Biochar for Wastewater Treatment: Preparation, Modification, Characterization, and Its Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochar Preparation Methods
2.1.1. Pyrolysis
2.1.2. Hydrothermal Carbonizations
2.1.3. Gasification
2.1.4. Flash Carbonization
2.1.5. Torrefaction
3. Biochar Characterization and Its Properties
3.1. Biochar Characterizations
3.2. Biochar Properties
3.2.1. Physical Properties
3.2.2. Chemical Properties
4. Factors Affecting Biochar Properties
4.1. Feedstocks
4.2. Temperature
4.3. Residence Time
4.4. Particle Size
4.5. Pretreatment of Biomass
5. Activation of Biochar
5.1. Physical Activation
5.2. Chemical Activation
6. Environmental Applications of Biochar in Wastewater Treatment
6.1. Application of Biochar in Removing Heavy Metals
Factors Affecting Removal Efficiency of Heavy Metals
6.2. Application of Biochar in Removing Organic Pollutants
6.2.1. Application of Biochar in Removing Persistent Organic Pollutants (POPs)
6.2.2. Application of Biochar in Removing Antibiotics
6.2.3. Application of Biochar in Removing Dye
7. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| BC | Biochar |
| BET | Brunauer–Emmett–Teller analysis |
| FTIR | Fourier transform infrared spectroscopy |
| OCPs | Organochlorine pesticides |
| POPs | Persistent organic pollutants |
| PAHs | Polyaromatic hydrocarbons |
| PCBs | Polychlorinated biphenyls |
| SEM | Scanning electron microscopy |
| TGA | Thermogravimetric analysis |
| XPS | X-ray photoelectron spectrometry |
| XRD | X-ray diffraction |
References
- Gupta, M.; Savla, N.; Pandit, C.; Pandit, S.; Gupta, P.K.; Pant, M.; Khilari, S.; Kumar, Y.; Agarwal, D.; Nair, R.R.; et al. Use of Biomass-Derived Biochar in Wastewater Treatment and Power Production: A Promising Solution for a Sustainable Environment. Sci. Total Environ. 2022, 825, 153892. [Google Scholar] [CrossRef]
- Hu, B.; Ai, Y.; Jin, J.; Hayat, T.; Alsaedi, A.; Zhuang, L.; Wang, X. Efficient Elimination of Organic and Inorganic Pollutants by Biochar and Biochar-Based Materials. Biochar 2020, 2, 47–64. [Google Scholar] [CrossRef]
- Lou, L.; Wu, B.; Wang, L.; Luo, L.; Xu, X.; Hou, J.; Xun, B.; Hu, B.; Chen, Y. Sorption and Ecotoxicity of Pentachlorophenol Polluted Sediment Amended with Rice-Straw Derived Biochar. Bioresour. Technol. 2011, 102, 4036–4041. [Google Scholar] [CrossRef] [PubMed]
- Odinga, E.S.; Gudda, F.O.; Waigi, M.G.; Wang, J.; Gao, Y. Occurrence, Formation and Environmental Fate of Polycyclic Aromatic Hydrocarbons in Biochars. Fundam. Res. 2021, 1, 296–305. [Google Scholar] [CrossRef]
- Gomez-Eyles, J.L.; Sizmur, T.; Collins, C.D.; Hodson, M.E. Effects of Biochar and the Earthworm Eisenia fetida on the Bioavailability of Polycyclic Aromatic Hydrocarbons and Potentially Toxic Elements. Environ. Pollut. 2011, 159, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Croft, K.; de Nicola, S.; Davis, A.P.; Kjellerup, B.V. Treatment of Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) in Stormwater Using Polishing Columns with Biochar and Granular Activated Carbon. Chemosphere 2024, 372, 144107. [Google Scholar] [CrossRef]
- Song, Q.; Kong, F.; Liu, B.F.; Song, X.; Ren, H.Y. Biochar-Based Composites for Removing Chlorinated Organic Pollutants: Applications, Mechanisms, and Perspectives. Environ. Sci. Ecotechnol. 2024, 21, 100420. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Cheng, D.; Guo, W.; Liu, H.; Guo, A.; Chen, X.; Wang, Y.; Ngo, H.H. Magnetic Biochar Serves as Adsorbents and Catalyst Supports for the Removal of Antibiotics from Wastewater: A Review. J. Environ. Manag. 2024, 366, 121872. [Google Scholar] [CrossRef]
- Dong, Q.; Cheng, Z.; Yuan, Z.; Huang, X.; Liu, Y. Sewerage Surveillance Tracking Characteristics of Human Antibiotic Emission in Sewage. J. Clean. Prod. 2022, 364, 132479. [Google Scholar] [CrossRef]
- Zou, M.; Tian, W.; Zhao, J.; Chu, M.; Song, T. Quinolone Antibiotics in Sewage Treatment Plants with Activated Sludge Treatment Processes: A Review on Source, Concentration and Removal. Process Saf. Environ. Prot. 2022, 160, 116–129. [Google Scholar] [CrossRef]
- Patra, J.M.; Panda, S.S.; Dhal, N.K. Biochar as A Low-Cost Adsorbent for Heavy Metal Removal: A Review. Int. J. Res. Biosci. 2017, 6, 1–7. [Google Scholar]
- Nie, J.; Feng, H.; Witherell, B.B.; Alebus, M.; Mahajan, M.D.; Zhang, W.; Yu, L. Causes, Assessment, and Treatment of Nutrient (N and P) Pollution in Rivers, Estuaries, and Coastal Waters. Curr. Pollut. Rep. 2018, 4, 154–161. [Google Scholar] [CrossRef]
- Boahen, E.; Owusu, L.; Adjei-Anim, S.O. A Comprehensive Review of Emerging Environmental Contaminants of Global Concern. Discov. Environ. 2024, 3, 144. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Ju, M.; Liu, L. Preparation and Modification of Biochar Materials and Their Application in Soil Remediation. Appl. Sci. 2019, 9, 1365. [Google Scholar] [CrossRef]
- Sophia, A.C.; Lima, E.C. Removal of Emerging Contaminants from the Environment by Adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef]
- Li, R.; Wang, B.; Niu, A.; Cheng, N.; Chen, M.; Zhang, X.; Yu, Z.; Wang, S. Application of Biochar Immobilized Microorganisms for Pollutants Removal from Wastewater: A Review. Sci. Total Environ. 2022, 837, 155563. [Google Scholar] [CrossRef]
- Lin, S.L.; Zhang, H.; Chen, W.H.; Song, M.; Kwon, E.E. Low-Temperature Biochar Production from Torrefaction for Wastewater Treatment: A Review. Bioresour. Technol. 2023, 387, 129588. [Google Scholar] [CrossRef]
- Bayar, J.; Ali, N.; Dong, Y.; Ahmad, U.; Anjum, M.M.; Khan, G.R.; Zaib, M.; Jalal, A.; Ali, R.; Ali, L. Biochar-Based Adsorption for Heavy Metal Removal in Water: A Sustainable and Cost-Effective Approach. Environ. Geochem. Health 2024, 46, 428. [Google Scholar] [CrossRef]
- Kadadou, D.; Tizani, L.; Alsafar, H.; Hasan, S.W. Analytical Methods for Determining Environmental Contaminants of Concern in Water and Wastewater. MethodsX 2024, 12, 102582. [Google Scholar] [CrossRef]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Lübken, M. Biochar for Wastewater Treatment—Conversion Technologies and Applications. Appl. Sci. 2020, 10, 3492. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Samuel Olugbenga, O.; Goodness Adeleye, P.; Blessing Oladipupo, S.; Timothy Adeleye, A.; Igenepo John, K. Biomass-Derived Biochar in Wastewater Treatment- a Circular Economy Approach. Waste Manag. Bull. 2024, 1, 1–14. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere 2020, 252, 126539. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Xiong, Q.; Yang, L.; Li, H.; Zhou, Y.; Zhang, W.; Jiang, S.; Li, H.; Huang, H. An Overview on Engineering the Surface Area and Porosity of Biochar. Sci. Total Environ. 2021, 763, 144204. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.S.; Park, S.H.; Jung, S.C.; Ryu, C.; Jeon, J.K.; Shin, M.C.; Park, Y.K. Production and Utilization of Biochar: A Review. J. Ind. Eng. Chem. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Yin, Y.; Yang, C.; Li, M.; Zheng, Y.; Ge, C.; Gu, J.; Li, H.; Duan, M.; Wang, X.; Chen, R. Research Progress and Prospects for Using Biochar to Mitigate Greenhouse Gas Emissions during Composting: A Review. Sci. Total Environ. 2021, 798, 149294. [Google Scholar] [CrossRef]
- He, P.; Liu, Y.; Shao, L.; Zhang, H.; Lü, F. Particle Size Dependence of the Physicochemical Properties of Biochar. Chemosphere 2018, 212, 385–392. [Google Scholar] [CrossRef]
- Tabassum, R.A.; Shahid, M.; Niazi, N.K.; Dumat, C.; Zhang, Y.; Imran, M.; Bakhat, H.F.; Hussain, I.; Khalid, S. Arsenic Removal from Aqueous Solutions and Groundwater Using Agricultural Biowastes-Derived Biosorbents and Biochar: A Column-Scale Investigation. Int. J. Phytoremediat. 2019, 21, 509–518. [Google Scholar] [CrossRef]
- Viotti, P.; Marzeddu, S.; Antonucci, A.; Décima, M.A.; Lovascio, P.; Tatti, F.; Boni, M.R. Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review. Materials 2024, 17, 809. [Google Scholar] [CrossRef]
- Khan, N.; Chowdhary, P.; Ahmad, A.; Shekher Giri, B.; Chaturvedi, P. Hydrothermal Liquefaction of Rice Husk and Cow Dung in Mixed-Bed-Rotating Pyrolyzer and Application of Biochar for Dye Removal. Bioresour. Technol. 2020, 309, 123294. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Chakravarthi, M.H.; Srivastava, V.C. Chemically Modified Biochar Derived from Effluent Treatment Plant Sludge of a Distillery for the Removal of an Emerging Pollutant, Tetracycline, from Aqueous Solution. Biomass Convers. Biorefin. 2021, 11, 2735–2746. [Google Scholar] [CrossRef]
- Weidemann, E.; Niinipuu, M.; Fick, J.; Jansson, S. Using Carbonized Low-Cost Materials for Removal of Chemicals of Environmental Concern from Water. Environ. Sci. Pollut. Res. 2018, 25, 15793–15801. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.R.; Patel, A.K.; Jaisi, D.P.; Adhikari, S.; Lu, H.; Khanal, S.K. Environmental Application of Biochar: Current Status and Perspectives. Bioresour. Technol. 2017, 246, 110–122. [Google Scholar] [CrossRef]
- Kazemi Shariat Panahi, H.; Dehhaghi, M.; Ok, Y.S.; Nizami, A.S.; Khoshnevisan, B.; Mussatto, S.I.; Aghbashlo, M.; Tabatabaei, M.; Lam, S.S. A Comprehensive Review of Engineered Biochar: Production, Characteristics, and Environmental Applications. J. Clean. Prod. 2020, 270, 122462. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. [Google Scholar] [CrossRef]
- Nartey, O.D.; Zhao, B. Biochar Preparation, Characterization, and Adsorptive Capacity and Its Effect on Bioavailability of Contaminants: An Overview. Adv. Mater. Sci. Eng. 2014, 2014, 715398. [Google Scholar] [CrossRef]
- Pan, X.; Gu, Z.; Chen, W.; Li, Q. Preparation of Biochar and Biochar Composites and Their Application in a Fenton-like Process for Wastewater Decontamination: A Review. Sci. Total Environ. 2021, 754, 142104. [Google Scholar] [CrossRef]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef]
- Loc, N.X.; Phuong, D.T.M. Optimizing Biochar Production: A Review of Recent Progress in Lignocellulosic Biomass Pyrolysis. Front. Agric. Sci. Eng. 2024, 12, 148–172. [Google Scholar] [CrossRef]
- Ravindiran, G.; Rajamanickam, S.; Janardhan, G.; Hayder, G. Production and Modifications of Biochar to Engineered Materials and Its Application for Environmental Sustainability: A Review. Biochar 2024, 6, 62. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Potnuri, R.; Rao, C.S.; Surya, D.V.; Sridevi, V.; Kulkarni, A. Two-Step Synthesis of Biochar Using Torrefaction and Microwave-Assisted Pyrolysis: Understanding the Effects of Torrefaction Temperature and Catalyst Loading. J. Anal. Appl. Pyrolysis 2023, 175, 106191. [Google Scholar] [CrossRef]
- Foong, S.Y.; Chan, Y.H.; Chin, B.L.F.; Lock, S.S.M.; Yee, C.Y.; Yiin, C.L.; Peng, W.; Lam, S.S. Production of Biochar from Rice Straw and Its Application for Wastewater Remediation—An Overview. Bioresour. Technol. 2022, 360, 127588. [Google Scholar] [CrossRef] [PubMed]
- Makwana, J.; Dhass, A.D.; Ramana, P.V.; Sapariya, D.; Patel, D. An Analysis of Waste/Biomass Gasification Producing Hydrogen-Rich Syngas: A Review. Int. J. Thermofluids 2023, 20, 100492. [Google Scholar] [CrossRef]
- Emami Taba, L.; Irfan, M.F.; Wan Daud, W.A.M.; Chakrabarti, M.H. The Effect of Temperature on Various Parameters in Coal, Biomass and CO-Gasification: A Review. Renew. Sustain. Energy Rev. 2012, 16, 5584–5596. [Google Scholar] [CrossRef]
- Bach, Q.V.; Skreiberg, O. Upgrading Biomass Fuels via Wet Torrefaction: A Review and Comparison with Dry Torrefaction. Renew. Sustain. Energy Rev. 2016, 54, 665–677. [Google Scholar] [CrossRef]
- Jeon, C.; Solis, K.L.; An, H.R.; Hong, Y.; Igalavithana, A.D.; Ok, Y.S. Sustainable Removal of Hg(II) by Sulfur-Modified Pine-Needle Biochar. J. Hazard. Mater. 2020, 388, 122048. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Huang, H.; Zhao, D.; Kobayashi, N.; Chen, Y. Influence of Pyrolysis Temperature on Physical and Chemical Properties of Biochar Made from Sewage Sludge. J. Anal. Appl. Pyrolysis 2015, 112, 284–289. [Google Scholar] [CrossRef]
- Ponnusamy, V.K.; Nagappan, S.; Bhosale, R.R.; Lay, C.H.; Duc Nguyen, D.; Pugazhendhi, A.; Chang, S.W.; Kumar, G. Review on Sustainable Production of Biochar through Hydrothermal Liquefaction: Physico-Chemical Properties and Applications. Bioresour. Technol. 2020, 310, 123414. [Google Scholar] [CrossRef]
- Ningbo, G.; Baoling, L.; Aimin, L.; Juanjuan, L. Continuous Pyrolysis of Pine Sawdust at Different Pyrolysis Temperatures and Solid Residence Times. J. Anal. Appl. Pyrolysis 2015, 114, 155–162. [Google Scholar] [CrossRef]
- Bednik, M.; Medyńska-Juraszek, A.; Ćwieląg-Piasecka, I. Effect of Six Different Feedstocks on Biochar’s Properties and Expected Stability. Agronomy 2022, 12, 1525. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Krukowska, J.; Thomas, P. Comparison of Sorption and Desorption Studies of Heavy Metal Ions from Biochar and Commercial Active Carbon. Chem. Eng. J. 2017, 307, 353–363. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Wnetrzak, R.; Leahy, J.J.; Hayes, M.H.B.; Kwapiński, W.; Hubicki, Z. Kinetic and Adsorptive Characterization of Biochar in Metal Ions Removal. Chem. Eng. J. 2012, 197, 295–305. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, Y.; Naidu, R.; Parikh, S.J.; Du, J.; Qi, F.; Willett, I.R. Influences of Feedstock Sources and Pyrolysis Temperature on the Properties of Biochar and Functionality as Adsorbents: A Meta-Analysis. Sci. Total Environ. 2020, 744, 140714. [Google Scholar] [CrossRef]
- Kamarudin, N.S.; Dahalan, F.A.; Hasan, M.; An, O.S.; Parmin, N.A.; Ibrahim, N.; Hamdzah, M.; Zain, N.A.M.; Muda, K.; Wikurendra, E.A. Biochar: A Review of Its History, Characteristics, Factors That Influence Its Yield, Methods of Production, Application in Wastewater Treatment and Recent Development. Biointerface Res. Appl. Chem. 2022, 12, 7914–7926. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mehejabin, F.; Chowdhury, A.A.; Almomani, F.; Khan, N.A.; Badruddin, I.A.; Kamangar, S. Biochar Produced from Waste-Based Feedstocks: Mechanisms, Affecting Factors, Economy, Utilization, Challenges, and Prospects. GCB Bioenergy 2024, 16, e13175. [Google Scholar] [CrossRef]
- Zhang, S.; Mei, Y.; Lin, G. Pyrolysis Interaction of Cellulose, Hemicellulose and Lignin Studied by TG-DSC-MS. J. Energy Inst. 2024, 112, 101479. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of Pyrolysis Temperature and Manure Source on Physicochemical Characteristics of Biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Liang, C.; Gascó, G.; Fu, S.; Méndez, A.; Paz-Ferreiro, J. Biochar from Pruning Residues as a Soil Amendment: Effects of Pyrolysis Temperature and Particle Size. Soil Tillage Res. 2016, 164, 3–10. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A Comprehensive Review on the Pyrolysis of Lignocellulosic Biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Meng, J.; Feng, X.; Dai, Z.; Liu, X.; Wu, J.; Xu, J. Adsorption Characteristics of Cu(II) from Aqueous Solution onto Biochar Derived from Swine Manure. Environ. Sci. Pollut. Res. 2014, 21, 7035–7046. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Gao, L.; Wu, R.; Wang, H.; Xiao, R. Qualitative and Quantitative Characterization of Adsorption Mechanisms for Cd2+ by Silicon-Rich Biochar. Sci. Total Environ. 2020, 731, 139163. [Google Scholar] [CrossRef] [PubMed]
- Pathy, A.; Pokharel, P.; Chen, X.; Balasubramanian, P.; Chang, S.X. Activation Methods Increase Biochar’s Potential for Heavy-Metal Adsorption and Environmental Remediation: A Global Meta-Analysis. Sci. Total Environ. 2023, 865, 161252. [Google Scholar] [CrossRef]
- Peng, P.; Lang, Y.H.; Wang, X.M. Adsorption Behavior and Mechanism of Pentachlorophenol on Reed Biochars: pH Effect, Pyrolysis Temperature, Hydrochloric Acid Treatment and Isotherms. Ecol. Eng. 2016, 90, 225–233. [Google Scholar] [CrossRef]
- Sivaranjanee, R.; Kumar, P.S.; Rangasamy, G. A Critical Review on Biochar for Environmental Applications. Carbon Lett. 2023, 33, 1407–1432. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Z.; Xu, L.; Buyong, F.; Chay, T.C.; Li, Z.; Cai, Y.; Hu, B.; Zhu, Y.; Wang, X. Modified Biochar: Synthesis and Mechanism for Removal of Environmental Heavy Metals. Carbon Res. 2022, 1, 8. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Y.; Chen, X.; Wang, C.; Nan, H. Unlocking the Potential of Element-Doped Biochar: From Tailored Synthesis to Multifunctional Applications in Environment and Energy. Biochar 2025, 7, 77. [Google Scholar] [CrossRef]
- Tokarčíková, M.; Peikertová, P.; Čech Barabaszová, K.; Životský, O.; Gabor, R.; Seidlerová, J. Regeneration Possibilities and Application of Magnetically Modified Biochar for Heavy Metals Elimination in Real Conditions. Water Resour. Ind. 2023, 30, 100219. [Google Scholar] [CrossRef]
- Xiao, B.; Jia, J.; Wang, W.; Zhang, B.; Ming, H.; Ma, S.; Kang, Y.; Zhao, M. A Review on Magnetic Biochar for the Removal of Heavy Metals from Contaminated Soils: Preparation, Application, and Microbial Response. J. Hazard. Mater. Adv. 2023, 10, 100254. [Google Scholar] [CrossRef]
- Kang, K.; Hu, Y.; Khan, I.; He, S.; Fetahi, P. Recent Advances in the Synthesis and Application of Magnetic Biochar for Wastewater Treatment. Bioresour. Technol. 2023, 390, 129786. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, G.; Ahmed, Z.; Valipour, M.; Ali, I.; Usman, M.; Iqbal, R.; Zulfiqar, U.; Rizwan, M.; Mahmood, S.; Ullah, A.; et al. Recent Trends and Economic Significance of Modified/Functionalized Biochars for Remediation of Environmental Pollutants. Sci. Rep. 2024, 14, 217. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Gao, Y.; Li, J.; Fang, Z.; Bolan, N.; Bhatnagar, A.; Gao, B.; Hou, D.; Wang, S.; Song, H.; et al. Engineered Biochar for Environmental Decontamination in Aquatic and Soil Systems: A Review. Carbon Res. 2022, 1, 4. [Google Scholar] [CrossRef]
- Chen, W.H.; Hoang, A.T.; Nižetić, S.; Pandey, A.; Cheng, C.K.; Luque, R.; Ong, H.C.; Thomas, S.; Nguyen, X.P. Biomass-Derived Biochar: From Production to Application in Removing Heavy Metal-Contaminated Water. Process Saf. Environ. Prot. 2022, 160, 704–733. [Google Scholar] [CrossRef]
- Kumar, S.; Loganathan, V.A.; Gupta, R.B.; Barnett, M.O. An Assessment of U(VI) Removal from Groundwater Using Biochar Produced from Hydrothermal Carbonization. J. Environ. Manag. 2011, 92, 2504–2512. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Zimmerman, A.R.; Li, Y.; Ma, L.; Harris, W.G.; Migliaccio, K.W. Removal of Arsenic by Magnetic Biochar Prepared from Pinewood and Natural Hematite. Bioresour. Technol. 2015, 175, 391–395. [Google Scholar] [CrossRef]
- Wang, L.; Liang, L.; Li, N.; Chen, G.; Guo, H.; Hou, L. A Mini-Review of Sludge-Derived Biochar (SDB) for Wastewater Treatment: Recent Advances in 2020–2025. Appl. Sci. 2024, 15, 6173. [Google Scholar] [CrossRef]
- Asif, Z.; Chen, Z. Removal of Arsenic from Drinking Water Using Rice Husk. Appl. Water Sci. 2017, 7, 1449–1458. [Google Scholar] [CrossRef]
- Bibi, S.; Farooqi, A.; Yasmin, A.; Kamran, M.A.; Niazi, N.K. Arsenic and Fluoride Removal by Potato Peel and Rice Husk (PPRH) Ash in Aqueous Environments. Int. J. Phytoremediat. 2017, 19, 1029–1036. [Google Scholar] [CrossRef]
- Liang, Y.; Cao, X.; Zhao, L.; Arellano, E. Biochar- and Phosphate-Induced Immobilization of Heavy Metals in Contaminated Soil and Water: Implication on Simultaneous Remediation of Contaminated Soil and Groundwater. Environ. Sci. Pollut. Res. 2014, 21, 4665–4674. [Google Scholar] [CrossRef]
- Cataldo, S.; Chiodo, V.; Crea, F.; Maisano, S.; Milea, D.; Pettignano, A. Biochar from Byproduct to High Value Added Material—A New Adsorbent for Toxic Metal Ions Removal from Aqueous Solutions. J. Mol. Liq. 2018, 271, 481–489. [Google Scholar] [CrossRef]
- Lam, Y.Y.; Lau, S.S.S.; Wong, J.W.C. Removal of Cd(II) from Aqueous Solutions Using Plant-Derived Biochar: Kinetics, Isotherm and Characterization. Bioresour. Technol. Rep. 2019, 8, 100323. [Google Scholar] [CrossRef]
- Shakya, A.; Agarwal, T. Removal of Cr(VI) from Water Using Pineapple Peel Derived Biochars: Adsorption Potential and Re-Usability Assessment. J. Mol. Liq. 2019, 293, 111497. [Google Scholar] [CrossRef]
- Georgieva, V.G.; Gonsalvesh, L.; Tavlieva, M.P. Thermodynamics and Kinetics of the Removal of Nickel (II) Ions from Aqueous Solutions by Biochar Adsorbent Made from Agro-Waste Walnut Shells. J. Mol. Liq. 2020, 312, 112788. [Google Scholar] [CrossRef]
- Lima, I.M.; Boateng, A.; Klasson, K.T. Physicochemical and Adsorptive Properties of Fast-Pyrolysis Bio-Chars and Their Steam Activated Counterparts. J. Chem. Technol. Biotechnol. 2010, 85, 1515–1521. [Google Scholar] [CrossRef]
- Li, N.; Yin, M.; Tsang, D.C.W.; Yang, S.; Liu, J.; Li, X.; Song, G.; Wang, J. Mechanisms of U(VI) Removal by Biochar Derived from Ficus microcarpa Aerial Root: A Comparison between Raw and Modified Biochar. Sci. Total Environ. 2019, 697, 134115. [Google Scholar] [CrossRef]
- Paranavithana, G.N.; Kawamoto, K.; Inoue, Y.; Saito, T.; Vithanage, M.; Kalpage, C.S.; Herath, G.B.B. Adsorption of Cd2+ and Pb2+ onto Coconut Shell Biochar and Biochar-Mixed Soil. Environ. Earth Sci. 2016, 75, 484. [Google Scholar] [CrossRef]
- Park, J.; Sik, Y.; Kim, S.; Cho, J.; Heo, J.; Delaune, R.D.; Seo, D. Competitive Adsorption of Heavy Metals onto Sesame Straw Biochar in Aqueous Solutions. Chemosphere 2016, 142, 77–83. [Google Scholar] [CrossRef]
- Dong, X.; Ma, L.Q.; Li, Y. Characteristics and Mechanisms of Hexavalent Chromium Removal by Biochar from Sugar Beet Tailing. J. Hazard. Mater. 2011, 190, 909–915. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Karishma, S.; Kamalesh, R.; Saravanan, A.; Vickram, A.S.; Anbarasu, K. A Systematic Review on Enhancement Strategies in Biochar-Based Remediation of Polycyclic Aromatic Hydrocarbons. Chemosphere 2024, 355, 141796. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, N.; Xing, C.; Cui, Q.; Sun, Q. The Adsorption, Regeneration and Engineering Applications of Biochar for Removal Organic Pollutants: A Review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Sartape, A.S.; Mandhare, A.M.; Jadhav, V.V.; Raut, P.D.; Anuse, M.A.; Kolekar, S.S. Removal of Malachite Green Dye from Aqueous Solution with Adsorption Technique Using Limonia acidissima (Wood Apple) Shell as Low Cost Adsorbent. Arab. J. Chem. 2017, 10, S3229–S3238. [Google Scholar] [CrossRef]
- Akar, E.; Altinişik, A.; Seki, Y. Using of Activated Carbon Produced from Spent Tea Leaves for the Removal of Malachite Green from Aqueous Solution. Ecol. Eng. 2013, 52, 19–27. [Google Scholar] [CrossRef]
- Ghosh, R.K.; Reddy, D.D. Tobacco Stem Ash as an Adsorbent for Removal of Methylene Blue from Aqueous Solution: Equilibrium, Kinetics, and Mechanism of Adsorption. Water. Air Soil Pollut. 2013, 224, 1582. [Google Scholar] [CrossRef]
- Maletić, S.P.; Beljin, J.M.; Rončević, S.D.; Grgić, M.G.; Dalmacija, B.D. State of the Art and Future Challenges for Polycyclic Aromatic Hydrocarbons Is Sediments: Sources, Fate, Bioavailability and Remediation Techniques. J. Hazard. Mater. 2019, 365, 467–482. [Google Scholar] [CrossRef]
- Chai, Y.; Currie, R.J.; Davis, J.W.; Wilken, M.; Martin, G.D.; Fishman, V.N.; Ghosh, U. Effectiveness of Activated Carbon and Biochar in Reducing the Availability of Polychlorinated Dibenzo-p-Dioxins/Dibenzofurans in Soils. Environ. Sci. Technol. 2012, 46, 1035–1043. [Google Scholar] [CrossRef]
- Mandal, A.; Singh, N.; Purakayastha, T.J. Characterization of Pesticide Sorption Behaviour of Slow Pyrolysis Biochars as Low Cost Adsorbent for Atrazine and Imidacloprid Removal. Sci. Total Environ. 2017, 577, 376–385. [Google Scholar] [CrossRef]
- Chen, B.; Chen, Z.; Lv, S. A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate. Bioresour. Technol. 2011, 102, 716–723. [Google Scholar] [CrossRef]
- Jung, C.; Oh, J.; Yoon, Y. Removal of Acetaminophen and Naproxen by Combined Coagulation and Adsorption Using Biochar: Influence of Combined Sewer Overflow Components. Environ. Sci. Pollut. Res. 2015, 22, 10058–10069. [Google Scholar] [CrossRef]
- Mondal, S.; Bobde, K.; Aikat, K.; Halder, G. Biosorptive Uptake of Ibuprofen by Steam Activated Biochar Derived from Mung Bean Husk: Equilibrium, Kinetics, Thermodynamics, Modeling and Eco-Toxicological Studies. J. Environ. Manag. 2016, 182, 581–594. [Google Scholar] [CrossRef]
- Yao, B.; Luo, Z.; Du, S.; Yang, J.; Zhi, D.; Zhou, Y. Magnetic MgFe2O4/Biochar Derived from Pomelo Peel as a Persulfate Activator for Levofloxacin Degradation: Effects and Mechanistic Consideration. Bioresour. Technol. 2022, 346, 126547. [Google Scholar] [CrossRef]
- Komnitsas, K.A.; Zaharaki, D. Morphology of Modified Biochar and Its Potential for Phenol Removal from Aqueous Solutions. Front. Environ. Sci. 2016, 4, 26. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.K.; Yang, J.E.; Ok, Y.S. Effects of Pyrolysis Temperature on Soybean Stover- and Peanut Shell-Derived Biochar Properties and TCE Adsorption in Water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef]
- Pan, J.; Gao, B.; Duan, P.; Guo, K.; Xu, X.; Yue, Q. Recycling Exhausted Magnetic Biochar with Adsorbed Cu2+ as a Cost-Effective Permonosulfate Activator for Norfloxacin Degradation: Cu Contribution and Mechanism. J. Hazard. Mater. 2021, 413, 125413. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; He, J.; Gao, Y.; Wu, H.; Zhu, X. Cosorption of Phenanthrene and Mercury(II) from Aqueous Solution by Soybean Stalk-Based Biochar. J. Agric. Food Chem. 2011, 59, 12116–12123. [Google Scholar] [CrossRef] [PubMed]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, J.; Feng, P.; Huang, G.; Xu, C.; Lin, B. High-Efficiency Removal of Dyes from Wastewater by Fully Recycling Litchi Peel Biochar. Chemosphere 2020, 246, 125734. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Rani, L.; Sharda, P.; Patel, A.; Patel, N.; Chaudhary, V.K. Sustainable Biochar Adsorbents for Dye Removal from Water: Present State of Art and Future Directions. Adsorption 2024, 30, 1791–1804. [Google Scholar] [CrossRef]
- Abd-Elhamid, I.A.; Emran, M.; El-Sadek, M.H.; El-Shanshory, A.A.; Soliman, H.; Akl, M.A.; Rashad, M. Enhanced Removal of Cationic Dye by Eco-Friendly Activated Biochar Derived from Rice Straw. Appl. Water Sci. 2020, 10, 45. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.K. Removal of Anionic Dye Congo Red from Aqueous Solution by Raw Pine and Acid-Treated Pine Cone Powder as Adsorbent: Equilibrium, Thermodynamic, Kinetics, Mechanism and Process Design. Water Res. 2012, 46, 1933–1946. [Google Scholar] [CrossRef]
- Sen, T.K.; Afroze, S.; Ang, H.M. Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus Radiata. Water Air Soil Pollut. 2011, 218, 499–515. [Google Scholar] [CrossRef]
- Kahraman, S.; Yalcin, P.; Kahraman, H. The Evaluation of Low-Cost Biosorbents for Removal of an Azo Dye from Aqueous Solution. Water Environ. J. 2012, 26, 399–404. [Google Scholar] [CrossRef]
- Cueva-Orjuela, J.C.; Hormaza-Anaguano, A.; Merino-Restrepo, A. Sugarcane Bagasse and Its Potential Use for the Textile Effluent Treatment. Dyna 2017, 84, 291–297. [Google Scholar] [CrossRef]








| S. No | Countries/Regions | Total Articles | Total Documents (%) |
|---|---|---|---|
| 1 | China | 11,466 | 67.77 |
| 2 | Usa | 1922 | 11.36 |
| 3 | India | 1401 | 8.28 |
| 4 | Pakistan | 1005 | 5.94 |
| 5 | Australia | 940 | 5.56 |
| 6 | South Korea | 698 | 4.13 |
| 7 | Germany | 684 | 4.04 |
| 8 | Saudi Arabia | 657 | 3.88 |
| 9 | Canada | 613 | 3.62 |
| 10 | Brazil | 518 | 3.06 |
| 11 | Italy | 498 | 2.94 |
| 12 | Egypt | 480 | 2.84 |
| 13 | Spain | 475 | 2.81 |
| 14 | Iran | 459 | 2.71 |
| 15 | Malaysia | 416 | 2.46 |
| S.N | Process | Time | Temp (°C) | Solid BC (%) | Liquid BC (%) | Gas BC (%) | Source |
|---|---|---|---|---|---|---|---|
| 1 | Pyrolysis | [40] | |||||
| Slow | Long | Low (300–700 °C) | 30 | 35 | 35 | ||
| Intermediate | Moderate | Intermediate (500 °C) | 25 | 50 | 25 | ||
| Fast | Short | High (500–1000 °C) | 12 | 75 | 13 | ||
| 2 | Hydrothermal Carbonization | 1–12 h | 200–250 °C | 50–80 | 5–20 | 2–5 | |
| 3 | Gasification | Long residence time | High T °C > 700 °C | 10 | 5 | 85 | |
| 4 | Flash carbonization | <30 min, elevated | 350–650 °C | 50 | NA | 50 | [37] |
| 5 | Torrefaction | Slow (<10 °C/min) | 200–300 °C | 80 | 0 | 20 | [20] |
| Gasification Agent | Syngas Composition (vol%–%) | Reference | |||
|---|---|---|---|---|---|
| H2 | CO2 | CH4 | N2 | [45] | |
| Oxygen | 30–34 | 25–29 | 4–6 | - | |
| Air | 9–10 | 14–17 | 2–4 | 56–59 | |
| Steam/CO2 | 24–50 | 10–19 | 5–12 | - | |
| Torrefaction Types | Time (Min) | Pressure (atm) | Temp (°C) | Pre-Drying | Moisture Handing | Solid Mass Yield |
|---|---|---|---|---|---|---|
| Dry torrefaction | 10–240 | 1 | 200–300 | Yes | Low | Higher |
| Wet torrefaction | 5–240 | 2–200 | 180–260 | No | High | Lower |
| Steam torrefaction | 5–120 | 1–40 | 200–400 | No | Higher | Lower |
| Microwave torrefaction | 2.5–15 | 1 | 200–300 | Yes | Low | Middle |
| Biomass Used | Heavy Metal | Removal Efficiency (%) | Reference |
|---|---|---|---|
| Orang, banana peel, and rice husk | As | 100 | [29] |
| Rice husk | As | 90.70 | [78] |
| Potato peel and rice husk | As | >90% | [79] |
| Dairy manure | Pb | 97.4 | [80] |
| Cu | 53.3 | ||
| Zn | 54.5 | ||
| Posiadonia oceanica leaf sheaths | Pb | 90 | [81] |
| Wheat | Cd | 99 | [82] |
| Oilseed rape | Cd | 98.49 | |
| Miscanthus | Cd | 99 | |
| Dairy manure | Cd | 96.86 | [53] |
| Zn | 56.48 | ||
| Cu | 80.58 | ||
| Pineapple peel | Cr(VI) | 100 | [83] |
| Waste walnut shells | Ni | 80 | [84] |
| Broiler litter | Cu2+ | 75 | [85] |
| Broiler litter | Cd2+ | 22 | [85] |
| Ficus microcarpa | U(VI) | 82 | [86] |
| Pine needle | Hg | 85 | [48] |
| Coconut shell | Pb2+ | 92 | [87] |
| Dairy manure | Pb2+ | 89 | [87] |
| Hardwood | Cu2+ | 58 | [87] |
| Activated corn stover | Zn2+ | 95 | [85] |
| Ni2+ | 96 | ||
| Soybean straw | Zn2+ | 48 | [85] |
| Sesame straw | Cr2+ | 67 | [88] |
| Activated broiler litter | Zn2+ | 39 | [85] |
| Soybean straw | Cd2+ | 54 | [85] |
| Factors | Effect | Mechanism | Reference |
|---|---|---|---|
| Temperature | Enhance adsorption up to the optimal point | Higher temperature enhances diffusion and promotes endothermic adsorption; excessive heat may degrade active sites | [63] |
| pH | Significantly affects the adsorption capacity | Change surface ionization state and surface charge of biochar, low pH favors cation adsorption, while high pH favors anion adsorption | [54] |
| Feedstock type | Affects adsorption capacity and mechanism | Mineral content, surface area, and functional groups of feedstocks determine | [66] |
| Initial pollutant concentration | Higher concentration increases adsorption capacity but reduces overall removal percentage | Creates stronger concentration gradient; may reach equilibrium faster at lower efficiency | [36] |
| Biochar dosage | Increases removal efficiency until reaching a saturation level | Provides more adsorption sites; above optimum, aggregation reduces available surface area and adsorption capacity reduced | [89] |
| Contact Time | Rapid adsorption initially, followed by equilibrium | Fast surface binding occurs first; later stages governed by intraparticle diffusion | [36] |
| Ionic Strength | Variable effect depending on pollutant charge | Competing ions interfere with electrostatic adsorption; high ionic strength often decreases removal of charged species | [80] |
| Surface Functional Groups | Correlates with adsorption efficiency | -OH, -COOH, and -C=O groups promote complexation, ion exchange, and hydrogen bonding | [21] |
| Feedstock Source | Target Compound | Preparation Methods | Removal Efficiency (%) | Reference |
|---|---|---|---|---|
| Rice | Pentachlorophenol | Pyrolysis | 96 | [3] |
| Hardwood | Poly aromatic hydrocarbons | Pyrolysis | 32 | [5] |
| Mung bean husk | Ibuprofen | Pyrolysis | 100 | [100] |
| Pistachio shell | Phenol | Pyrolysis | 51 | [102] |
| Peanut shell | Trichloroethylene | Pyrolysis | 100 | [103] |
| Wood chips | Polychlorinated dibenzo-p-dioxins | Pyrolysis | 40 | [96] |
| Corn Stover | Polychlorinated dibenzo-p-dioxins | Pyrolysis | 52.3 | [96] |
| Maize straw | Perfluoro octane sulfonate | Pyrolysis | 70 | [98] |
| Willow | Perfluoro octane sulfonate | Pyrolysis | 41 | [98] |
| Pine chips | Acetaminophen | Pyrolysis | 94.1 | [99] |
| Pine chips | Naproxen | Pyrolysis | 97.7 | [99] |
| Biogas residue | Norffoxacin | Pyrolysis | 91.47 | [104] |
| Pomelo peel | Levoffoxacin | Pyrolysis | 87.87 | [101] |
| Soybean stalk | Phenanthrene | Pyrolysis | 99.5 | [105] |
| Reeds | Pentachlorophenol | Pyrolysis | 43–100 | [8] |
| Dyes | Biomass Used | Removal Efficiency (%) | Reference |
|---|---|---|---|
| Methylene blue | Tobacco Stem Ash | 60–81 | [94] |
| Congo red | Pine cone | 60.5–75.5 | [110] |
| Methylene blue | Pine cone | 63.83–94.82 | [111] |
| Apricot seed | Astrazone Black | 91–62 | [112] |
| Sugarcane bagasse | Rhodamin e B | 87.1–99.1 | [113] |
| Sugarcane bagasse | Basic blue 9 | 55.5–94 | [113] |
| Rice straw | Crystal Violet | 92.7 | [109] |
| Modified Mango seed | Methylene Blue | 96–99.9 | [109] |
| Rice straw | Methylene Blue | 94.45 | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadesse, A.W.; Huang, M.; Zhou, T. Biochar for Wastewater Treatment: Preparation, Modification, Characterization, and Its Applications. Molecules 2025, 30, 4288. https://doi.org/10.3390/molecules30214288
Tadesse AW, Huang M, Zhou T. Biochar for Wastewater Treatment: Preparation, Modification, Characterization, and Its Applications. Molecules. 2025; 30(21):4288. https://doi.org/10.3390/molecules30214288
Chicago/Turabian StyleTadesse, Ababo Workineh, Mingjie Huang, and Tao Zhou. 2025. "Biochar for Wastewater Treatment: Preparation, Modification, Characterization, and Its Applications" Molecules 30, no. 21: 4288. https://doi.org/10.3390/molecules30214288
APA StyleTadesse, A. W., Huang, M., & Zhou, T. (2025). Biochar for Wastewater Treatment: Preparation, Modification, Characterization, and Its Applications. Molecules, 30(21), 4288. https://doi.org/10.3390/molecules30214288

