A Potential Pathway for the Synthesis of Biomass-Based Polyamide Monomer 2,5-Bis(aminomethyl)furan from 2,5-Furandicarboxylic Acid
Abstract
1. Introduction
2. Results and Discussion
2.1. The Molten Ammoniated Dehydration of 2,5-Furandicarboxylic Acid
2.2. The Conversion of 2,5-Furandicarboxylic Acid to 2,5-Dicyanofuran by Acyl Chloride-Amide-Nitrile
2.3. The Hydrogenation of DCF to BAMF
3. Experiment
3.1. Chemicals
3.2. The Conversion of 2,5-Furandicarboxylic Acid to 2,5-Dicyanofuran
3.2.1. Preparation of 2,5-Dicyanofuran via a Molten Ammoniated Dehydration of 2,5-Furandicarboxylic Acid
3.2.2. Preparation of 2,5-Dicyanofuran via a Moderate Ammoniated Dehydration of 2,5-Furandicarboxylic Acid
3.3. The Hydrogenation of 2,5-Dicyanofuran
3.4. The Analysis of Products
3.5. The Characterization Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HMF | 5-Hydroxymethylfurfural; |
| FDCA | 2,5-Furandicarboxylic acid; |
| HMDA | Hexamethylenediamine; |
| FDCC | 2,5-furandicarboxylic acid chloride; |
| HMFA | 5-Hydroxymethylfurfurylamine; |
| FDAM | 2,5-Furandicarboxamide |
| DCF | 2,5-Dicyanofuran; |
| BAMF | 2,5-Bis(aminomethyl)furan; |
| BATF | 2,5-Bis-(aminomethyl)tetrahydrofuran; |
References
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, W.; Sun, Y.; Li, Z.; Tang, X.; Zeng, X.; Lin, L.; Liu, S. One-pot conversion of biomass-derived carbohydrates into 5-[(formyloxy)methyl]furfural: A novel alternative platform chemical. Ind. Crops Prod. 2016, 83, 408–413. [Google Scholar] [CrossRef]
- Karimi, S.; Niakan, M.; Shekaari, H. Designing neoteric acidic deep eutectic solvents: An innovative, low-cost and environment-friendly strategy in the fast and facile production of 5-hydroxymethylfurfural. React. Chem. Eng. 2023, 8, 1665–1672. [Google Scholar] [CrossRef]
- Al Ghatta, A.; Zhou, X.; Casarano, G.; Wilton-Ely, J.D.E.T.; Hallett, J.P. Characterization and valorization of humins produced by HMF degradation in ionic liquids: A valuable carbonaceous material for antimony removal. ACS Sustain. Chem. Eng. 2021, 9, 2212–2223. [Google Scholar] [CrossRef]
- Galkin, K.I.; Krivodaeva, E.A.; Romashov, L.V.; Zalesskiy, S.S.; Kachala, V.V.; Burykina, J.V.; Ananikov, V.P. Critical influence of 5-hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis. Angew. Chem. Int. Ed. 2016, 55, 8338–8342. [Google Scholar] [CrossRef]
- Chai, Y.; Yang, H.; Bai, M.; Chen, A.; Peng, L.; Yan, B.; Zhao, D.; Qin, P.; Peng, C.; Wang, X. Direct production of 2, 5-Furandicarboxylicacid from raw biomass by manganese dioxide catalysis cooperated with ultrasonic-assisted diluted acid pretreatment. Bioresour. Technol. 2021, 337, 125421. [Google Scholar] [CrossRef]
- Heo, J.B.; Lee, Y.S.; Chung, C.H. Marine plant-based biorefinery for sustainable 2,5-furandicarboxylic acid production: A review. Bioresour. Technol. 2023, 390, 129817. [Google Scholar] [CrossRef]
- Miah, M.R.; Dong, Y.; Wang, J.; Zhu, J. Recent progress on sustainable 2,5-furandicarboxylate-based polyesters: Properties and applications. ACS Sustain. Chem. Eng. 2024, 12, 2927–2961. [Google Scholar] [CrossRef]
- Chi, D.; Liu, F.; Na, H.; Chen, J.; Hao, C.; Zhu, J. Poly(neopentyl glycol 2,5-furandicarboxylate): A promising hard segment for the development of bio-based thermoplastic poly(ether-ester) elastomer with high performance. ACS Sustain. Chem. Eng. 2018, 6, 9893–9902. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Ma, C.; He, Y.C. Chemobiocatalytic transfromation of biomass into furfurylamine with mixed amine donor in an eco-friendly medium. Bioresour. Technol. 2023, 387, 129638. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Ma, C.; Li, Q.; Chai, H.; He, Y.C. Efficient production of hydroxymethyl-2-furfurylamine by chemoenzymatic cascade catalysis of bread waste in a sustainable approach. Bioresour. Technol. 2023, 385, 129454. [Google Scholar] [CrossRef]
- Kumar, A.; Armstrong, D.; Peters, G.; Nagala, M.; Shirran, S. Direct synthesis of polyureas from the dehydrogenative coupling of diamines and methanol. Chem. Commun. 2021, 57, 6153–6156. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Li, Z.; Zeng, X.; Tang, X.; Sun, Y.; Lei, T.; Lin, L. Synthesis of bis(amino)furans from biomass based 5-hydroxymethyl furfural. J. Energy Chem. 2018, 27, 209–214. [Google Scholar] [CrossRef]
- Karlinskii, B.Y.; Ananikov, V.P. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem. Soc. Rev. 2023, 52, 836–862. [Google Scholar] [CrossRef]
- Dros, A.B.; Larue, O.; Reimond, A.; De Campo, F.; Pera-Titus, M. Hexamethylenediamine (HMDA) from fossil- vs. bio-based routes: An economic and life cycle assessment comparative study. Green Chem. 2015, 17, 4760–4772. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.; Sun, B.; Wang, C.; Zhang, X.; Mu, X. Preparation of furanyl primary amines from biobased furanyl derivatives over heterogeneous catalysts. ACS Sustain. Chem. Eng. 2023, 11, 17951–17978. [Google Scholar] [CrossRef]
- Xu, Y.; Jia, X.; Ma, J.; Gao, J.; Xia, F.; Li, X.; Xu, J. Efficient synthesis of 2,5-dicyanofuran from biomass-derived 2,5-diformylfuran via an oximation−dehydration strategy. ACS Sustain. Chem. Eng. 2018, 6, 2888–2892. [Google Scholar] [CrossRef]
- Fu, X.-P.; Han, P.; Wang, Y.-Z.; Wang, S.; Yan, N. Insight into the roles of ammonia during direct alcohol amination over supported Ru catalysts. J. Catal. 2021, 399, 121–131. [Google Scholar] [CrossRef]
- Murugesan, K.; Senthamarai, T.; Chandrashekhar, V.G.; Natte, K.; Kamer, P.C.J.; Beller, M.; Jagadeesh, R.V. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chem. Soc. Rev. 2020, 49, 6273–6328. [Google Scholar] [CrossRef]
- Deng, D.; Kita, Y.; Kamata, K.; Hara, M. Low-temperature reductive amination of carbonyl compounds over Ru deposited on Nb2O5·nH2O. ACS Sustain. Chem. Eng. 2018, 7, 4692–4698. [Google Scholar] [CrossRef]
- Gomez, S.; Peters, J.A.; Maschmeyer, T. The reductive amination of aldehydes and ketones and the hydrogenation of nitriles: Mechanistic aspects and selectivity control. Adv. Synth. Catal. 2002, 344, 1037–1057. [Google Scholar] [CrossRef]
- Manzoli, M.; Gaudino, E.C.; Cravotto, G.; Tabasso, S.; Baig, R.B.N.; Colacino, E.; Varma, R.S. Microwave-assisted reductive amination with aqueous ammonia: Sustainable pathway using recyclable magnetic nickel-based nanocatalyst. ACS Sustain. Chem. Eng. 2019, 7, 5963–5974. [Google Scholar] [CrossRef]
- Shimizu, K.-I.; Kon, K.; Onodera, W.; Yamazaki, H.; Kondo, J.N. Heterogeneous Ni catalyst for direct synthesis of primary amines from alcohols and ammonia. ACS Catal. 2012, 3, 112–117. [Google Scholar] [CrossRef]
- Wei, Z.; Cheng, Y.; Zhou, K.; Zeng, Y.; Yao, E.; Li, Q.; Liu, Y.; Sun, Y. One-step reductive amination of 5-hydroxymethylfurfural into 2,5-bis(aminomethyl)furan over Raney Ni. ChemSusChem 2021, 14, 2308–2312. [Google Scholar] [CrossRef]
- Truong, C.C.; Mishra, D.K.; Suh, Y.W. Recent catalytic advances on the sustainable production of primary furanic amines from the one-pot reductive amination of 5-hydroxymethylfurfural. ChemSusChem 2023, 16, e202201846. [Google Scholar] [CrossRef]
- Coeck, R.; De Vos, D.E. One-pot reductive amination of carboxylic acids: A sustainable method for primary amine synthesis. Green Chem. 2020, 22, 5105–5114. [Google Scholar] [CrossRef]
- He, L.J.; Wang, Y.F.; Guan, P.X.; Niu, Q.S.; Liu, H.Y.; Xu, B.H. HZSM-5-catalyzed vapor-phase conversion of dimethyl adipate to adiponitrile: The influence of the SiO2/Al2O3 ratio on reactivity. ChemistrySelect 2023, 8, e202300799. [Google Scholar] [CrossRef]
- Smiley, R.A. Hexamethylenediamine. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weiheim, Germany, 2012. [Google Scholar]
- Du, L.; Cao, Z.-T.; Wang, X.-M.; Wang, M.-Q.; Sun, B.-C.; Chu, G.-W.; Chen, J.-F. Reaction kinetics and mechanism of adiponitrile preparation by adipic acid ammoniation. Chem. Eng. Sci. 2024, 290, 119851. [Google Scholar] [CrossRef]
- Piradashvili, K.; Alexandrino, E.M.; Wurm, F.R.; Landfester, K. Reactions and polymerizations at the liquid–liquid interface. Chem. Rev. 2015, 116, 2141–2169. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Sun, F.; Wang, J.; Han, J.; Li, X.; Xiao, Z.; Ma, T. Preparation of Terephthaloyl Chloride. CN 112876351 A, 22 November 2022. [Google Scholar]
- Eivazzadeh-Keihan, R.; Asgharnasl, S.; Bani, M.S.; Radinekiyan, F.; Maleki, A.; Mahdavi, M.; Babaniamansour, P.; Bahreinizad, H.; Shalan, A.E.; Lanceros-Méndez, S. Magnetic copper ferrite nanoparticles functionalized by aromatic polyamide chains for hyperthermia applications. Langmuir 2021, 37, 8847–8854. [Google Scholar] [CrossRef]
- Branco, J.B.; Ballivet-Tkatchenko, D. Pires de Matos, Gas-phase hydrogenation of propionitrile catalyzed by LnCu2 (Ln = La, Ce, Pr, Nd). J. Phys. Chem. C 2007, 111, 15084–15088. [Google Scholar] [CrossRef]
- Sousa, A.F.; Vilela, C.; Fonseca, A.C.; Matos, M.; Freire, C.S.R.; Gruter, G.-J.M.; Coelho, J.F.J.; Silvestre, A.J.D. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: A tribute to furan excellency. Polym. Chem. 2015, 6, 5961–5983. [Google Scholar] [CrossRef]
- Xu, Y.; Long, J.; Liu, Q.; Li, Y.; Wang, C.; Zhang, Q.; Lv, W.; Zhang, X.; Qiu, S.; Wang, T.; et al. In situ hydrogenation of model compounds and raw bio-oil over Raney Ni catalyst. Energy Convers. Manag. 2015, 89, 188–196. [Google Scholar] [CrossRef]
- García, B.; Orozco-Saumell, A.; Granados, M.L.; Moreno, J.; Iglesias, J. Catalytic transfer hydrogenation of glucose to sorbitol with Raney Ni catalysts using biomass-derived diols as hydrogen donors. ACS Sustain. Chem. Eng. 2021, 9, 14857–14867. [Google Scholar] [CrossRef]
- Fang, Z.; Fan, H.; Zhao, X.; Lin, G.; Li, B.; Wang, J.; Lu, X.; Yang, W.; Li, M.; Song, W.; et al. Unveiling the nature of glucose hydrogenation over Raney Ni: DFT and AIMD simulations. Appl. Catal. A Gen. 2023, 667, 119462. [Google Scholar] [CrossRef]
- Segobia, D.J.; Trasarti, A.F.; Apesteguía, C.R. Hydrogenation of nitriles to primary amines on metal-supported catalysts: Highly selective conversion of butyronitrile to n-butylamine. Appl. Catal. A Gen. 2012, 445, 69–75. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S.W.; Kim, H.J.; Kim, Y.T.; Lin, K.-Y.A.; Lee, J. Hydrogenation of adiponitrile to hexamethylenediamine over Raney Ni and Co catalysts. Appl. Sci. 2020, 10, 7506. [Google Scholar] [CrossRef]
- Bertero, N.M.; Apesteguía, C.R.; Marchi, A.J. Catalytic and kinetic study of the liquid-phase hydrogenation of acetophenone over Cu/SiO2 catalyst. Appl. Catal. A Gen. 2008, 349, 100–109. [Google Scholar] [CrossRef]
- Row, S.W.; Chae, T.Y.; Yoo, K.S.; Lee, S.D.; Lee, D.W.; Shul, Y. Effect of reaction solvent on the hydrogenation of isophthalonitrile for meta-xylylendiamine preparation. Can. J. Chem. Eng. 2007, 85, 925–928. [Google Scholar] [CrossRef]
- Dyson, P.J.; Jessop, P.G. Solvent effects in catalysis: Rational improvements of catalysts via manipulation of solvent interactions. Catal. Sci. Technol. 2016, 6, 3302–3316. [Google Scholar] [CrossRef]








| Entry | SOCl2/FDAM (Equiv.) | DMF/FDAM (Equiv.) | Time (h) | Temperature (°C) | Yield of DCF (%) |
|---|---|---|---|---|---|
| 1 a | 6 | 1.6 | 2 | 78 | 0.0 |
| 2 a | 12 | 1.6 | 3 | 78 | 0.1 |
| 3 | 17 | 0 | 7 | −5 | 0.0 |
| 4 | 4.25 | 21.5 | 7 | −5 | 43.6 |
| 5 | 34 | 43 | 7 | −5 | 21.0 |
| 6 | 8.5 | 43 | 7 | −5 | 42.9 |
| 7 | 4.25 | 43 | 7 | −5 | 64.0 |
| 8 | 2.12 | 43 | 7 | −5 | 45.8 |
| 9 | 4.25 | 43 | 3 | −5 | 59.2 |
| 10 | 4.25 | 43 | 6 | −5 | 60.3 |
| 11 | 4.25 | 43 | 10 | −5 | 56.8 |
| 12 | 4.25 | 43 | 25 | −5 | 57.0 |
| 13 | 4.25 | 43 | 32 | −5 | 57.1 |
| 14 | 4.25 | 43 | 49 | −5 | 55.3 |
| 15 | 4.25 | 43 | 55 | −5 | 54.0 |
| 16 | 4.25 | 43 | 75 | −5 | 54.2 |
| Entry | Solvent | H2 solubility Constant (10−5 g/g) | Polarity | Conversion of DCF (%) | Selectivity to BAMF (%) |
|---|---|---|---|---|---|
| 1 | DCM | 2.14 | 3.4 | 2.6 | - |
| 2 | THF | 3.02 | 4.2 | 13.4 | - |
| 3 | 1,4-Diox | 2.04 | 4.8 | 15.2 | 1.4 |
| 4 | PhMe | 2.46 | 2.4 | 56.9 | 3.3 |
| 5 | DMF | 2.51 | 6.4 | 85.2 | 67.6 |
| 6 | EtOH | 3.16 | 4.3 | 96.2 | 87.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Li, X.; Zhao, J.; Sun, B.; Wang, E.; Mu, X.; Zhang, X. A Potential Pathway for the Synthesis of Biomass-Based Polyamide Monomer 2,5-Bis(aminomethyl)furan from 2,5-Furandicarboxylic Acid. Molecules 2025, 30, 4336. https://doi.org/10.3390/molecules30224336
Wang C, Li X, Zhao J, Sun B, Wang E, Mu X, Zhang X. A Potential Pathway for the Synthesis of Biomass-Based Polyamide Monomer 2,5-Bis(aminomethyl)furan from 2,5-Furandicarboxylic Acid. Molecules. 2025; 30(22):4336. https://doi.org/10.3390/molecules30224336
Chicago/Turabian StyleWang, Cong, Xin Li, Junqi Zhao, Bin Sun, Enquan Wang, Xuhong Mu, and Xiaoxin Zhang. 2025. "A Potential Pathway for the Synthesis of Biomass-Based Polyamide Monomer 2,5-Bis(aminomethyl)furan from 2,5-Furandicarboxylic Acid" Molecules 30, no. 22: 4336. https://doi.org/10.3390/molecules30224336
APA StyleWang, C., Li, X., Zhao, J., Sun, B., Wang, E., Mu, X., & Zhang, X. (2025). A Potential Pathway for the Synthesis of Biomass-Based Polyamide Monomer 2,5-Bis(aminomethyl)furan from 2,5-Furandicarboxylic Acid. Molecules, 30(22), 4336. https://doi.org/10.3390/molecules30224336
