0.0000 | 0.700 ± 0.020 a | 0.0000 | 0.600 ± 0.020 b |
| 0.0010 | 0.670 ± 0014 | 0.0010 | 0.580 ± 0.013 |
| m1 a | m2 a | X1 b | D11 ± SD c | D12 ± SD c | D21 ± SD c | D22 ± SD c | D12/D22 d | D21/D11 e |
|---|---|---|---|---|---|---|---|---|
| SMX (m1) + α–CD (m2) | ||||||||
| 0.0000 | 0.0010 | 0.000 | 0.668 ± 0.026 | 0.004 ± 0.010 | 0.042 ± 0.010 | 0.394 ± 0.012 | 0.010 | 0.006 |
| 0.0005 | 0.0005 | 0.500 | 0.700 ± 0.020 | −0.026 ± 0.015 | −0.037 ± 0.030 | 0.379 ± 0.019 | −0.069 | −0.053 |
| 0.0010 | 0.0000 | 1.000 | 0.731 ± 0.012 | −0.048 ± 0.011 | −0.079 ± 0.020 | 0.364 ± 0.010 | −0.132 | −0.108 |
| SMX (m1) + β–CD (m2) | ||||||||
| 0.0000 | 0.0010 | 0.000 | 0.500 ± 0.114 | −0.005 ± 0.019 | 0.003 ± 0.007 | 0.300 ± 0.017 | −0.333 | 0.006 |
| 0.0005 | 0.0005 | 0.500 | 0.584 ± 0.013 | −0.050 ± 0.025 | 0.001 ± 0.010 | 0.239 ± 0.016 | 0.367 | 0.005 |
| 0.0010 | 0.0000 | 1.000 | 0.667 ± 0.006 | −0.190 ± 0.012 | −0.002 ± 0.009 | 0.178 ± 0.009 | 1.067 | 0.003 |
| SMX (m1) + γ–CD (m2) | ||||||||
| 0.0000 | 0.0010 | 0.000 | 0.607 ± 0.020 | 0.015 ± 0.013 | 0.001 ± 0.001 | 0.374 ± 0.004 | 0.040 | 0.0016 |
| 0.0005 | 0.0005 | 0.500 | 0.658 ± 0.010 | −0.050 ± 0.010 | 0.001 ± 0.001 | 0.386 ± 0.006 | −0.130 | 0.0152 |
| 0.0010 | 0.0000 | 1.000 | 0.650 ± 0.012 | −0.100 ± 0.011 | 0.019 ± 0.020 | 0.391 ± 0.007 | −0.256 | 0.029 |
| m1 a | m2 a | X1 b | D11 ± SD c | D12 ± SD c | D21 ± SD c | D22 ± SD c | D12/D22 d | D21/D11 e |
|---|---|---|---|---|---|---|---|---|
| TMP (m1) + α–CD (m2) | ||||||||
| 0.0000 | 0.0010 | 0.000 | 0.510 ± 0.019 | −0.004 ± 0.010 | −0.050 ± 0.011 | 0.330 ± 0.009 | −0.012 | −0.098 |
| 0.0005 | 0.0005 | 0.500 | 0.548 ± 0.012 | −0.152 ± 0.020 | −0.030 ± 0.014 | 0.346 ± 0.010 | −0.439 | −0.058 |
| 0.0010 | 0.0000 | 1.000 | 0.589 ± 0.008 | −0.240 ± 0.022 | −0.009 ± 0.009 | 0.340 ± 0.008 | −0.706 | −0.015 |
| TMP (m1) + β–CD (m2) | ||||||||
| 0.0000 | 0.0010 | 0.000 | 0.500 ± 0.011 | −0.004 ± 0.010 | −0.150 ± 0.011 | 0.360 ± 0.007 | −0.011 | −0.300 |
| 0.0005 | 0.0005 | 0.500 | 0.538 ± 0.020 | −0.138 ± 0.022 | −0.074 ± 0.036 | 0.332 ± 0.010 | −0.416 | −0.138 |
| 0.0010 | 0.0000 | 1.000 | 0.576 ± 0.010 | −0.271 ± 0.030 | 0.001 ± 0.037 | 0.305 ± 0.004 | −0.889 | 0.002 |
| TMP (m1) + γ–CD (m2) | ||||||||
| 0.0000 | 0.0010 | 0.000 | 0.520 ± 0.010 | 0.026 ± 0.020 | 0.039 ± 0.030 | 0.320 ± 0.001 | 0.081 | 0.075 |
| 0.0005 | 0.0005 | 0.500 | 0.510 ± 0.026 | −0.272 ± 0.030 | −0.016 ± 0.030 | 0.309 ± 0.010 | −0.880 | 0.031 |
| 0.0010 | 0.0000 | 1.000 | 0.500 ± 0.020 | −0.571 ± 0.060 | −0.004 ± 0.009 | 0.299 ± 0.014 | −1.910 | −0.008 |
| Species | Ds/(10−9 m2 s−1) |
|---|---|
| SMX | 0.700 a |
| TMP | 0.600 a |
| α–CD | 0.353 b |
| β–CD | 0.326 c |
| γ–CD | 0.311 d |
| SMX: α–CD b | 0.353 e |
| SMX: β–CD | 0.315 e |
| SMX: γ–CD | 0.343 e |
| TMP: α–CD | 0.319 e |
| TMP: β–CD | 0.300 e |
| TMP: γ–CD | 0.322 e |
| m(CD) /(mol kg−1) | (cm3·mol−1) (in α–CD) a | bv/ (kg·cm3·mol−2) | / (cm3·mol−1) (in β–CD) a | bv/ (kg·cm3·mol−2) | / (cm3·mol−1) (in γ–CD) a | bv/ (kg·cm3·mol−2) |
|---|---|---|---|---|---|---|
| 0.00050 | 173.04 | +5080 | 172.02 | +2.0 | 177.05 | +5080 |
| 0.00100 | 174.52 | +12,188 | 180.05 | +8030 | 161.96 | +16,064 |
| m(CDs) /(mol kg−1) | / (cm3·mol−1) (in α–CD) a | / (cm3·mol−1) (in β–CD) a | / (cm3·mol−1) (in γ–CD) a |
|---|---|---|---|
| 0.00050 | −24.15 | −25.17 | −19.43 |
| 0.00100 | −22.67 | −17.14 | −35.23 |
| m(CD) /(mol kg−1) | / (cm3·mol−1) (in α–CD) a | bv/ (kg·cm3·mol−2) | / (cm3·mol−1) (in β–CD) a | bv/ (kg·cm3·mol−2) | / (cm3·mol−1) (in γ–CD) a | bv/ (kg·cm3·mol−2) |
|---|---|---|---|---|---|---|
| 0.00050 | 244.87 | +8040 | 232.30 | +11,920 | 221.74 | +21,712 |
| 0.00100 | 207.15 | +12,176 | 206.14 | +17,264 | 205.12 | +6816 |
| m(CDs) /(mol kg−1) | / (cm3·mol−1) (in α–CD) a | / (cm3·mol−1) (in β–CD) a | / (cm3·mol−1) (in γ–CD) a |
|---|---|---|---|
| 0.00050 | +23.10 | +10.53 | −0.030 |
| 0.00100 | −14.62 | −15.63 | −16.65 |
| System | A /(dm−3/2·mol−1/2) | B /(dm3·mol−1) | R2 |
|---|---|---|---|
| SMX/H2O | 0.000 | 1.200 | 1.000 |
| SMX/β–CD/H2O | −0.052 | 3.812 | 0.997 |
| TMP/H2O | 0.534 | 2.007 | 0.999 |
| TMP/β–CD/H2O | 0.126 | 2.962 | 0.996 |
| λ/nm | R2 | /L·mol−1·cm−1 | LOD/mmol·L−1 | LOQ/mmol·L−1 |
|---|---|---|---|---|
| 264 | 0.9998 | 183.44 | 0.13 | 0.42 |
| Chemical Name | Source | CAS Number | Mass Fraction Purity a | Water Content (mass %) b |
|---|---|---|---|---|
| Sulfamethoxazole (SMX) | TCI (Tokyo, Japan) | 723-46-6 | >0.98 | |
| Trimethoprim (TMP) | Thermoscientific (Waltham, MA, USA) | 738-70-5 | >0.98 | |
| α−CD | Sigma-Aldrich (Saint Louis, MO, USA) | 10016-20-3 | >0.98 | 14% |
| β−CD | Sigma-Aldrich | 7585-39-9 | >0.98 | 13% |
| γ−CD | Sigma-Aldrich | 17465-86-0 | >0.98 | 10% |
| Millipore-Q water (ρ = 1.82 × 105 Ω m at 298.15 K) | - | 7732-18-5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galindres-Jiménez, D.M.; Matias, M.F.; Paiva, I.; Fangaia, S.I.G.; Ribeiro, A.C.F.; Valente, A.J.M.; Esteso, M.A. Antibiotic–Cyclodextrin Interactions: An Effective Strategy for the Encapsulation of Environmental Contaminants. Molecules 2025, 30, 4359. https://doi.org/10.3390/molecules30224359
Galindres-Jiménez DM, Matias MF, Paiva I, Fangaia SIG, Ribeiro ACF, Valente AJM, Esteso MA. Antibiotic–Cyclodextrin Interactions: An Effective Strategy for the Encapsulation of Environmental Contaminants. Molecules. 2025; 30(22):4359. https://doi.org/10.3390/molecules30224359
Chicago/Turabian StyleGalindres-Jiménez, Diana M., Marta F. Matias, Isabel Paiva, Sónia I. G. Fangaia, Ana C. F. Ribeiro, Artur J. M. Valente, and Miguel A. Esteso. 2025. "Antibiotic–Cyclodextrin Interactions: An Effective Strategy for the Encapsulation of Environmental Contaminants" Molecules 30, no. 22: 4359. https://doi.org/10.3390/molecules30224359
APA StyleGalindres-Jiménez, D. M., Matias, M. F., Paiva, I., Fangaia, S. I. G., Ribeiro, A. C. F., Valente, A. J. M., & Esteso, M. A. (2025). Antibiotic–Cyclodextrin Interactions: An Effective Strategy for the Encapsulation of Environmental Contaminants. Molecules, 30(22), 4359. https://doi.org/10.3390/molecules30224359

