Synthesis, Structure, and Properties of Reduced Graphite Oxide Modified with Zirconium Phthalocyanine as a Catalyst for Photooxidation and Dye Photodegradation
Abstract
1. Introduction
2. Results
2.1. Fabrication, Morphology, and Composition of PcZr-RGO
2.2. Optical Measurements
2.2.1. Absorption and Photoluminescence Spectra
2.2.2. Surface Area Analysis
2.2.3. ROS Generation Abilities
2.2.4. Photodegradation of Model Dyes in Water
2.2.5. Stability and Reusability of RGO-ZrPc Composite Material
3. Discussion
4. Materials and Methods
4.1. Synthesis of Precursors
4.2. Solvothermal Synthesis of RGO-PcZ Hybrid
4.3. Analyses of Structure, Morphology, and Composition
4.4. Optical Spectroscopy Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ragoussi, M.-E.; Malig, J.; Katsukis, G.; Butz, B.; Spiecker, E.; de la Torre, G.; Torres, T.; Guldi, D.M. Linking photo- and redoxactive phthalocyanines covalently to graphene. Angew. Chem. Int. Ed. 2012, 51, 6421–6425. [Google Scholar] [CrossRef]
- Mensing, J.P.; Kerdcharoen, T.; Sriprachuabwong, C.; Wisitsoraat, A.; Phokharatkul, D.; Lomasa, T.; Tuantranont, A. Facile preparation of graphene–metal phthalocyanine hybrid material by electrolytic exfoliation. J. Mater. Chem. 2012, 22, 17094–17099. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Y.; Chen, Y.; Wang, J.; Zhang, B.; Zhang, J.; Blau, W.J. Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 2011, 49, 1900–1905. [Google Scholar] [CrossRef]
- Hosseini, H.; Mahyari, M.; Bagheri, A.; Shaabani, A. A novel bioelectrochemical sensing platform based on covalently attachment of cobalt phthalocyanine to graphene oxide. Biosens. Bioelectron. 2014, 52, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Pan, S.; Ma, D.; He, D.; Wang, Y.; Xie, S.; Peng, Y. Light-harvesting dendrimer zinc-phthalocyanines chromophores labeled single-wall carbon nanotube nanoensembles: Synthesis and photoinduced electron transfer. J. Luminesc. 2016, 179, 588–594. [Google Scholar] [CrossRef]
- Buber, E.; Yuzer, A.; Soylemez, S.; Kesik, M.; Ince, M.; Toppare, L. Construction amperometric biosensing performance of a novel platform containing carbon nanotubes-zinc phthalocyanine a conducting polymer International. J. Biol. Macromol. 2017, 96, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Nyokong, T.; Antunes, E. Influence of nanoparticle materials on the photophysical behavior of phthalocyanines. Coord. Chem. Rev. 2013, 257, 2401–2418. [Google Scholar] [CrossRef]
- Zhong, J.-P.; Fan, Y.-J.; Wang, H.; Wang, R.-X.; Fan, L.-L.; Shen, X.-C.; Shi, Z.-J. Highly active Pt nanoparticles on nickel phthalocyanine functionalized graphene nanosheets for methanol electrooxidation. Electrochim. Acta 2013, 113, 653–660. [Google Scholar] [CrossRef]
- Mahyari, M.; Shaabani, A. Graphene oxide-iron phthalocyanine catalyzed aerobic oxidation of alcohols. Appl. Catal. A Gen. 2014, 469, 524–531. [Google Scholar] [CrossRef]
- Zhang, M.; Shao, C.; Guo, Z.; Zhang, Z.; Mu, J.; Zhang, P.; Cao, T.; Liu, Y. Highly Efficient Decomposition of Organic Dye by Aqueous-Solid Phase Transfer and In Situ Photocatalysis Using Hierarchical Copper Phthalocyanine Hollow Spheres. ACS Appl. Mater. Interfaces 2011, 3, 2573–2578. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.-Y.; Lv, G.-J.; Pu, T.; He, X.-Q.; Cui, L.-L. Iron(II) phthalocyanine covalently functionalized graphene as a highly efficient non-precious-metal catalyst for the oxygen reduction reaction in alkaline media. Electrochim. Acta 2013, 112, 269–278. [Google Scholar] [CrossRef]
- Hosu, I.S.; Wang, Q.; Vasilescu, A.; Peteu, S.F.; Raditoiu, V.; Railian, S.; Zaitsev, V.; Turcheniuk, K.; Wang, Q.; Li, M.; et al. Cobalt phthalocyanine tetracarboxylic acid modified reduced graphene oxide: A sensitive matrix for the electrocatalytic detection of peroxynitrite and hydrogen peroxide. RSC Adv. 2015, 5, 1474–1484. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, J.; Liu, B.; Griveau, S.; Bedioui, F. Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosens. Bioelectron. 2015, 66, 438–444. [Google Scholar] [CrossRef]
- Yang, K.; Wang, J.; Chen, X.; Zhao, Q.; Ghaffar, A.; Chen, B. Application of graphene-based materials in water purification: From the nanoscale to specific devices. Environ. Sci. Nano 2018, 5, 1264–1297. [Google Scholar] [CrossRef]
- Shahzad, T.; Nawaz, S.; Jamal, H.; Shahzad, T.; Akhtar, F.; Kamran, U. A Review on cutting-edge three-dimensional graphene-based composite materials: Redefining wastewater remediation for a cleaner and sustainable world. J. Compos. Sci. 2025, 9, 18. [Google Scholar] [CrossRef]
- Tiwary, S.K.; Singh, M.; Chavan, S.V.; Karim, A. Graphene oxide-based membranes for water desalination and purification. npj 2D Mater. Appl. 2024, 8, 27. [Google Scholar] [CrossRef]
- Mukherjee, M.; Ghorai, U.K.; Samanta, M.; Santra, A.; Das, G.P.; Chattopadhyay, K.K. Graphene wrapped copper phthalocyanine nanotube: Enhanced photocatalytic activity for industrial waste water treatment. Appl. Surf. Sci. 2017, 418, 156–162. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; López-Ramón, M.V.; Sánchez-Polo, M.; Álvarez, M.Á.; Velo-Gala, I. Characteristics and behavior of different catalysts used for water decontamination in photooxidation and ozonation processes (Rewiev). Catalysts 2020, 10, 1485. [Google Scholar] [CrossRef]
- Akash, S.; Sivaprakash, B.; Rajamohan, N.; Govarthanan, M.; Elakiya, B.T. Remediation of pharmaceutical pollutants using graphene-based materials—A review on operating conditions, mechanism and toxicology. Chemosphere 2022, 306, 135520. [Google Scholar]
- Olatunde, O.C.; Onwudiwe, D.C. Graphene-based composites as catalysts for the degradation of pharmaceuticals. Int. J. Environ. Res. Public Health 2021, 18, 1529. [Google Scholar] [CrossRef]
- Sumpter, J.P.; Johnson, A.C.; Runnalls, T.J. Pharmaceuticals in the aquatic environment: No answers yet to the major questions. Environ. Toxicol. Chem. 2024, 43, 589–594. [Google Scholar] [CrossRef]
- Dutta, S.; Adhikary, S.; Bhattacharya, S.; Roy, D.; Chatterjee, S.; Chakraborty, A.; Banerjee, D.; Ganguly, A.; Nanda, S.; Rajak, P. Contamination of textile dyes in aquatic environment: Adverse impacts on aquatic ecosystem and human health, and its management using bioremediation. J. Environ. Manag. 2024, 353, 120103. [Google Scholar] [CrossRef]
- Mani, V.; Devasenathipathy, R.; Chen, S.-M.; Gu, J.-A.; Huang, S.-T. Synthesis and characterization of graphene-cobalt phthalocyanines and graphene-iron phthalocyanine composites and their enzymatic fuel cell application. Renew. Energy 2015, 74, 867–874. [Google Scholar] [CrossRef]
- Zarrabi, M.; Haghighi, M.; Alizadeh, R. Sonoprecipitation dispersion of ZnO nanoparticles over graphene oxide used in photocatalytic degradation of methylene blue in aqueous solution: Influence of irradiation time and power. Ultrason. Sonochem. 2018, 48, 370–382. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Liu, S.-P.; Shao, X.-N. Noncovalent binding of xanthene and phthalocyanine dyes with graphene sheets: The effect of the molecular structure revealed by a photophysical study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 113, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.; Kaur, N.; Kaur, M.; Singh, P.P. Dual-Responsive Pectin/Graphene Oxide (Pc/GO) nano-composite as an efficient adsorbent for Cr (III) ions and photocatalyst for degradation of organic dyes in waste water. J. Photochem. Photobiol. A Chem. 2020, 403, 112841. [Google Scholar] [CrossRef]
- Gerasymchuk, Y.; Lukowiak, A.; Wedzynska, A.; Kedziora, A.; Bugla-Ploskonska, G.; Piatek, D.; Bachanek, T.; Chernii, V.; Tomachynski, L.; Strek, W. New photosensitive nanometric graphite oxide composites as antimicrobial material with prolonged action. J. Inorg. Biochem. 2016, 159, 142–148. [Google Scholar] [CrossRef]
- Lukowiak, A.; Gerasymchuk, Y.; Wedzynska, A.; Tahershamsi, L.; Tomala, R.; Strek, W.; Piatek, D.; Korona-Glowniak, I.; Speruda, M.; Kedziora, A.; et al. Light-activated zirconium(IV) phthalocyanine derivatives linked to graphite oxide flakes and discussion on their antibacterial activity. Appl. Sci. 2019, 9, 4447. [Google Scholar] [CrossRef]
- Tahershamsi, L.; Gerasymchuk, Y.; Wędzyńska, A.; Ptak, M.; Tretyakova, I.; Łukowiak, A. Synthesis, spectroscopic characterization and photoactivity of Zr(IV) phthalocyanines functionalized with aminobenzoic acid and their GO-based composites. J. Carbon Res. C 2020, 6, 1. [Google Scholar] [CrossRef]
- Gerasymchuk, Y.; Kędziora, A.; Wędzyńska, A.; Tahershamsi, L.; Chernii, V.; Tretyakova, I.; Chernii, S.; Pekhnyo, V.; Korona-Głowniak, I.; Malm, A.; et al. Composite based on graphite oxide, metallic silver and zirconium phthalocyanine coordinated by out-of-plane argininate ligands as photoactive antibacterial additive to endodontic cement. J. Photochem. Photobiol. A Chem. 2021, 418, 113432. [Google Scholar] [CrossRef]
- Gerasymchuk, Y.; Tahershamsi, L.; Tomala, R.; Wedzynska, A.; Chernii, V.; Tretyakova, I.; Korona-Glowniak, I.; Rajtar, B.; Malm, A.; Piatek, D.; et al. Composites based on graphite oxide and zirconium phthalocyanines with aromatic amino acids as photoactive materials. Chem. Pap. 2021, 75, 5421–5433. [Google Scholar] [CrossRef]
- Jurow, M.; Manichev, V.; Pabon, C.; Hageman, B.; Matolina, Y.; Drain, C.M. Self-organization of Zr(IV) porphyrinoids on graphene oxide surfaces by axial metal coordination. Inorg. Chem. 2013, 52, 10576–10582. [Google Scholar] [CrossRef]
- Farghaly, A.; Maher, E.; Gad, A.; El-Bery, H. Synergistic photocatalytic degradation of methylene blue using TiO2 composites with activated carbon and reduced graphene oxide: A kinetic and mechanistic study. Appl. Water. Sci. 2024, 14, 228. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A. Chemically derived luminescent graphene oxide nanosheets and its sunlight driven photocatalytic activity against methylene blue dye. Opt. Mat. 2016, 62, 320–327. [Google Scholar] [CrossRef]
- Neelgund, G.M.; Oki, A.; Luo, Z. ZnO and cobalt phthalocyanine hybridized graphene: Efficient photocatalysts for degra-dation of Rhodamine B. J. Colloid Interface S 2014, 430, 257–264. [Google Scholar] [CrossRef]
- Yin, M.; Pan, Y.; Pan, C. Adsorption properties of graphite oxide for Rhodamine B. Micro Nano Lett. 2019, 14, 1192–1197. [Google Scholar] [CrossRef]
- Majumdar, D. Sonochemically synthesized beta-cyclodextrin functionalized graphene oxide and its efficient role in adsorption of water soluble brilliant green dye. J. Environ. Anal. Toxicol. 2016, 6, 5. [Google Scholar] [CrossRef]
- Bu, J.; Yuan, L.; Ren, Y.; Lv, Y.; Meng, Y.; Peng, X. Enhanced removal of Eriochrome Black T in wastewater by zirconium-based MOF/graphene oxide. Can. J. Chem. 2019, 98, 90–97. [Google Scholar] [CrossRef]
- Gamelas, S.R.D.; Tomé, J.P.C.; Tomé, A.C.; Lourenço, L.M.O. Advances in photocatalytic degradation of organic pollutants in wastewaters: Harnessing the power of phthalocyanines and phthalocyanine-containing materials. RSC Adv. 2023, 13, 33957–33993. [Google Scholar] [CrossRef]
- Gerasymchuk, Y.S.; Volkov, S.V.; Chernii VYa Tomachynski, L.A.; Radzki, S. Synthesis and spectral properties of axially substituted zirconium (IV) and hafnium (IV) water soluble phthalocyanines in solutions. J. Alloys Compd. 2004, 380, 186–190. [Google Scholar] [CrossRef]
- Tomachynski, L.A.; Tretyakova, I.N.; Chernii VYa Volkov, S.V.; Kowalska, M.; Legendziewicz, J.; Gerasymchuk, Y.S.; Radzki, S. Synthesis and spectral properties of Zr(IV) and Hf(IV) phthalocyanines with β-diketonates as axial ligands. Inorg. Chim. Acta 2008, 361, 2569–2581. [Google Scholar] [CrossRef]
- Chunder, A.; Pal, T.; Khondaker, S.I.; Zhai, L. Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties. J. Phys. Chem. C 2010, 114, 15129–15135. [Google Scholar] [CrossRef]
- Kumar, S.; Kaur, N.; Sharma, A.K.; Mahajan, A.; Bedi, R.K. Improved Cl2 sensing characteristics of reduced graphene oxide when decorated with copper phthalocyanine nanoflowers. RSC Adv. 2017, 7, 25229. [Google Scholar] [CrossRef]
- Johra, F.T.; Lee, J.W.; Jung, W.G. Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 2014, 20, 2883–2887. [Google Scholar] [CrossRef]
- Gerasymchuk, Y.; Wędzyńska, A.; Stręk, W. Liquid “Syngas” based on supercritical water and graphite oxide/TiO2 composite as catalyst for CO2 to organic conversion. Catal. Lett. 2022, 152, 2840–2851. [Google Scholar] [CrossRef]
- Montes-Navajas, P.; Asenjo, N.G.; Santamaría, R.; Menéndez, R.; Corma, A.; García, H. Surface area measurement of graphene oxide in aqueous solutions. Langmuir 2013, 29, 13443–13448. [Google Scholar] [CrossRef] [PubMed]
- Aawani, E.; Memarian, N.; Dizaji, H.R. Synthesis and characterization of reduced graphene oxide–V2O5 nanocomposite for enhanced photocatalytic activity under different types of irradiation. J. Phys. Chem. Solids 2019, 125, 8–15. [Google Scholar] [CrossRef]
- Samanta, M.; Mukherjee, M.; Ghorai, U.K.; Sarkar, S.; Bose Ch Chattopadhyay, K.K. Ultrasound assisted catalytic degradation of textile dye under the presence of reduced Graphene Oxide enveloped Copper Phthalocyanine nanotube. Appl. Surf. Sci. 2018, 449, 113–121. [Google Scholar] [CrossRef]
- Marinescu, C.; Ali, M.B.; Hamdi, A.; Cherifi, Y.; Barras, A.; Coffinier, Y.; Somacescu, S.V.; Raditoiu Szunerits, S.; Bou-kherroub, R. Cobalt phthalocyanine-supported reduced graphene oxide: A highly efficient catalyst for heterogeneous activation of peroxymonosulfate for rhodamine B and pentachlorophenol degradation. Chem. Engin. J. 2018, 336, 465–475. [Google Scholar] [CrossRef]
- Szabó, T.; Tombácz, E.; Illés, E.; Dékány, I. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon 2006, 44, 537–545. [Google Scholar] [CrossRef]
- Avşar, G.; Sari, F.A.; Yuzer, A.C.; Soylu, H.M.; Er, O.; Ince, M.; Lambrecht, F.Y. Intracellular uptake and fluorescence imaging potential in tumor cell of zinc phthalocyanine. Int. J. Pharm. 2016, 505, 369–375. [Google Scholar] [CrossRef] [PubMed]







| Synthesis of PcZr-RGO | Averaged Chemical Composition (wt.%) (*) | ||
|---|---|---|---|
| C | O | Zr | |
| in DMSO | 82.4 | 16.1 | 1.5 |
| in TCB | 73.1 | 19.3 | 1.5 |
| Model Dye and Its Structural Formula | Dependence of Dyes’ Maximum Absorbance on Time Observed in the Dark (Black Line) and Under Irradiation (Red Line) | Adsorption (A) and Photodegradation (PD) [%] |
|---|---|---|
![]() Rhodamine B | ![]() | A—17% PD—25% |
![]() Methylene Blue | ![]() | A—7% PD—70% |
![]() Brilliant Green | ![]() | A—38% PD—88% |
![]() Eriochrome Black T | ![]() | A—44% PD—50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasymchuk, Y.; Wędzyńska, A.; Szymański, D.; Ptak, M.; Chernii, V.; Tretyakova, I.; Lukowiak, A. Synthesis, Structure, and Properties of Reduced Graphite Oxide Modified with Zirconium Phthalocyanine as a Catalyst for Photooxidation and Dye Photodegradation. Molecules 2025, 30, 4242. https://doi.org/10.3390/molecules30214242
Gerasymchuk Y, Wędzyńska A, Szymański D, Ptak M, Chernii V, Tretyakova I, Lukowiak A. Synthesis, Structure, and Properties of Reduced Graphite Oxide Modified with Zirconium Phthalocyanine as a Catalyst for Photooxidation and Dye Photodegradation. Molecules. 2025; 30(21):4242. https://doi.org/10.3390/molecules30214242
Chicago/Turabian StyleGerasymchuk, Yuriy, Anna Wędzyńska, Damian Szymański, Maciej Ptak, Viktor Chernii, Irena Tretyakova, and Anna Lukowiak. 2025. "Synthesis, Structure, and Properties of Reduced Graphite Oxide Modified with Zirconium Phthalocyanine as a Catalyst for Photooxidation and Dye Photodegradation" Molecules 30, no. 21: 4242. https://doi.org/10.3390/molecules30214242
APA StyleGerasymchuk, Y., Wędzyńska, A., Szymański, D., Ptak, M., Chernii, V., Tretyakova, I., & Lukowiak, A. (2025). Synthesis, Structure, and Properties of Reduced Graphite Oxide Modified with Zirconium Phthalocyanine as a Catalyst for Photooxidation and Dye Photodegradation. Molecules, 30(21), 4242. https://doi.org/10.3390/molecules30214242









