Molecular Simulations of Energy Materials
Funding
Conflicts of Interest
Abbreviations
| DFT | Density Functional Theory |
| TDDFT | Time-Dependent DFT |
| QC | Quantum Chemical |
| CFF | Classical Force-Field |
| GO | Geometry Optimization |
| MC | Monte Carlo |
| GCMC | Grand Canonical Monte Carlo |
| MD | Molecular Dynamics |
| SAGD | Steam-Assisted Gravity Drainage |
| HPAM | Hydrolyzed Polyacrylamide |
| MOF | Metal–Organic Frameworks |
List of Contributions
- Akbar, H.; Abdur, R.; Ejaz, A.; Muhammad, S.K.; Shabeer, A.M.; Joonkyung, J. Modulating Optoelectronic and Elastic Properties of Anatase TiO2 for Photoelectrochemical Water Splitting. Molecules 2023, 28, 3252. https://doi.org/10.3390/molecules28073252.
- Oguz, I.C.; Jaouen, F.; Mineva, T. Exploring Spin Distribution and Electronic Properties in FeN4-Graphene Catalysts with Edge Terminations. Molecules 2024, 29, 479. https://doi.org/10.3390/molecules29020479.
- Rosen, B.; Sohlberg, K. The Stability of a Mixed-Phase Barium Cerium Iron Oxide under Reducing Conditions in the Presence of Hydrogen. Molecules 2023, 28, 1429. https://doi.org/10.3390/molecules28031429.
- Manian, A.; Chen, Z.; Hudson, R.J.; Russo, S.P. Simulation of Solvatochromic Phenomena in Xanthione Using Explicit Solvent Methods. Molecules 2024, 29, 5609. https://doi.org/10.3390/molecules29235609.
- Liu, Z.; Hanna, G. Population and Energy Transfer Dynamics in an Open Excitonic Quantum Battery. Molecules 2024, 29, 889. https://doi.org/10.3390/molecules29040889.
- Ahmadi, M.; Chen, Z. Molecular Dynamics Investigation of Wettability Alteration of Quartz Surface Under Thermal Recovery Processes. Molecules 2023, 28, 1162. https://doi.org/10.3390/molecules28031162.
- Hue, K.Y.; Lew, J.H.; Matar, O.K.; Luckham, P.F.; Muller, E.A. Parametric Studies of Polyacrylamide Adsorption on Calcite Using Molecular Dynamics Simulation. Molecules 2025, 30, 285. https://doi.org/10.3390/molecules30020285.
- Grenev, I.V.; Gavrilov, V.Y. In Silico Screening of Metal-Organic Frameworks and Zeolites for He/N2 Separation. Molecules 2023, 28, 20. https://doi.org/10.3390/molecules28010020.
References
- Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Armaroli, N.; Balzani, V. Energy for a Sustainable World: From the Oil Age to a Sun-Powered Future; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar] [CrossRef]
- Schmauder, S.; Schäfer, I. (Eds.) Multiscale Materials Modeling: Approaches to Full Multiscaling; De Gruyter: Berlin, Germany; Boston, MA, USA, 2016. [Google Scholar] [CrossRef]
- Jun, H.K.; Low, F.W. (Eds.) Materials for Energy Conversion and Storage; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar] [CrossRef]
- Walsh, A.; Sokol, A.A.; Catlow, C.R.A. (Eds.) Computational Approaches to Energy Materials; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Wang, L. (Ed.) Molecular Dynamics—Theoretical Developments and Applications in Nanotechnology and Energy; InTech: Vienna, Austria, 2012. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, X.; Wei, S.-H. Advances and challenges in DFT-based energy materials design. Chin. Phys. B 2022, 31, 107105. [Google Scholar] [CrossRef]
- Jin, J.; Pak, A.J.; Durumeric, A.E.P.; Loose, T.D.; Voth, G.A. Bottom-up Coarse-Graining: Principles and Perspectives. J. Chem. Theory Comput. 2022, 18, 5759–5791. [Google Scholar] [CrossRef] [PubMed]
- Wehinger, G.D.; Ambrosetti, M.; Cheula, R.; Ding, Z.-B.; Isoz, M.; Kreitz, B.; Kuhlmann, K.; Kutscherauer, M.; Niyogi, K.; Poissonnier, J.; et al. Quo vadis multiscale modeling in reaction engineering?—A perspective. Chem. Eng. Res. Des. 2022, 184, 39. [Google Scholar] [CrossRef]
- Fish, J.; Wagner, G.J.; Keten, S. Mesoscopic and multiscale modelling in materials. Nat. Mater. 2021, 20, 774–786. [Google Scholar] [CrossRef] [PubMed]
| Contribution | Topic | Properties Studied | Phenomena | Simulation Methods a |
|---|---|---|---|---|
| 1 | Doped TiO2 (Ag, Fe, Co) for water splitting | Band gap, elastic constants, mechanical stability | Doping, water dissociation, light absorption, photoconductivity | DFT calculations |
| 2 | FeN4-doped graphene nanoribbons | Spin distribution, electronic structure, magnetism | Effect of dopant position and edge termination on electronic/magnetic properties | Spin-polarized DFT |
| 3 | Mixed-metal oxide perovskites (BaCe–Fe–O) | Thermodynamic stability, surface reduction energy, oxygen vacancy behavior | Surface dehydration, H2 interaction, defect formation | DFT-based thermodynamics |
| 4 | Xanthione in polar solvents | Electronic transitions, solvent sensitivity, photostability | Solvent effect on excited states, non-Kasha behavior | TDDFT, QC-MD, explicit and implicit solvent |
| 5 | Quantum battery network | Exciton population, energy retention, site energy influence | Dark state storage, discharge dynamics, exciton transfer | Open quantum network theory, quantum dynamics simulations |
| 6 | SAGD process–bitumen/quartz interaction | Wettability, adsorption energy, surface affinity | Wetting alteration under high temperature, asphaltene adsorption | CFF-MD, with varying conditions |
| 7 | HPAM polymer on calcite | Adsorption behavior, interaction strength, effect of ionic environment | Polymer adsorption, salt-bridging, charge screening | CFF-MD simulations |
| 8 | MOFs and zeolites for He/N2 separation | Henry’s constant, diffusion coefficients, selectivity, permeability | Gas adsorption, diffusion, and membrane-based separation | GCMC, Equilibrium CFF-MD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chihaia, V.; Sutmann, G. Molecular Simulations of Energy Materials. Molecules 2025, 30, 4270. https://doi.org/10.3390/molecules30214270
Chihaia V, Sutmann G. Molecular Simulations of Energy Materials. Molecules. 2025; 30(21):4270. https://doi.org/10.3390/molecules30214270
Chicago/Turabian StyleChihaia, Viorel, and Godehard Sutmann. 2025. "Molecular Simulations of Energy Materials" Molecules 30, no. 21: 4270. https://doi.org/10.3390/molecules30214270
APA StyleChihaia, V., & Sutmann, G. (2025). Molecular Simulations of Energy Materials. Molecules, 30(21), 4270. https://doi.org/10.3390/molecules30214270

