Marine Fungal Metabolites: A Promising Source for Antibiofilm Compounds
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Marine Fungi for the Antibiofilm Pipeline
QSIs Compounds from Marine Fungi
3.2. Antibiofilm Compounds from Marine Fungi
3.2.1. Terpenoids and Steroids
3.2.2. Alkaloids and Peptides
3.2.3. Flavonoids, Phenolics, and Polyketide Compounds
3.2.4. Some Primary Metabolites
| Bioactive Compounds | Fungal Species | Fungal Source | Antibiofilm Activity | Test Bacteria Used | Reference |
|---|---|---|---|---|---|
| Phragamides A (1) and B (2), tenuazonic acid (3) altechromone (4) altenusin (5) | A. alternata 13A | Phragmites australis | Biofilm formation inhibition: Gram-positive strains: 70 to 80%. Gram-negative strains: 40 to 60%. Compound 5 exhibited moderate biofilm formation inhibition only against B. subtilis. | S. aureus B. subtilis E. coli P. areuginosa | [68] |
| Emodin (6), physcion (7), 2-(2-methylbut-3-en-2-yl)-1H-indole-3-carbaldehyde (8) and (R)-2-(2,2-dimethylcyclopropyl)-1H-indole-3-carbaldehyde (9) | Eurotium chevalieri KUFA0006 | Rhizophora mucronata | Biofilm formation inhibition: Compounds 6, 7, 8, and 9 showed inhibition of biofilm production in S. aureus ATCC 25923 significantly (p < 0.05). Compound 8: At 64 μg/Ml, nearly 80% reduction of S. aureus. | S. aureus ATCC 25923 E. coli ATCC 25922 | [79] |
| Epicorazines A (10) and C (11) 1-hydroxy-4,10,13-trimethyl-17-(6-methyl-5-methyleneheptan-2-yl)-3-oxo-2,3,4,7,8,9,10,11,12,13-decahydro-1H-cyclopenta[a]phenanthrene-4-carboxylic acid (12) | Epicoccum nigrum | Phaeurus antarcticus (seaweed) | Biofilm formation inhibition: MBEC: Compound 10: 50 μg/mL. Compound 11: 25 μg/mL. Compound 12: 25 μg/mL. Post-biofilms Inhibition: Compound 12: 100 μg/mL. | MRSA | [62] |
| Epicotripeptin (13) cyclo(L-Pro-L-Ile) (14), cyclo(L-Pro-L-Tyr) (15) | Epicoccum nigrum M13 (Marine endophyte) | Thalassia hemprichii leaves (seagrass) | Biofilm formation inhibition: Compound 13: Gram-positive strains (55 to 70% inhibition). Gram-negative strains (20 to 30% inhibition). Compounds 14 and 15: Moderate inhibition of biofilm formation in both Gram-positive strains but were not active against the tested Gram-negative strains. | S. aureus B. subtilis E. coli P. areuginosa | [68] |
| Neofiscalin A (16) | Neosartorya siamensis KUFA0017 | Marine sponge | Biofilm formation inhibition: Compound 16 against: MRSA: 96 μg/Ml. VRE: 80 μg/mL. At a concentration of 200 μg/mL, it was able to reduce the metabolic activity of the biofilms by 50%. | MRSA Vancomycin -resistant E. faecalis (VRE) | [80] |
| Secalonic acid B (17) and D (18) | Penicillium sp. SCSGAF0023 CCTCCM 2012507 | Marine | Biofilm formation inhibition: Both Inhibited by >90% at 6.25 μg/mL | S. aureus | [72] |
| Aszonapyrone A (19), Aszonalenin (20), (R)-2-((S)-8-hydroxy-3,5-dimethyl-1-oxoisochroma-ne-7-carboxamido)-3-phenylpropanoic hypo-chlorous anhydride (21), xanthomegnin (22) | Neosartory siamensis Neosartorya takakii Aspergillus elegans | Marine | Biofilm formation inhibition: Compound 19: S. aureus ATCC 29213 at 9 μg/mL: 72%. S. aureus 272123 at 6.25 μg/mL: 94%. Compound 20: S. aureus ATCC 29213 at 100 μg/mL: 63%. S. aureus 272123 at 6.25 μg/mL: 93%. Compound 21: S. aureus ATCC 29213 at 10 μg/mL: 88%. S. aureus 272123 at 25 μg/mL: 98%. Compound 22: S. aureus ATCC 29213 at 100 μg/mL: 96%. S. aureus 272123 at 50 μg/mL: (84%). | S.aureus ATCC 29213 S. aureus 272123 | [60] |
| Meleagrin (23) | Emericella dentata Nq45 | Marine | Biofilm formation inhibition: 250 μg/mL: 87.1%. | S. aureus ATCC 29213 | [81] |
| β-sitosterol (24), veridicatol (25), aurantiomide C (26), ergosterol (27) | Penicillium sp. MMA | Marine | Biofilm formation inhibition: Compound 24: B. subtilis 28%, S. aureus 64% Compound 25: B. subtilis 35%. Compounds 25, 26, 27: E. coli from 40–55%. | S. aureus E. coli B. subtilis | [41] |
| 5[(3E,5E)-nona-3,5-dien-1-yl]benzene-1,3-diol (28) | Aspergillus stellatus KUFA2017 | Marine sponge Mycale sp. | Biofilm formation inhibition: 100% at E. faecalis: MIC (16 μg/mL). S. aureus: 2xMIC (32 μg/mL). | S. aureus ATCC 29213, E. faecalis ATCC 29212 | [66] |
| Fraction AW1011 | Aspergillus welwitschiae FMPV28 | Marine sponge Taedania sp. | Biofilm formation inhibition: Remarkable decrease in biofilm formation in dose-dependent antibiofilm activity. | S. aureus ATCC 25904 | [82] |
| Extracellular thermostable antibacterial peptide designated as MFAP9 | Aspergillus fumigatus BTMF9 | Marine | Biofilm formation inhibition: >85% against all test bacteria. | B. cereus (NCIM 2155), B. circulans (NCIM 2107), B. coagulans (NCIM 2030), B. pumilus (NCIM 2189) S. aureus (NCIM 2127) | [83] |
| Aspulvinones R (29), S (30), and U (31) aspulvinones A (32), B’ (33), and H (34) | Aspergillus flavipes KUFA1152 | Marine sponge Mycale sp. | Biofilm formation inhibition: Compound 34: at MIC (32 μg/mL) and 2xMIC for both strains. Compound 33: at ½ MIC (16 μg/mL). Compounds 29 and 30: All concentrations tested 2xMIC (16 μg/mL), MIC (8 μg/mL), ½ MIC (4 μg/mL), including ¼ MIC (2 μg/mL). Mixture of 31 and 32: E. faecalis at MIC (32 μg/mL) and 2xMIC (64 μg/mL). | E. faecalis ATCC 29212 S. aureus ATCC 29213 | [73] |
| Tenellic acid C (35), neospinosic acid (36) | Neosartorya spinosa KUFA1047 | Marine sponge | Biofilm formation inhibition: Compound 35: at 64 μg/mL: E. coli (11.61 ± 0.09%). E. faecalis (24.11 ± 0.1%). S. aureus (15.54 ± 0.1%). Compound 36: at 64 μg/mL: E. coli (16.11 ± 0.19%). S. aureus (44 ± 0.06%). | E. coli ATCC 25922 E. faecalis ATCC 29212 S. aureus ATCC 29213 | [74] |
| Bacillisporins A (37) and B (38) | Talaromyces pinophilus KUFA1767 | Marine sponge | Biofilm formation inhibition: Compound 37: At 8 μg/mL (2xMIC): 99.92 ± 0.03%. 4 μg/mL (MIC): 99.81 ± 0.17%. Compound 38: At 16 μg/mL (2xMIC): 99.87 ± 0.05%. 8 μg/mL (MIC): 99.71 ± 0.13%. | S. aureus ATCC 29213 | [75] |
| GKK1032B (39) | Penicillium erubescens KUFA0220 | Marine sponge Neopetrosia sp. | Biofilm formation inhibition: at 8 μg/mL (MIC) and 16 μg/mL (2xMIC), it displayed significant activities. | E. faecalis ATCC 29212 | [63] |
| Cis-cyclo (Leucyl-Tyrosyl) (40) | Penicillium sp. | Marine sponge | Biofilm formation inhibition: at 85% against tested bacteria. | S. epidermidis | [69] |
3.3. Antibiofilm Potentials of Endophytic Fungi Isolated from Marine Seaweed
4. Future Directions
4.1. Inducing the Production of Fungal Metabolites
4.2. Metabolomics Approach
4.3. Detecting Antibiofilm Compounds
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| WHO | World Health Organization |
| EPS | Extracellular Polymeric Substances |
| NO | Nitric Oxide |
| QS | Quorum Sensing System |
| AI | Auto Inducer |
| SNP | Sodium Nitroprusside |
| NPs | Natural Products |
| EtOAc | Ethyl Acetate |
| sp. | Species |
| BGC | Biosynthetic Gene Cluster |
| Mr | Molecular Weight |
| KDa | Kilodaltons |
| MS | Mass Spectrometry |
| NMR | Nuclear Magnetic Resonance Spectroscopy |
| LC | Liquid Chromatography |
| MIC | Minimum Inhibitory Concentration |
| MBEC | Minimum Biofilm Eradication Bacteria |
| MBIC | Minimum Biofilm Inhibitory Concentration |
| PCA | Principal Component Analysis |
| PLS-DA | Partial Least Square Discriminant Analysis |
| OPLS-DA | Orthogonal Partial Least Square Discriminant Analysis |
| AZA | 5-azacytidine |
| AHA | Suberoylanilide Hydroxamic Acid |
| hdaA | Histone Deacetylase Inhibitor |
References
- Talebi Bezmin Abadi, A.; Rizvanov, A.A.; Haertlé, T.; Blatt, N.L. World Health Organization report: Current crisis of antibiotic resistance. BioNanoScience 2019, 9, 778–788. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Kurt Yilmaz, N.; Schiffer, C.A. Introduction: Drug resistance. Chem. Rev. 2021, 121, 3235–3237. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Nelson, R.E.; Hatfield, K.M.; Wolford, H.; Samore, M.H.; Scott, R.D.; Reddy, S.C.; Olubajo, B.; Paul, P.; Jernigan, J.A.; Baggs, J. National estimates of healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United States. Clin. Infect. Dis. 2021, 72 (Suppl. 1), S17–S26. [Google Scholar] [CrossRef]
- Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic resistance in bacteria—A review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Sharifi, S.; Bakhshi, B.; Najar-Peerayeh, S. Significant contribution of the CmeABC Efflux pump in high-level resistance to ciprofloxacin and tetracycline in Campylobacter jejuni and Campylobacter coli clinical isolates. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 36. [Google Scholar] [CrossRef] [PubMed]
- Dever, L.A.; Dermody, T.S. Mechanisms of bacterial resistance to antibiotics. Arch. Intern. Med. 1991, 151, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Sun, J.; Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef]
- Wu, H.; Moser, C.; Wang, H.-Z.; Høiby, N.; Song, Z.-J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond risk: Bacterial biofilms and their regulating approaches. Front. Microbiol. 2020, 11, 928. [Google Scholar] [CrossRef]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. [Google Scholar] [CrossRef]
- Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J. 2017, 11, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Dufour, D.; Leung, V.; Lévesque, C.M. Bacterial biofilm: Structure, function, and antimicrobial resistance. Endod. Top. 2010, 22, 2–16. [Google Scholar] [CrossRef]
- Abebe, G.M. The role of bacterial biofilm in antibiotic resistance and food contamination. Int. J. Microbiol. 2020, 2020, 1705814. [Google Scholar] [CrossRef]
- Barraud, N.; Kelso, M.J.; Rice, S.A.; Kjelleberg, S. Nitric oxide: A key mediator of biofilm dispersal with applications in infectious diseases. Curr. Pharm. Des. 2015, 21, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.-S.; Deyrup, S.T.; Shim, S.H. Endophyte-produced antimicrobials: A review of potential lead compounds with a focus on quorum-sensing disruptors. Phytochem. Rev. 2021, 20, 543–568. [Google Scholar] [CrossRef]
- Martín-Martín, R.P.; Carcedo-Forés, M.; Camacho-Bolós, P.; García-Aljaro, C.; Angulo-Preckler, C.; Avila, C.; Lluch, J.R.; Garreta, A.G. Experimental evidence of antimicrobial activity in Antarctic seaweeds: Ecological role and antibiotic potential. Polar Biol. 2022, 45, 923–936. [Google Scholar] [CrossRef]
- Hall, C.W.; Mah, T.-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef] [PubMed]
- Davenport, E.K.; Call, D.R.; Beyenal, H. Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms. Antimicrob. Agents Chemother. 2014, 58, 4755–4761. [Google Scholar] [CrossRef] [PubMed]
- Brackman, G.; Cos, P.; Maes, L.; Nelis, H.J.; Coenye, T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob. Agents Chemother. 2011, 55, 2655–2661. [Google Scholar] [CrossRef] [PubMed]
- Cirioni, O.; Mocchegiani, F.; Cacciatore, I.; Vecchiet, J.; Silvestri, C.; Baldassarre, L.; Ucciferri, C.; Orsetti, E.; Castelli, P.; Provinciali, M. Quorum sensing inhibitor FS3-coated vascular graft enhances daptomycin efficacy in a rat model of staphylococcal infection. Peptides 2013, 40, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Grayton, Q.E.; Nguyen, H.K.; Broberg, C.A.; Ocampo, J.; Nagy, S.G.; Schoenfisch, M.H. Biofilm Dispersal, Reduced Viscoelasticity, and Antibiotic Sensitization via Nitric Oxide-Releasing Biopolymers. ACS Infect. Dis. 2023, 9, 1730–1741. [Google Scholar] [CrossRef] [PubMed]
- Barraud, N.; Hassett, D.J.; Hwang, S.-H.; Rice, S.A.; Kjelleberg, S.; Webb, J.S. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 2006, 188, 7344–7353. [Google Scholar] [CrossRef] [PubMed]
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon 2019, 5, e02192. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Sadeek, A.; Abdallah, E.M. Phytochemical compounds as antibacterial agents a mini review. Glob. J. Pharm. Sci. 2019, 7, 555720. [Google Scholar]
- Rosa, G.P.; Tavares, W.R.; Sousa, P.M.; Pagès, A.K.; Seca, A.M.; Pinto, D.C. Seaweed secondary metabolites with beneficial health effects: An overview of successes in in vivo studies and clinical trials. Mar. Drugs 2019, 18, 8. [Google Scholar] [CrossRef]
- Polat, S.; Trif, M.; Rusu, A.; Šimat, V.; Čagalj, M.; Alak, G.; Meral, R.; Özogul, Y.; Polat, A.; Özogul, F. Recent advances in industrial applications of seaweeds. Crit. Rev. Food Sci. Nutr. 2023, 63, 4979–5008. [Google Scholar] [CrossRef]
- Danquah, C.A.; Minkah, P.A.B.; Agana, T.A.; Moyo, P.; Tetteh, M.; Junior, I.O.D.; Amankwah, K.B.; Somuah, S.O.; Ofori, M.; Maharaj, V.J. Natural Products as Antibiofilm Agents. In Focus on Bacterial Biofilms; IntechOpen: London, UK, 2022. [Google Scholar]
- Jun, J.-Y.; Jung, M.-J.; Jeong, I.-H.; Yamazaki, K.; Kawai, Y.; Kim, B.-M. Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Mar. Drugs 2018, 16, 301. [Google Scholar] [CrossRef]
- Tang, J.; Wang, W.; Chu, W. Antimicrobial and anti-quorum sensing activities of phlorotannins from seaweed (Hizikia fusiforme). Front. Cell. Infect. Microbiol. 2020, 10, 586750. [Google Scholar] [CrossRef]
- Menaa, F.; Wijesinghe, P.; Thiripuranathar, G.; Uzair, B.; Iqbal, H.; Khan, B.A.; Menaa, B. Ecological and industrial implications of dynamic seaweed-associated microbiota interactions. Mar. Drugs 2020, 18, 641. [Google Scholar] [CrossRef]
- Vladkova, T.G.; Martinov, B.L.; Gospodinova, D.N. Anti-biofilm agents from marine biota. J. Chem. Technol. Metall. 2023, 58, 825–839. [Google Scholar] [CrossRef]
- Conrado, R.; Gomes, T.C.; Roque, G.S.C.; De Souza, A.O. Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds. Antibiotics 2022, 11, 1604. [Google Scholar] [CrossRef] [PubMed]
- Njateng, G.S.S.; Du, Z.; Gatsing, D.; Mouokeu, R.S.; Liu, Y.; Zang, H.-X.; Gu, J.; Luo, X.; Kuiate, J.-R. Antibacterial and antioxidant properties of crude extract, fractions and compounds from the stem bark of Polyscias fulva Hiern (Araliaceae). BMC Complement. Altern. Med. 2017, 17, 99. [Google Scholar] [CrossRef]
- Charria-Girón, E.; Espinosa, M.C.; Zapata-Montoya, A.; Méndez, M.J.; Caicedo, J.P.; Dávalos, A.F.; Ferro, B.E.; Vasco-Palacios, A.M.; Caicedo, N.H. Evaluation of the antibacterial activity of crude extracts obtained from cultivation of native endophytic fungi belonging to a tropical montane rainforest in Colombia. Front. Microbiol. 2021, 12, 716523. [Google Scholar] [CrossRef]
- Eskander, D.M.; Atalla, S.M.; Hamed, A.A.; El-Khrisy, E.-D.A. Investigation of secondary metabolites and its bioactivity from Sarocladium kiliense SDA20 using shrimp shell wastes. Pharmacogn. J. 2020, 12, 636–644. [Google Scholar] [CrossRef]
- Boulis, A.G.; Hamed, A.A.; El-Awady, M.E.; Mohamed, A.R.; Eliwa, E.M.; Asker, M.M.; Shaaban, M. Diverse bioactive metabolites from Penicillium sp. MMA derived from the red sea: Structure identification and biological activity studies. Arch. Microbiol. 2020, 202, 1985–1996. [Google Scholar] [CrossRef] [PubMed]
- Salem, S.H.; El-Maraghy, S.S.; Abdel-Mallek, A.Y.; Abdel-Rahman, M.A.; Hassanein, E.H.; Al-Bedak, O.A.; El-Aziz, F.E.-Z.A.A. The antimicrobial, antibiofilm, and wound healing properties of ethyl acetate crude extract of an endophytic fungus Paecilomyces sp. (AUMC 15510) in earthworm model. Sci. Rep. 2022, 12, 19239. [Google Scholar] [CrossRef] [PubMed]
- Hengzhuang, W.; Wu, H.; Ciofu, O.; Song, Z.; Høiby, N. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2011, 55, 4469–4474. [Google Scholar] [CrossRef]
- Owlia, P.; Nosrati, R.; Alaghehbandan, R.; Lari, A.R. Antimicrobial susceptibility differences among mucoid and non-mucoid Pseudomonas aeruginosa isolates. GMS Hyg. Infect. Control 2014, 9, Doc13. [Google Scholar]
- Kapoor, P.; Murphy, P. Combination antibiotics against Pseudomonas aeruginosa, representing common and rare cystic fibrosis strains from different Irish clinics. Heliyon 2018, 4, e00562. [Google Scholar] [CrossRef]
- Doreswamy, K.; Shenoy, P.; Bhaskar, S.; Kini, R.K.; Sekhar, S. Woodfordia fruticosa (Linn.) Kurz’s fungal endophyte Mucor souzae’s secondary metabolites, kaempferol and quercetin, bestow biological activities. J. Appl. Biol. Biotechnol. 2022, 10, 44–53. [Google Scholar] [CrossRef]
- Bajpai, R.; Yusuf, M.A.; Upreti, D.K.; Gupta, V.K.; Singh, B.N. Endolichenic fungus, Aspergillus quandricinctus of Usnea longissima inhibits quorum sensing and biofilm formation of Pseudomonas aeruginosa PAO1. Microb. Pathog. 2020, 140, 103933. [Google Scholar] [CrossRef]
- İrez, E.İ.; Doğru, N.H.; Demir, N. Fomes fomentarius (L.) Fr. extracts as sources of an antioxidant, antimicrobial and antibiofilm agents. Biol. Nyssana 2021, 12, 55–62. [Google Scholar]
- Klomchit, A.; Calderin, J.D.; Jaidee, W.; Watla-Iad, K.; Brooks, S. Napthoquinones from Neocosmospora sp.—Antibiotic activity against Acidovorax citrulli, the causative agent of bacterial fruit blotch in watermelon and melon. J. Fungi 2021, 7, 370. [Google Scholar] [CrossRef] [PubMed]
- Abdelgawad, M.A.; Hamed, A.A.; Nayl, A.A.; Badawy, M.S.E.; Ghoneim, M.M.; Sayed, A.M.; Hassan, H.M.; Gamaleldin, N.M. The chemical profiling, docking study, and antimicrobial and antibiofilm activities of the Endophytic fungi Aspergillus sp. AP5. Molecules 2022, 27, 1704. [Google Scholar] [CrossRef]
- Kaur, N.; Arora, D.S. Prospecting the antimicrobial and antibiofilm potential of Chaetomium globosum an endophytic fungus from Moringa oleifera. AMB Express 2020, 10, 206. [Google Scholar] [CrossRef]
- Kaur, N.; Arora, D.S.; Kalia, N.; Kaur, M. Antibiofilm, antiproliferative, antioxidant and antimutagenic activities of an endophytic fungus Aspergillus fumigatus from Moringa oleifera. Mol. Biol. Rep. 2020, 47, 2901–2911. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.J.; Palombo, E.A.; Moulton, S.E.; Duggan, P.J.; Zaferanloo, B. Antibacterial and Antibiofilm Activity of Endophytic Alternaria sp. Isolated from Eremophila longifolia. Antibiotics 2023, 12, 1459. [Google Scholar] [CrossRef]
- Jones, E.G.; Ramakrishna, S.; Vikineswary, S.; Das, D.; Bahkali, A.H.; Guo, S.-Y.; Pang, K.-L. How do fungi survive in the sea and respond to climate change? J. Fungi 2022, 8, 291. [Google Scholar] [CrossRef]
- Wong Chin, J.M.; Puchooa, D.; Bahorun, T.; Jeewon, R. Antimicrobial properties of marine fungi from sponges and brown algae of Mauritius. Mycology 2021, 12, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Westphal, K.R.; Heidelbach, S.; Zeuner, E.J.; Riisgaard-Jensen, M.; Nielsen, M.E.; Vestergaard, S.Z.; Bekker, N.S.; Skovmark, J.; Olesen, C.K.; Thomsen, K.H. The effects of different potato dextrose agar media on secondary metabolite production in Fusarium. Int. J. Food Microbiol. 2021, 347, 109171. [Google Scholar] [CrossRef] [PubMed]
- Jaber, S.A.M.F. Metabolomic Profiling of Antibiofilm Compounds from Fungal Endophytes Derived from Scottish Seaweeds. Ph.D. Thesis, University of Strathclyde, Glasgow, UK, 2021. [Google Scholar]
- Yu, X.; Li, L.; Sun, S.; Chang, A.; Dai, X.; Li, H.; Wang, Y.; Zhu, H. A cyclic dipeptide from marine fungus Penicillium chrysogenum DXY-1 exhibits anti-quorum sensing activity. ACS Omega 2021, 6, 7693–7700. [Google Scholar] [CrossRef]
- Parasuraman, P.; Devadatha, B.; Sarma, V.V.; Ranganathan, S.; Ampasala, D.R.; Siddhardha, B. Anti-quorum sensing and antibiofilm activities of Blastobotrys parvus PPR3 against Pseudomonas aeruginosa PAO1. Microb. Pathog. 2020, 138, 103811. [Google Scholar] [CrossRef]
- Durães, F.; Szemerédi, N.; Kumla, D.; Pinto, M.; Kijjoa, A.; Spengler, G.; Sousa, E. Metabolites from marine-derived fungi as potential antimicrobial adjuvants. Mar. Drugs 2021, 19, 475. [Google Scholar] [CrossRef]
- Edrada-Ebel, R.; Michael, A.; Alsaleh, F.; Zaharuddin, H.B. Antibiofilm Metabolites from Sponge-Derived Aspergillus, Penicillium, and Fusarium for the Antibiotic Pipeline. In Fungi Bioactive Metabolites: Integration of Pharmaceutical Applications; Deshmukh, S.K., Takahashi, J.A., Saxena, S., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 161–205. [Google Scholar]
- Santos, G.S.d. Phaeurus antarcticus and Its Endophytic Fungi: Chemical Diversity of a Hidden Pharmacy Underneath the Antarctic Ocean. Ph.D. Thesis, Universidade de São Paulo, Ribeirão Preto, Brazil, 2022. [Google Scholar]
- Kumla, D.; Pereira, J.A.; Dethoup, T.; Gales, L.; Freitas-Silva, J.; Costa, P.M.; Lee, M.; Silva, A.M.; Sekeroglu, N.; Pinto, M.M. Chromone derivatives and other constituents from cultures of the marine sponge-associated fungus Penicillium erubescens KUFA0220 and their antibacterial activity. Mar. Drugs 2018, 16, 289. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xin, J.; Sun, Y.; Zhao, F.; Niu, C.; Liu, S. Terpenoids from Marine Sources: A Promising Avenue for New Antimicrobial Drugs. Mar. Drugs 2024, 22, 347. [Google Scholar] [CrossRef]
- Sethupathy, S.; Sathiyamoorthi, E.; Kim, Y.-G.; Lee, J.-H.; Lee, J. Antibiofilm and antivirulence properties of indoles against Serratia marcescens. Front. Microbiol. 2020, 11, 584812. [Google Scholar] [CrossRef]
- Machado, F.P.; Rodrigues, I.C.; Gales, L.; Pereira, J.A.; Costa, P.M.; Dethoup, T.; Mistry, S.; Silva, A.M.; Vasconcelos, V.; Kijjoa, A. New Alkylpyridinium Anthraquinone, Isocoumarin, C-Glucosyl Resorcinol Derivative and Prenylated Pyranoxanthones from the Culture of a Marine Sponge-Associated Fungus, Aspergillus stellatus KUFA 2017. Mar. Drugs 2022, 20, 672. [Google Scholar] [CrossRef]
- Kemkuignou, B.M.; Treiber, L.; Zeng, H.; Schrey, H.; Schobert, R.; Stadler, M. Macrooxazoles a–d, new 2, 5-disubstituted oxazole-4-carboxylic acid derivatives from the plant pathogenic fungus Phoma macrostoma. Molecules 2020, 25, 5497. [Google Scholar] [CrossRef] [PubMed]
- Qader, M.M.; Hamed, A.A.; Soldatou, S.; Abdelraof, M.; Elawady, M.E.; Hassane, A.S.; Belbahri, L.; Ebel, R.; Rateb, M.E. Antimicrobial and antibiofilm activities of the fungal metabolites isolated from the marine endophytes Epicoccum nigrum M13 and Alternaria alternata 13A. Mar. Drugs 2021, 19, 232. [Google Scholar] [CrossRef] [PubMed]
- Scopel, M.; Abraham, W.-R.; Henriques, A.T.; Macedo, A.J. Dipeptide cis-cyclo (Leucyl-Tyrosyl) produced by sponge associated Penicillium sp. F37 inhibits biofilm formation of the pathogenic Staphylococcus epidermidis. Bioorg. Med. Chem. Lett. 2013, 23, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Youssef, F.S.; Ashour, M.L.; Singab, A.N.B.; Wink, M. A comprehensive review of bioactive peptides from marine fungi and their biological significance. Mar. Drugs 2019, 17, 559. [Google Scholar] [CrossRef]
- Talle Juidzou, G.; Gisèle Mouafo Anoumedem, E.; Kehdinga Sema, D.; Flaure Tsague Tankeu, V.; Bosco Leutcha, P.; Yetendje Chimi, L.; Paul Dzoyem, J.; Kouam Fogue, S.; Sewald, N.; Choudhary, M.I. A New Unsaturated Aliphatic Anhydride from Aspergillus candidus T 12 19W1, an Endophytic Fungus, from Pittosporum mannii Hook f. J. Chem. 2023, 2023, 5938723. [Google Scholar] [CrossRef]
- Wang, J.; Nong, X.-H.; Zhang, X.-Y.; Xu, X.-Y.; Amin, M.; Qi, S.-H. Screening of anti-biofilm compounds from marine-derived fungi and the effects of secalonic acid D on Staphylococcus aureus biofilm. J. Microbiol. Biotechnol. 2017, 27, 1078–1089. [Google Scholar] [CrossRef]
- Machado, F.P.; Kumla, D.; Pereira, J.A.; Sousa, E.; Dethoup, T.; Freitas-Silva, J.; Costa, P.M.; Mistry, S.; Silva, A.M.; Kijjoa, A. Prenylated phenylbutyrolactones from cultures of a marine sponge-associated fungus Aspergillus flavipes KUFA1152. Phytochemistry 2021, 185, 112709. [Google Scholar] [CrossRef]
- de Sá, J.D.; Pereira, J.A.; Dethoup, T.; Cidade, H.; Sousa, M.E.; Rodrigues, I.C.; Costa, P.M.; Mistry, S.; Silva, A.M.; Kijjoa, A. Anthraquinones, diphenyl ethers, and their derivatives from the culture of the marine sponge-associated fungus Neosartorya spinosa KUFA 1047. Mar. Drugs 2021, 19, 457. [Google Scholar] [CrossRef]
- Machado, F.P.; Rodrigues, I.C.; Georgopolou, A.; Gales, L.; Pereira, J.A.; Costa, P.M.; Mistry, S.; Hafez Ghoran, S.; Silva, A.M.; Dethoup, T. New hybrid phenalenone dimer, highly conjugated dihydroxylated C28 steroid and azaphilone from the culture extract of a marine sponge-associated fungus, Talaromyces pinophilus KUFA 1767. Mar. Drugs 2023, 21, 194. [Google Scholar] [CrossRef]
- Yuyama, K.T.; Rohde, M.; Molinari, G.; Stadler, M.; Abraham, W.-R. Unsaturated fatty acids control biofilm formation of Staphylococcus aureus and other gram-positive bacteria. Antibiotics 2020, 9, 788. [Google Scholar] [CrossRef]
- El-Zawawy, N.A.; Ali, S.S.; Nouh, H.S. Exploring the potential of Rhizopus oryzae AUMC14899 as a novel endophytic fungus for the production of l-tyrosine and its biomedical applications. Microb. Cell Factories 2023, 22, 31. [Google Scholar] [CrossRef]
- Yazici, A.; Örtücü, S.; Taşkin, M. Screening and characterization of a novel Antibiofilm polypeptide derived from filamentous Fungi. J. Proteom. 2021, 233, 104075. [Google Scholar] [CrossRef]
- Zin, W.W.M.; Buttachon, S.; Dethoup, T.; Pereira, J.A.; Gales, L.; Inácio, Â.; Costa, P.M.; Lee, M.; Sekeroglu, N.; Silva, A.M. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry 2017, 141, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Bessa, L.J.; Buttachon, S.; Dethoup, T.; Martins, R.; Vasconcelos, V.; Kijjoa, A.; Martins da Costa, P. Neofiscalin A and fiscalin C are potential novel indole alkaloid alternatives for the treatment of multidrug-resistant Gram-positive bacterial infections. FEMS Microbiol. Lett. 2016, 363, fnw150. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.; Abdel-Razek, A.S.; Araby, M.; Abu-Elghait, M.; El-Hosari, D.G.; Frese, M.; Soliman, H.S.; Stammler, H.G.; Sewald, N.; Shaaban, M. Meleagrin from marine fungus Emericella dentata Nq45: Crystal structure and diverse biological activity studies. Nat. Prod. Res. 2021, 35, 3830–3838. [Google Scholar] [CrossRef] [PubMed]
- Loges, L.A.; Silva, D.B.; Paulino, G.V.; Landell, M.F.; Macedo, A.J. Polyketides from marine-derived Aspergillus welwitschiae inhibit Staphylococcus aureus virulence factors and potentiate vancomycin antibacterial activity in vivo. Microb. Pathog. 2020, 143, 104066. [Google Scholar] [CrossRef]
- Raghavan, R.M.K.; Pannippara, M.A.; Kesav, S.; Mathew, A.; Bhat, S.G.; Aa, M.H.; Elyas, K. MFAP9: Characterization of an extracellular thermostable antibacterial peptide from marine fungus with biofilm eradication potential. J. Pharm. Biomed. Anal. 2021, 194, 113808. [Google Scholar] [CrossRef]
- Kandou, F.E.F.; Mangindaan, R.E.P.; Rompas, R.M.; Simbala, H.I. Molecular identification and antibacterial activity of marine-endophytic fungi isolated from sea fan Annella sp. from Bunaken waters, Manado, North Sulawesi, Indonesia. Aquac. Aquar. Conserv. Legis. 2021, 14, 317–327. [Google Scholar]
- Felício, R.d.; Pavão, G.B.; Oliveira, A.L.L.d.; Erbert, C.; Conti, R.; Pupo, M.T.; Furtado, N.A.; Ferreira, E.G.; Costa-Lotufo, L.V.; Young, M.C.M. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Rev. Bras. Farmacogn. 2015, 25, 641–650. [Google Scholar] [CrossRef]
- Handayani, D.; Ananda, N.; Artasasta, M.A.; Ruslan, R.; Fadriyanti, O.; Tallei, T.E. Antimicrobial activity screening of endophytic fungi extracts isolated from brown algae Padina sp. J. Appl. Pharm. Sci. 2019, 9, 009–013. [Google Scholar]
- Flewelling, A.J.; Johnson, J.A.; Gray, C.A. Isolation and bioassay screening of fungal endophytes from North Atlantic marine macroalgae. Bot. Mar. 2013, 56, 287–297. [Google Scholar] [CrossRef]
- Parthasarathy, R.; Chandrika, M.; Rao, H.Y.; Kamalraj, S.; Jayabaskaran, C.; Pugazhendhi, A. Molecular profiling of marine endophytic fungi from green algae: Assessment of antibacterial and anticancer activities. Process Biochem. 2020, 96, 11–20. [Google Scholar] [CrossRef]
- Bind, S.; Bind, S.; Sharma, A.; Chaturvedi, P. Epigenetic modification: A key tool for secondary metabolite production in microorganisms. Front. Microbiol. 2022, 13, 784109. [Google Scholar] [CrossRef]
- Munusamy, M.; Ching, K.C.; Yang, L.K.; Crasta, S.; Gakuubi, M.M.; Chee, Z.Y.; Wibowo, M.; Leong, C.Y.; Kanagasundaram, Y.; Ng, S.B. Chemical elicitation as an avenue for discovery of bioactive compounds from fungal endophytes. Front. Chem. 2022, 10, 1024854. [Google Scholar] [CrossRef]
- Gakuubi, M.M.; Ching, K.C.; Munusamy, M.; Wibowo, M.; Liang, Z.-X.; Kanagasundaram, Y.; Ng, S.B. Enhancing the discovery of bioactive secondary metabolites from fungal endophytes using chemical elicitation and variation of fermentation media. Front. Microbiol. 2022, 13, 898976. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-Y.; Ma, Z.-L.; Wu, J.-S.; Shao, C.-L.; Yao, G.-S.; Wang, C.-Y. Induction of secondary metabolite biosynthesis by deleting the histone deacetylase HdaA in the marine-derived fungus Aspergillus terreus RA2905. J. Fungi 2022, 8, 1024. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sørensen, J.L.; Hansen, F.T.; Arvas, M.; Syed, M.F.; Hassan, L.; Benz, J.P.; Record, E.; Henrissat, B.; Pöggeler, S. Genome sequencing and analyses of two marine fungi from the North Sea unraveled a plethora of novel biosynthetic gene clusters. Sci. Rep. 2018, 8, 10187. [Google Scholar] [CrossRef]
- VanderMolen, K.M.; Raja, H.A.; El-Elimat, T.; Oberlies, N.H. Evaluation of culture media for the production of secondary metabolites in a natural products screening program. Amb Express 2013, 3, 71. [Google Scholar] [CrossRef]
- Shinta, D.Y.; Juliandi, M.D.; Widyastuti, W.; Sonata, H.; Saryono, S. Microbial inhibition test and optimization of temperature, aeration fermentation of endophytic Fusarium sp LBKURCC 41 from Dahlia tuber (Dahlia variabilis). Bali Med. J. 2023, 12, 77–82. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Sun, K.; Zhu, W. Effects of high salt stress on secondary metabolite production in the marine-derived fungus Spicaria elegans. Mar. Drugs 2011, 9, 535–542. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, W.-C.; Shi, X.; Zheng, H.-Z.; Zheng, Z.-H.; Lu, X.-H.; Xing, Y.; Ji, K.; Liu, M.; Dong, Y.-S. Inducing secondary metabolite production of Aspergillus sydowii through microbial co-culture with Bacillus subtilis. Microb. Cell Factories 2021, 20, 42. [Google Scholar] [CrossRef]
- Caudal, F.; Tapissier-Bontemps, N.; Edrada-Ebel, R.A. Impact of Co-Culture on the Metabolism of Marine Microorganisms. Mar. Drugs 2022, 20, 153. [Google Scholar] [CrossRef]
- Azzollini, A.; Boggia, L.; Boccard, J.; Sgorbini, B.; Allard, P.-M.; Rubiolo, P.; Rudaz, S.; Wolfender, J.-L. Dynamics of metabolite induction in fungal co-cultures by metabolomics at both volatile and non-volatile levels. Front. Microbiol. 2018, 9, 326597. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Mochamad Afendi, F.; Altaf-Ul-Amin, M.; Takahashi, H.; Nakamura, K.; Kanaya, S. Metabolomics of medicinal plants: The importance of multivariate analysis of analytical chemistry data. Curr. Comput.-Aided Drug Des. 2010, 6, 179–196. [Google Scholar] [CrossRef]
- Lajis, N.; Maulidiani, M.; Abas, F.; Ismail, I. Metabolomics approach in pharmacognosy. In Pharmacognosy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 597–616. [Google Scholar]
- Naz, S.; Vallejo, M.; García, A.; Barbas, C. Method validation strategies involved in non-targeted metabolomics. J. Chromatogr. A 2014, 1353, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.; Caterino, M.; Ruoppolo, M. Targeted metabolomics. In Metabolomics Perspectives; Elsevier: Amsterdam, The Netherlands, 2022; pp. 219–236. [Google Scholar]
- Nagarajan, K.; Ibrahim, B.; Ahmad Bawadikji, A.; Lim, J.-W.; Tong, W.-Y.; Leong, C.-R.; Khaw, K.Y.; Tan, W.-N. Recent developments in metabolomics studies of endophytic fungi. J. Fungi 2021, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Tawfike, A.F.; Tate, R.; Abbott, G.; Young, L.; Viegelmann, C.; Schumacher, M.; Diederich, M.; Edrada-Ebel, R. Metabolomic Tools to Assess the Chemistry and Bioactivity of Endophytic Aspergillus Strain. Chem. Biodivers. 2017, 14, e1700040. [Google Scholar] [CrossRef]
- Tawfike, A.F.; Romli, M.; Clements, C.; Abbott, G.; Young, L.; Schumacher, M.; Diederich, M.; Farag, M.; Edrada-Ebel, R. Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1106–1107, 71–83. [Google Scholar] [CrossRef]
- Tawfike, A.F.; Viegelmann, C.; Edrada-Ebel, R. Metabolomics and dereplication strategies in natural products. Methods Mol. Biol. 2013, 1055, 227–244. [Google Scholar] [CrossRef]
- Mazlan, N.W.; Tate, R.; Yusoff, Y.M.; Clements, C.; Edrada-Ebel, R. Metabolomics-Guided Isolation of Anti-Trypanosomal Compounds from Endophytic Fungi of the Mangrove plant Avicennia Lanata. Curr. Med. Chem. 2020, 27, 1815–1835. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Nwagwu, E.; Young, L.; Kumar, P.; Shinde, P.B.; Edrada-Ebel, R. Targeted Isolation of Antibiofilm Compounds from Halophytic Endophyte Bacillus velezensis 7NPB-3B Using LC-HR-MS-Based Metabolomics. Microorganisms 2024, 12, 413. [Google Scholar] [CrossRef] [PubMed]
- Alhadrami, H.A.; Sayed, A.M.; El-Gendy, A.O.; Shamikh, Y.I.; Gaber, Y.; Bakeer, W.; Sheirf, N.H.; Attia, E.Z.; Shaban, G.M.; Khalifa, B.A. A metabolomic approach to target antimalarial metabolites in the Artemisia annua fungal endophytes. Sci. Rep. 2021, 11, 2770. [Google Scholar] [CrossRef] [PubMed]
- Saccenti, E.; Hoefsloot, H.C.; Smilde, A.K.; Westerhuis, J.A.; Hendriks, M.M. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 2014, 10, 361–374. [Google Scholar] [CrossRef]
- Dong, D.; Thomas, N.; Ramezanpour, M.; Psaltis, A.J.; Huang, S.; Zhao, Y.; Thierry, B.; Wormald, P.-J.; Prestidge, C.A.; Vreugde, S. Inhibition of Staphylococcus aureus and Pseudomonas aeruginosa biofilms by quatsomes in low concentrations. Exp. Biol. Med. 2020, 245, 34–41. [Google Scholar] [CrossRef]
- Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef]
- Repp, K.K.; Menor, S.A.; Pettit, R.K. Microplate Alamar blue assay for susceptibility testing of Candida albicans biofilms. Med. Mycol. 2007, 45, 603–607. [Google Scholar] [CrossRef]
- Preda, V.G.; Săndulescu, O. Communication is the key: Biofilms, quorum sensing, formation and prevention. Discoveries 2019, 7, e100. [Google Scholar] [CrossRef]




| Year | Marine Endophytic Fungi Antibiofilm Compounds | Seaweed Endophytic Fungi Antibiofilm Compounds | ||
|---|---|---|---|---|
| Before Exclusion | After Exclusion | Before Exclusion | After Exclusion | |
| 2015 | 46 | 0 | 7 | 0 |
| 2016 | 53 | 0 | 12 | 0 |
| 2017 | 83 | 2 | 30 | 0 |
| 2018 | 138 | 1 | 22 | 0 |
| 2019 | 182 | 0 | 56 | 1 |
| 2020 | 249 | 1 | 73 | 0 |
| 2021 | 447 | 4 | 140 | 1 |
| 2022 | 544 | 3 | 181 | 1 |
| 2023 | 846 | 1 | 246 | 0 |
| 2024 | 764 | 0 | 233 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, F.A.; Edrada-Ebel, R.A. Marine Fungal Metabolites: A Promising Source for Antibiofilm Compounds. Molecules 2025, 30, 4266. https://doi.org/10.3390/molecules30214266
Almutairi FA, Edrada-Ebel RA. Marine Fungal Metabolites: A Promising Source for Antibiofilm Compounds. Molecules. 2025; 30(21):4266. https://doi.org/10.3390/molecules30214266
Chicago/Turabian StyleAlmutairi, Fadiah Ammar, and Ru Angelie Edrada-Ebel. 2025. "Marine Fungal Metabolites: A Promising Source for Antibiofilm Compounds" Molecules 30, no. 21: 4266. https://doi.org/10.3390/molecules30214266
APA StyleAlmutairi, F. A., & Edrada-Ebel, R. A. (2025). Marine Fungal Metabolites: A Promising Source for Antibiofilm Compounds. Molecules, 30(21), 4266. https://doi.org/10.3390/molecules30214266

