Design, In Silico, and Experimental Evaluation of Novel Naproxen–Azetidinone Hybrids as Selective COX-2 Inhibitors
Abstract
1. Introduction
2. Results
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Animals Methods
2.2.2. Calculations for Dose Determination
2.2.3. Experimental Design
2.2.4. Statistical Analysis
2.2.5. Comparative Analysis
2.3. In Silico Analysis
2.3.1. Molecular Docking Simulation
2.3.2. MM-GBSA Analysis
2.3.3. Frontier Molecular Orbitals in Ligand–Receptor Interaction
2.3.4. Molecular Dynamics Simulation
2.3.5. ADMET Evaluation
3. Experimental Work
3.1. Materials and Methods
3.2. Synthesis of Methyl (S)-2-(6-Methoxynaphthalen-2-yl) Propanoate [N1]

3.3. Synthesis of (S)-2-(6-Methoxynaphthalen-2-yl) Propane Hydrazide [N2]

3.4. General Procedure for Synthesis of Schiff’s Bases Compounds [N3a–N3f]

3.5. General Procedure for Synthesis of Azetidine-2-One Derivatives [N4a–N4f]


3.6. Computational Methods
3.6.1. Protein Preparation
3.6.2. Ligand Preparation
3.6.3. Molecular Docking
3.6.4. MM/GBSA Binding Free Energy Calculation
3.6.5. Density Functional Theory (DFT) Calculations
3.6.6. Molecular Dynamics (MD) Simulations
3.6.7. ADMET Prediction
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Özdemir, S. Inflammation: Complexity and Significance of Cellular and Molecular Responses. J. Acute Dis. 2024, 13, 3–7. [Google Scholar] [CrossRef]
- Kotlyarov, S.; Oskin, D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int. J. Mol. Sci. 2025, 26, 2378. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.M. Acute Inflammation in Tissue Healing. Int. J. Mol. Sci. 2022, 24, 641. [Google Scholar] [CrossRef]
- Khalil, N.A.; Ahmed, E.M.; Tharwat, T.; Mahmoud, Z. NSAIDs between Past and Present; A Long Journey towards an Ideal COX-2 Inhibitor Lead. RSC Adv. 2024, 14, 30647–30661. [Google Scholar] [CrossRef]
- Lee, M.; Kim, M.; Cha, J.M. Risk of Lower Gastrointestinal Bleeding in Nonsteroidal Anti-Inflammatory Drug (NSAID) and Proton Pump Inhibitor Users Compared with NSAID-Only Users: A Common Data Model Analysis. Gut Liver 2025, 19, 243–254. [Google Scholar] [CrossRef]
- Ammar, Y.A.; Salem, M.A.; Fayed, E.A.; Helal, M.H.; El-Gaby, M.S.A.; Thabet, H.K. Naproxen Derivatives: Synthesis, Reactions, and Biological Applications. Synth. Commun. 2017, 47, 1341–1367. [Google Scholar] [CrossRef]
- Das, S.; Choudhury, B.; Chauhan, S.; Balamurali, M.M.; Chanda, K. An Overview of the Synthesis of Biheterocyclic Compounds Featuring Four-Membered Rings Containing Nitrogen, Oxygen, or Sulfur. Tetrahedron 2025, 181, 134679. [Google Scholar] [CrossRef]
- Aziz, D.; Majeed, M.M.; Salim, A.T. Synthesis, Characterization, and Study the Biological Activity of New Di-Azetidinone Derivatives. J. Popul. Ther. Clin. Pharmacol. 2023, 30, e349–e359. [Google Scholar] [CrossRef]
- Kamala, G.; Shirin, D.; Anjaleena, D.; Anusree, P. Quinoline-Based 2-Azetidinones, 4-Thiazolidinones and Their Potential Pharmacological Activities. J. Pharma Insights Res. 2024, 2, 107–124. [Google Scholar] [CrossRef]
- Hussein, H.H.; Al-Azawi, K.F.; Hasoon, B.A.; El-Sayed, D.S. Advance Screening of Bis-Azetidinone Derivatives: Synthesis, Spectroscopy, Antioxidant and Antimicrobial Analysis with Molecular Docking Assessment. Curr. Org. Synth. 2025, 22, 396–409. [Google Scholar] [CrossRef]
- Mehta, P.D.; Sengar, N.P.S.; Pathak, A.K. 2-Azetidinone: A New Profile of Various Pharmacological Activities. Molecules 2010, 15, 5541–5560. [Google Scholar] [CrossRef]
- Drăgan, M.; Stan, C.D.; Iacob, A.T.; Dragostin, O.M.; Boancă, M.; Lupuşoru, C.E.; Zamfir, C.L.; Profire, L. Biological Evaluation of Azetidine-2-One Derivatives of Ferulic Acid as Promising Anti-Inflammatory Agents. Molecules 2020, 25, 1401. [Google Scholar] [CrossRef]
- Barung, E.N.; Asiegbu, U.F.; Lumbanraja, D.; Sinaga, R.A.; Kilowasid, F. Egg white-induced inflammation models: A study of edema profile and histological change of rat’s paw. J. Adv. Pharm. Technol. Res. 2021, 12, 141–148. [Google Scholar] [CrossRef]
- Enechi, O.C.; Okeke, E.S.; Awoh, O.E.; Okoye, C.O.; Odo, C.K. Inhibition of phospholipase A2, platelet aggregation and egg albumin-induced rat paw oedema as anti-inflammatory effect of Peltophorum pterocarpum stem-bark. Clin. Phytosci. 2021, 7, 75. [Google Scholar] [CrossRef]
- Turull, À.; Queralt, J. Changes in prostaglandin E2 (PGE2) levels in paw exudate, stomach, and kidney of arthritic rats: Effects of flosulide. Prostaglandins Other Lipid Mediat. 2001, 66, 27–37. [Google Scholar] [CrossRef]
- Abdul Rahim, R.; Jayusman, P.A.; Muhammad, N.; Mohamed, N.; Lim, V.; Ahmad, N.H.; Mohamad, S.; Abdul Hamid, Z.A.; Ahmad, F.; Mokhtar, N.; et al. Potential Antioxidant and Anti-Inflammatory Effects of Spilanthes acmella and Its Health Beneficial Effects: A Review. Int. J. Environ. Res. Public Health 2021, 18, 3532. [Google Scholar] [CrossRef] [PubMed]
- Khudair, W.A.; Sarsam, S.W. Synthesis, Characterization, and Preliminary Antimicrobial Evaluation of New Hydrazones and 1,3,4-Oxadiazole Derivatives Derived from Indole-Propionic Acid. Biochem. Cell. Arch. 2021, 21, 1729–1737. [Google Scholar]
- Sharma, N.; Arya, G.; Kumari, R.; Gupta, N.; Nimesh, S. Evaluation of Anticancer Activity of Silver Nanoparticles on the A549 Human Lung Carcinoma Cell Lines through Alamar Blue Assay. Bio-Protocol 2019, 9, e3131. [Google Scholar] [CrossRef]
- Dasmahapatra, U.; Kumar, C.K.; Das, S.; Subramanian, P.T.; Murali, P.; Isaac, A.E.; Ramanathan, K.; Mm, B.; Chanda, K. In-Silico Molecular Modelling, MM/GBSA Binding Free Energy and Molecular Dynamics Simulation Study of Novel Pyrido Fused Imidazo[4,5-c]quinolines as Potential Anti-Tumor Agents. Front. Chem. 2022, 10, 991369. [Google Scholar] [CrossRef]
- Bernardette Martínez-Rizo, A.; Fosado-Rodríguez, R.; César Torres-Romero, J.; César Lara-Riegos, J.; Alberto Ramírez-Camacho, M.; Ly Arroyo Herrera, A.; Elizabeth Villa de la Torre, F.; Ceballos Góngora, E.; Ermilo Arana-Argáez, V. Models in vivo and in vitro for the study of acute and chronic anti-inflammatory activity: Twelve commonly used models of anti-inflammatory effect. Inflamm. Res. 2024, 73, 201–218. [Google Scholar] [CrossRef]
- Bouback, T.A.; Pokhrel, S.; Albeshri, A.; Aljohani, A.M.; Samad, A.; Alam, R.; Hossen, M.S.; Al-Ghamdi, K.; Talukder, M.E.; Ahammad, F.; et al. Pharmacophore-Based Virtual Screening, Quantum Mechanics Calculations, and Molecular Dynamics Simulation Approaches Identified Potential Natural Antiviral Drug Candidates against MERS-CoV S1-NTD. Molecules 2021, 26, 4961. [Google Scholar] [CrossRef]
- Ali, A.; Wani, A.B.; Malla, B.A.; Poyya, J.; Dar, N.J.; Ali, F.; Ahmad, S.B.; Rehman, M.U.; Nadeem, A. Network Pharmacology Integrated Molecular Docking and Dynamics to Elucidate Saffron Compounds Targeting Human COX-2 Protein. Molecules 2023, 28, 2058. [Google Scholar] [CrossRef]
- Olanrewaju, J.A.; Arietarhire, L.O.; Soremekun, O.E.; Olugbogi, E.A.; Aribisala, P.O.; Alege, P.E.; Adeleke, S.O.; Afolabi, T.O.; Sodipo, A.O. Reporting the Anti-Neuroinflammatory Potential of Selected Spondias mombin Flavonoids through Network Pharmacology and Molecular Dynamics Simulations. Molecules 2024, 29, 74. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.C.; Sousa, G.H.M.; Calil, R.L.; Trossini, G.H.G. Absorption matters: A closer look at popular oral bioavailability rules for drug approvals. Mol. Inform. 2023, 42, e202300115. [Google Scholar] [CrossRef]
- Glomb, T.; Minta, J.; Nowosadko, M.; Radzikowska, J.; Świątek, P. Search for New Compounds with Anti-Inflammatory Activity Among 1,2,4-Triazole Derivatives. Molecules 2024, 29, 6036. [Google Scholar] [CrossRef]
- Farah, H.; Mahdi, M.F.; Khan, A.K. Synthesis, Molecular Docking, Characterization, and Preliminary Evaluation of Some New 1,3-Diazetidin-2-One Derivatives as Anticancer Agents. Al-Mustansiriyah J. Pharm. Sci. 2024, 24, 48–58. [Google Scholar] [CrossRef]
- Mahdi, M.F.; Al-Smaism, R.F.; Mahmood, A.I. Synthesis and Characterization of Some New 2-Azetidinone Derivatives. Al-Mustansiriyah J. Pharm. Sci. 2015, 15, 21–28. [Google Scholar] [CrossRef]
- Akash, S.; Aovi, F.I.; Azad, M.A.; Kumer, A.; Chakma, U.; Islam, M.R.; Mukerjee, N.; Rahman, M.M.; Bayıl, I.; Rashid, S.; et al. A Drug Design Strategy Based on Molecular Docking and Molecular Dynamics Simulations Applied to Development of Inhibitors against Triple-Negative Breast Cancer by Scutellarein Derivatives. PLoS ONE 2023, 18, e0283271. [Google Scholar] [CrossRef]
- Abbasi, S.A.; Rehman, W.; Rahim, F.; Hussain, R.; Hawsawi, M.B.; Alluhaibi, M.S.; Alharbi, M.; Taha, M.; Khan, S.; Rasheed, L.; et al. Molecular modelling and synthesis of novel benzimidazole-based thiazolidinone bearing chalcone derivatives: A promising approach to develop potential anti-diabetic agents. Molecules 2024, 29, 375–390. [Google Scholar] [CrossRef]
- Alshehri, M.A.; Asiri, S.A.; Helmi, N.; Baeissa, H.M.; Hamadi, A.; Alzahrani, A.; Alghamdi, R.M.; Rafeeq, M.M.; Alharbi, Z.M.; Kamal, M.A. Unrevealing the Multitargeted Potency of 3-1-BCMIYPPA against Lung Cancer Structural Maintenance and Suppression Proteins through Pharmacokinetics, QM-DFT, and Multiscale MD Simulation Studies. PLoS ONE 2024, 19, e0303784. [Google Scholar] [CrossRef]
- Bansal, N.; Wang, Y.; Sciabola, S. Machine Learning Methods as a Cost-Effective Alternative to Physics-Based Binding Free Energy Calculations. Molecules 2024, 29, 830. [Google Scholar] [CrossRef]
- Gómez Borrego, J.; Torrent Burgas, M. Evaluating ligand docking methods for drugging protein–protein interfaces: Insights from AlphaFold2 and molecular dynamics refinement. J. Cheminf. 2025, 17, 144. [Google Scholar] [CrossRef]
- Chaurasiya, N.D.; Jangir, A.K.; Goyal, R.; Verma, A.; Singh, P.; Kumar, A. In Silico Evaluation of COX-2 Inhibitors Using Glide XP Docking and MM-GBSA Free-Energy Calculations. J. Biomol. Struct. Dyn. 2024, 42, 9123–9135. [Google Scholar]
- Navhaya, L.T.; Matsebatlela, T.M.; Monama, M.Z.; Makhoba, X.H. In Silico Discovery and Evaluation of Inhibitors of the SARS-CoV-2 Spike Protein–HSPA8 Complex Towards Developing COVID-19 Therapeutic Drugs. Viruses 2024, 16, 1726. [Google Scholar] [CrossRef]
- York, D.M. Modern Alchemical Free Energy Methods for Drug Discovery. Molecules 2023, 28, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Sharma, R.; Singh, D.; Gupta, A.K. Quantum Chemical Insights into the HOMO–LUMO Characteristics and Reactivity of Selective COX-2 Inhibitors Using Jaguar DFT Calculations. J. Mol. Struct. 2024, 1305, 138244. [Google Scholar] [CrossRef]
- Priyanka, J.; Jitendra, S.; Sudandiradoss, C. Discovery of andrographolide hit analog as a potent cyclooxygenase-2 inhibitor through consensus MD-simulation, electrostatic potential energy simulation and ligand efficiency metrics. Sci. Rep. 2023, 13, 8147. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]











| Time | 0 min | 30 min | 60 min | 120 min | 180 min | 240 min | 300 min | % of Edema Inhibition | |
|---|---|---|---|---|---|---|---|---|---|
| Paw Thickness (mm)/n = 6 | Control | 6.02 ± 0.04 | 8.33 ± 0.06 | 7.54 ± 0.06 | 7.35 ± 0.07 | 7.15 ± 0.05 | 6.24 ± 0.04 | 6.20 ± 0.02 | 0 |
| Naproxen | 5.82 ± 0.02 | 8.35 ± 0.02 | 8.07 ± 0.05 | 6.90 ± 0.03 *a | 6.28 ± 0.04 *a | 6.45 ± 0.03 *c | 6.17 ± 0.04 *b | 4.3% | |
| N4a | 5.33 ± 0.03 | 8.39 ± 0.05 | 6.73 ± 0.04 | 6.49 ± 0.03 *c | 6.89 ± 0.02 *c | 5.419 ± 0.02 *c | 6.29 ± 0.03 *b | 10.58% | |
| N4b | 5.42 ± 0.02 | 8.35 ± 0.02 | 6.17 ± 0.04 | 8.90 ± 0.04 *c | 7.28 ± 0.04 *c | 7.44 ± 0.03 *c | 6.07 ± 0.04 *b | 0 | |
| N4c | 6.24 ± 0.03 | 7.39 ± 0.03 | 6.97 ± 0.05 | 6.90 ± 0.04 *c | 6.88 ± 0.02 *c | 6.47 ± 0.03 *c | 6.19 ± 0.02 *b | 7.45% | |
| N4d | 7.42 ± 0.02 | 6.35 ± 0.02 | 5.17 ± 0.04 | 5.90 ± 0.04 *c | 5.28 ± 0.04 *c | 5.44 ± 0.03 *c | 5.07 ± 0.04 *b | 19.22% | |
| N4e | 6.42 ± 0.02 | 6.35 ± 0.02 | 6.17 ± 0.04 | 6.90 ± 0.04 *c | 5.28 ± 0.04 *c | 5.44 ± 0.03 *c | 5.07 ± 0.04 *b | 16.98% | |
| N4f | 6.33 ± 0.03 | 7.39 ± 0.05 | 6.73 ± 0.04 | 5.49 ± 0.03 *c | 5.89 ± 0.02 *c | 5.419 ± 0.02 *c | 5.29 ± 0.03 *b | 16.98% |
| No. | Ligand | 3D Structure | Protein | Docking Score (Kcal/mol) | MM/GBSA ΔG_bind (kcal/mol, ±SE) | Interaction Type | ||
|---|---|---|---|---|---|---|---|---|
| H-Bond | Pi-Pi Stacking | Short Contact | ||||||
| 1 | N4a | ![]() | Murine cyclooxygenase-2 (PDB: ID: (4M11) | −11.93 | −38.2 ± 0.6 | SER530 | - | LEU531, LEU534, MET535, ARG120, LEU117, VAL116, MET113, PHE381, TYR385, TRP387, MET522, VAL523, GLY526 * |
| 2 | N4b | ![]() | −9.72 | −32.9 ± 0.5 | ARG120 | - | TYR355, LEU352, VAL349, MET522, VAL523, MET522, VAL523, GLY526 *, ALA527, LEU531, LEU534, MET535, MET113, VAL116, LEU117, SER353 *, SER530 * | |
| 3 | N4c | ![]() | −10.92 | −62.2 ± 0.7 | ARG120, TYR355, SER530 | - | VAL89, LEU93, ILE345, TRP387, TYR385, PHE381, GLY326 *, SER353 * | |
| 4 | N4d | ![]() | −10.59 | −49.4 ± 0.4 | SER530 | - | ARG120, LEU117, VAL116, MET113, MET535, LEU534, LEU531, ALA527, GLY526 *, VAL523, MET522, VAL349, LEU352 | |
| 5 | N4e | ![]() | −10.57 | −42.8 ± 0.6 | SER530 | ARG120 | ARG120, TYR355, SER353 *, LEU352, VAL349, PHE361, LYS360, LEU359, MET113, MET535, LEU534, LEU531, ALA527, VAL523, MET522 | |
| 6 | N4f | ![]() | −11.53 | −35.2 ± 0.5 | - | ALA527, SER530 | PHE381, LEU384, TYR385, TPR387, MET522, VAL523, GLY526 *, ALA527, SER530 *, LEU531, LEU534, MET535, ARG120, LEU117, VAL116, MET113, LEU359 | |
| 7 | Naproxen | ![]() | −6.79 | −46.3 ± 0.4 | - | ARG120 | LEU117, VAL116, MET113, MET535, LEU534, GLY526 *, VAL523 | |
| 8 | Meloxicam | ![]() | −9.30 | −30.8 ± 0.5 | SER530, ARG120 | - | MET113, MET535, LEU534, LEU531, ALA527, GLY526 *, VAL523, MET522, ARG120 | |
| Compound Code | HOMO (eV) | LUMO (eV) | ΔE (eV) |
|---|---|---|---|
| N4a | −5.13 | −1.27 | 3.86 |
| N4b | −5.67 | −2.72 | 2.95 |
| N4c | −5.61 | −2.64 | 2.97 |
| N4d | −5.62 | −1.33 | 4.29 |
| N4e | −5.63 | −1.34 | 4.29 |
| N4f | −5.67 | −1.68 | 3.99 |
| No. | Ligand | Toxicity Risks | Physicochemical Properties | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| AMES Toxicity | Carcinogenicity | LC50 (Oral Rat) | Skin Sensitization | hERG Blockers | Molecular Weight | TPSA | Lipinski Rule | HBA | HBD | HIA | LogP | logS | ||
| 1 | N4a | (+) | (+) | (+) | (−) | (−) | 451.1 | 61.8 | (Accepted) | 6 | 1 | (+) | 4.284 | −5.29 |
| 2 | N4b | (+) | (+) | (−) | (−) | (+) | 453.1 | 101.7 | (Accepted) | 8 | 1 | (+) | 3.916 | −4.84 |
| 3 | N4c | (+) | (+) | (+) | (−) | (−) | 408.1 | 58.6 | (Accepted) | 5 | 1 | (−) | 3.960 | −4.98 |
| 4 | N4d | (+) | (+) | (−) | (−) | (+) | 453.1 | 101.7 | (Accepted) | 8 | 1 | (+) | 3.899 | −4.81 |
| 5 | N4e | (+) | (−) | (+) | (−) | (−) | 442.0 | 58.6 | (Accepted) | 5 | 1 | (+) | 4.716 | −5.20 |
| 6 | N4f | (+) | (+) | (+) | (−) | (−) | 433.1 | 82.43 | (Accepted) | 6 | 1 | (−) | 3.759 | −5.01 |
| 7 | Naproxen | (+) | (−) | (+) | (−) | (+) | 230.0 | 46.5 | (Accepted) | 3 | 1 | (+) | 3.26 | −3.85 |
| 8 | Meloxicam | (−) | (+) | (−) | (−) | (−) | 351.0 | 99.6 | (Accepted) | 5 | 0 | (−) | 1.68 | −2.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.K.; Mahmood, N.R.; Sahib, M.A. Design, In Silico, and Experimental Evaluation of Novel Naproxen–Azetidinone Hybrids as Selective COX-2 Inhibitors. Molecules 2025, 30, 4358. https://doi.org/10.3390/molecules30224358
Khan AK, Mahmood NR, Sahib MA. Design, In Silico, and Experimental Evaluation of Novel Naproxen–Azetidinone Hybrids as Selective COX-2 Inhibitors. Molecules. 2025; 30(22):4358. https://doi.org/10.3390/molecules30224358
Chicago/Turabian StyleKhan, Ayad Kareem, Noor Riyadh Mahmood, and Mohammed Abdulaali Sahib. 2025. "Design, In Silico, and Experimental Evaluation of Novel Naproxen–Azetidinone Hybrids as Selective COX-2 Inhibitors" Molecules 30, no. 22: 4358. https://doi.org/10.3390/molecules30224358
APA StyleKhan, A. K., Mahmood, N. R., & Sahib, M. A. (2025). Design, In Silico, and Experimental Evaluation of Novel Naproxen–Azetidinone Hybrids as Selective COX-2 Inhibitors. Molecules, 30(22), 4358. https://doi.org/10.3390/molecules30224358









