Modern Developing Directions in the Dihydroquercetin Study
Abstract
1. Introduction
2. General Properties of DHQ
2.1. Sources
2.2. Chemical Structure
- (1)
- The presence of an o-dihydroxyl structure in the B ring provides stability;
- (2)
- 5- and 7-OH groups with a 4-oxo function in the A and C rings are responsible for the maximum radical scavenging potential [35].
2.3. Solubility
2.4. Toxicity
3. Bioavailability of DHQ
| The Nanomaterial Type | The Composition of Nanomaterial | Experiments | Possible Application | Reference | |
|---|---|---|---|---|---|
| Nanoenzymes | DHQ-Fe in the presence of PVP (the activities of catalase and superoxide dismutase) | in vitro | in vivo | Ethanol-induced gastric ulcer treatment | [60] |
| DHQ-Cu-CS-nanozyme-based coatings | in vitro | Fruit preservation | [61] | ||
| Nanosuspension | DHQ-γ-cyclodextrin | in vitro | in vivo | New oral DHQ formulation | [47] |
| Nanoparticles | DHQ-PVP | in vitro | New oral DHQ formulation treatment | [62] | |
| DHQ prepared by liquid antisolvent precipitation | in vivo | New oral DHQ formulation | [57] | ||
| DHQ encapsulated in zein-caseinate | in vivo | New oral DHQ formulation | [58] | ||
| DHQ-loaded in polyethylene glycol-coated zinc oxide | in vivo | Cancer therapy | [59] | ||
| Nanocomposite membrane | CS-PVP-DHQ | in vivo | Treatment of UVA-induced skin injury | [63] | |
| Core–shell nanofiber membrane | Polycaprolactone and silk fibroin | in vitro | Antibacterial and antioxidant agent | [64] | |
| Liposome nanoparticles | hydroxypropylmethylcellulose-acetate succinate-DHQ-L | in vitro | in vivo | Reparation of liver injury | [69] |
| DHQ-L-CS | |||||
| Nanocomposite membrane with liposome nanoparticles | PVA/CS/DHQ-L | in vitro | in vivo | Diabetic wound treatment | [67] |
| Nanovesicles | Transfersomes supplemented with lecithin and Tween 80 in the presence and absence of cholesterol | in vitro | Delivery of DHQ to food ingredients | [42] | |
| Gel containing nanoparticles | DHQ-CS NPs-mucoadhesive thermosensitive gel | in vitro | in vivo | Amelioration of Alzheimer disease | [19] |
| Mesoporous whitlockite nanoparticles loaded with DHQ and encapsulated into gelatin methacryloyl hydrogel | in vitro | in vivo | Reparation of osteoporosis | [72] | |
| Gel containing liposome nanoparticles | PVA-carboxymethyl chitosan hydrogel with DHQ | in vitro | in vivo | Diabetic wound healing | [70] |
| DHQ-L modified with thiolated chitosan and loaded into hydrogel containing carboxymethyl chitosan and oxidized dextran | in vitro | in vivo | Reparation of skull defects | [71] | |
| Nanofibers | SA-PVA-DHQ | in vitro | in vivo | Diabetic wound healing | [65] |
| Amorphous nanostructured material | DHQ lyophilizates based on mixtures of water with ethanol or acetonitrile. | - | Pharmaceutical ingredient for injectable dosage form | [50] | |
4. Antibacterial Action of DHQ
5. Antiviral Action of DHQ
6. Anti-Age Effect of DHQ
7. Conclusions
- Optimization of nanotechnology-based formulations to improve solubility and controlled release;
- Deeper elucidation of DHQ’s molecular targets and pathways;
- Systematic toxicological assessments in specific disease models;
- DHQ-containing medications must be protected from environmental influences such as light, oxygen, and heat to maintain their effectiveness; research is needed to develop additives in formulations that can protect DHQ from degradation;
- Quantitative and reliable analysis of the DHQ stereoisomers is necessary for the development of safe and effective drugs and dietary supplements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, Y.; He, Y.; Wang, L.; Xu, H.; Zhang, Q.; Wang, Y.; Zhang, J.; Wang, L. Dihydroquercetin improves experimental acute liver failure by targeting ferroptosis and mitochondria-mediated apoptosis through the SIRT1/p53 axis. Phytomedicine 2024, 128, 155533. [Google Scholar] [CrossRef]
- Kondo, S.; Adachi, S.-I.; Yoshizawa, F.; Yagasaki, K. Antidiabetic Effect of Taxifolin in Cultured L6 Myotubes and Type 2 Diabetic Model KK-Ay/Ta Mice with Hyperglycemia and Hyperuricemia. Curr. Issues Mol. Biol. 2021, 43, 1293–1306. [Google Scholar] [CrossRef]
- Jain, S.; Vaidya, A. Comprehensive review on pharmacological effects and mechanism of actions of taxifolin: A bioactive flavonoid. Pharmacol. Res.–Mod. Chin. Med. 2023, 7, 100240. [Google Scholar] [CrossRef]
- Huang, M.; Xie, X.; Yuan, R.; Xin, Q.; Ma, S.; Guo, H.; Miao, Y.; Hu, C.; Zhu, Y.; Cong, W. The multifaceted anti-atherosclerotic properties of herbal flavonoids: A comprehensive review. Pharmacol. Res. 2025, 211, 107551. [Google Scholar] [CrossRef]
- Sarg, N.H.; Hersi, F.H.; Zaher, D.M.; Hamouda, A.O.; Ibrahim, S.I.; El-Seedi, H.R.; Omar, H.A. Unveiling the Therapeutic Potential of Taxifolin in Cancer: From Molecular Mechanisms to Immune Modulation and Synergistic Combinations. Phytomedicine 2024, 133, 155934. [Google Scholar] [CrossRef] [PubMed]
- Qazi, S.; Khanna, K.; Raza, K. Dihydroquercetin (DHQ) has the potential to promote apoptosis in ovarian cancer cells: An in silico and in vitro study. J. Mol. Struct. 2023, 1271, 134093. [Google Scholar] [CrossRef]
- Fu, Y.; Yuan, P.; Zeng, M.; Zhang, Q.; Hou, Y.; Gao, L.; Wei, Y.; Zheng, Y.; Feng, W.; Zheng, X. Dihydroquercetin regulates HIF-1α/AKT/NR2B signalling to improve impaired brain function in rats with metabolic syndrome. Heliyon 2024, 10, e29807. [Google Scholar] [CrossRef]
- Orlova, S.V.; Tatarinov, V.V.; Nikitina, E.A.; Sheremeta, A.V.; Ivlev, V.A.; Vasil’ev, V.G.; Paliy, K.V.; Goryainov, S.V. Molecular-biological problems of drug design and mechanism of drug action bioavailability and safety of dihydroquercetin (review). Pharm. Chem. J. 2022, 55, 11. [Google Scholar] [CrossRef]
- Das, A.; Baidya, R.; Chakraborty, T.; Samanta, A.K.; Roy, S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed. Pharmacother. 2021, 142, 112004. [Google Scholar] [CrossRef]
- Fomichev, Y.; Nikanova, L.; Lashin, A. The Effectiveness of Using Dihydroquercetin (Taxifolin) in Animal Husbandry, Poultry and Apiculture for Prevention of Metabolic Disorders, Higher Antioxidative Capacity, Better Resistence and Realisation of a Productive Potential of Organism. J. Int. Sci. Public Agric. Food 2016, 4, 140–159. [Google Scholar]
- Pirgozliev, V.; Mansbridge, S.C.; Whiting, I.M.; Arthur, C.; Rose, S.P.; Atanasov, A.G. Antioxidant status and growth performance of broiler chickens fed diets containing graded levels of supplementary dihydroquercetin. Res. Vet. Sci. 2021, 141, 63–65. [Google Scholar] [CrossRef]
- Yang, R.; Li, D.D.; Li, X.X.; Yang, X.X.; Gao, H.M.; Zhang, F. Dihydroquercetin alleviates dopamine neuron loss via regulating TREM2 activation. Int. J. Biol. Macromol. 2024, 269, 132179. [Google Scholar] [CrossRef]
- Mofikoya, O.O.; Eronen, E.; Makinen, M.; Janis, J. Production and Characterization of Hydrothermal Extracts of the Needles from Four Conifer Tree Species: Scots Pine, Norway Spruce, Common Juniper, and European Larch. ACS Sustain. Chem. Eng. 2023, 11, 1540–1547. [Google Scholar] [CrossRef]
- Muramatsu, D.; Uchiyama, H.; Kida, H.; Iwai, A. In vitro anti-inflammatory and anti-lipid accumulation properties of taxifolin-rich extract from the Japanese larch, Larix kaempferi. Heliyon 2020, 6, e05505. [Google Scholar] [CrossRef]
- Sunil, C.; Xu, B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry 2019, 166, 112066. [Google Scholar] [CrossRef]
- Gavrilov, A.B.; Goryainov, S.I.; Marinichev, A.A.; Gessler, N.N.; Klyayn, O.I.; Isakova, Y.P.; Deryabina, Y.I. Polyphenol Composition in the Samples from Russian Conifers. Khimiya Rastitel’nogo Syr’ya 2019, 2, 51–58. [Google Scholar]
- Awad, E.; Awaad, A.S.; Esteban, M.A. Effects of dihydroquercetin obtained from deodar (Cedrus deodara) on immune status of gilthead seabream (Sparus aurata L.). Fish Shellfish. Immunol. 2015, 43, 43–50. [Google Scholar] [CrossRef]
- Yang, C.-J.; Wang, Z.-B.; Mi, Y.-Y.; Gao, M.-J.; Lv, J.-N.; Meng, Y.-H.; Yang, B.-Y.; Kuang, H.-X. UHPLC-MS/MS Determination, Pharmacokinetic, and Bioavailability Study of Taxifolin in Rat Plasma after Oral Administration of its Nanodispersion. Molecules 2016, 21, 494. [Google Scholar] [CrossRef] [PubMed]
- Abou-Taleb, B.A.; El-Hadidy, W.F.; Masoud, I.M.; Matar, N.A.; Hussein, H.S. Dihydroquercetin nanoparticles nasal gel is a promising formulation for amelioration of Alzheimer’s disease. Int. J. Pharm. 2024, 666, 124814. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, B.S.; Waqas, M.K.; Saleem, S.; Yasin, H.; Kharaba, Z.; Murtaza, G. Rheumatoid arthritis treatment potential of stearic acid nanoparticles of quercetin in rats. ACS Omega 2024, 9, 7003–7011. [Google Scholar] [CrossRef] [PubMed]
- Nuralın, L. Investigation of ziziphus jujube seeds as a new source of taxifolin and silibinin with three different extraction methods. Microchem. J. 2024, 198, 110137. [Google Scholar] [CrossRef]
- Yu, Z.W.; Zhang, N.; Jiang, C.Y.; Wu, S.X.; Feng, X.Y.; Feng, X.Y. Exploring the genes involved in biosynthesis of dihydroquercetin and dihydromyricetin in Ampelopsis grossedentata. Sci Rep. 2021, 11, 15596. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, S.; Dong, Z.; Shan, X.; Zhou, J.; Zeng, W. De Novo Biosynthesis of Dihydroquercetin in Saccharomyces cerevisiae. J. Agric. Food Chem. 2024, 72, 19436. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yan, Z.; Xue, S.; Xiao, C.; Li, G.; Lou, W.; Huang, M. Optimizing the Biosynthesis of Dihydroquercetin from Naringenin in Saccharomyces cerevisiae. J. Agric. Food Chem. 2024, 72, 4880–4887. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Marsafari, M.; Koffas, M.; Zhou, J.; Xu, P. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis. ACS Synth. Biol. 2019, 8, 2514–2523. [Google Scholar] [CrossRef]
- Muhammad, A.; Feng, X.; Rasool, A.; Sun, W.; Li, C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol. Adv. 2020, 43, 107555. [Google Scholar] [CrossRef]
- He, Q.; Yue, M.; Liu, M.; Ren, X.; Wang, H.; Chen, J.; Xiang, J.; He, W.; Ye, S.; Gao, S.; et al. De novo biosynthesis of dihydroquercetin in an engineered Yarrowia lipolytica with enhanced (2S)-eriodictyol. Food Biosci. 2025, 64, 105912. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, M.; Wang, X.; Cheng, J.; Xiang, J.; Yue, M.; Ning, Y.; Shao, Z.; Abdullah, C.N.; Zhou, J. De Novo Synthesis of Reticuline and Taxifolin Using Re-engineered Homologous Recombination in Yarrowia lipolytica. ACS Synth. Biol. 2025, 14, 585–597. [Google Scholar] [CrossRef]
- Sui, Y.; Han, Y.; Qiu, Z.; Yan, B.; Zhao, G.-R. Heterologous Biosynthesis of Taxifolin in Yarrowia lipolytica: Metabolic Engineering and Genome-Scale Metabolic Modeling. Appl. Biochem. Biotechnol. 2025, 197, 2012–2034. [Google Scholar] [CrossRef]
- Dergacheva, D.I.; Klein, O.I.; Gessler, N.N.; Isakova, E.P.; Deryabina, Y.I.; Nikolaev, A.V. Influence of Natural Polyphenols on Isolated Yeast Dipodascus magnusii Mitochondria. Dokl. Biochem. Biophys. 2020, 490, 12–15. [Google Scholar] [CrossRef]
- Galato, D.; Ckless, K.; Susin, M.F.; Giacomelli, C.; Ribeiro-do-Valle, R.M.; Spinelli, A. Antioxidant capacity of phenolic and related compounds: Correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity. Redox Rep. 2001, 6, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Moura, F.C.S.; dos Santos Machado, C.L.; Paula, F.R.; Couto, A.G.; Ricci, M.; Cechinel-Filho, V.; Bonomini, T.J.; Sandjo, L.P.; Bresolin, T.M.B. Taxifolin stability: In silico prediction and in vitro degradation with HPLC-UV/UPLCeESI-MS monitoring. J. Pharm. Anal. 2021, 11, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial Effects of Flavonoids and Their Structure-Activity Relationship Study: A Comparative Interpretation. Molecules 2022, 57, 1149. [Google Scholar] [CrossRef] [PubMed]
- Rogozhin, V.V.; Peretolchin, D.V. Kinetic regulation of dihydroquercetin oxidation with horseradish peroxide. Russ. J. Bioorg. Chem. 2009, 35, 576–580. [Google Scholar] [CrossRef]
- Weidmann, A.E. Dihydroquercetin: More than just an impurity? Eur. J. Pharmacol. 2012, 684, 19–26. [Google Scholar] [CrossRef]
- Shubina, V.S.; Shatalin, Y.V. Antioxidant and iron-chelating properties of taxifolin and its condensation product with glyoxylic acid. J. Food Sci. Technol. 2017, 54, 1467–1475. [Google Scholar] [CrossRef]
- Petrushenko, I.K.; Ivanov, N.A. Non-covalent interactions between dihydroquercetin and arabinogalactan molecules: Theoretical study. Comput. Theor. Chem. 2023, 1230, 114394. [Google Scholar] [CrossRef]
- Balamurugan, S.; Vendan, S.E.; Aravinthan, A.; Kim, J.H. Isolation and structural characterization of 2R, 3R taxifolin 3-Orhamnoside from ethyl acetate extract of Hydnocarpus alpine and its hypoglycemic effect by attenuating hepatic key enzymes of glucose metabolism in streptozotocin-induced diabetic rats. Biochimie 2015, 111, 70–81. [Google Scholar] [CrossRef]
- Mbafor, J.T.; Fomum, Z.T.; Promsattha, R.; Sanson, D.R.; Tempestra, M.S. Isolation and characterization of taxifolin 6-C-glucoside from Garcinia epunctata. J. Nat. Prod. 1989, 52, 417–419. [Google Scholar] [CrossRef]
- Teles, Y.C.F.; Souza, M.S.R.; Souza, M.F.V. Sulphated Flavonoids: Biosynthesis, Structures, and Biological Activities. Molecules 2018, 23, 480. [Google Scholar] [CrossRef]
- Thuan, N.H.; Shrestha, A.; Trung, N.T.; Tatipamula, V.B.; Van Cuong, D.; Canh, N.X.; Van Giang, N.; Kim, T.S.; Sohng, J.K.; Dhakal, D. Advances in biochemistry and the biotechnological production of taxifolin and its derivatives. Biotechnol. Appl. Biochem. 2022, 69, 848–861. [Google Scholar] [CrossRef]
- Hasibi, F.; Nasirpour, A.; Varshosaz, J.; Garcia-Manrique, P.; Blanco-Lypez, M.C.; Gutierrez, G.; Matos, M. Formulation and Characterization of Taxifolin-Loaded Lipid Nanovesicles (Liposomes, Niosomes, and Transfersomes) for Beverage Fortification. Eur. J. Lipid Sci. Technol. 2019, 122, 1900105. [Google Scholar] [CrossRef]
- Karlina, M.V.; Pozharitskaya, O.N.; Shikov, A.N. Development and in vitro biopharmaceutical evaluation of a dihydroquercetin microemulsion. Pharm. Chem. J. 2009, 43, 352. [Google Scholar] [CrossRef]
- Fadeev, R.S.; Kaptsov, V.V.; Uminsky, A.A.; Akatov, V.S. Cytotoxic Effect of Dihydroquercetin and Its Derivatives in Liposomal Form and in the Form of Fat Nanoscale Emulsions. Biochem. Suppl. Ser. A 2011, 5, 45–50. [Google Scholar] [CrossRef]
- Li, J.; Dong, J.; Ouyang, J.; Cui, J.; Chen, Y.; Wang, F.; Wang, J. Synthesis, Characterization, Solubilization, Cytotoxicity and Antioxidant Activity of Aminomethylated Dihydroquercetin. Med. Chem. Commun. 2017, 8, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Zinchenko, V.P.; Kim, I.A.; Tarakhovskiĭ, I.S.; Bronnikov, G.E. Biological activity of water-soluble nanostructures of dihydroquercetin with cyclodextrins. Biophys. 2011, 56, 418–422. [Google Scholar] [CrossRef]
- Zu, Y.; Wu, W.; Zhao, X.; Li, Y.; Zhong, C.; Zhang, Y. The high water solubility of inclusion complex of taxifolin-γ-CD prepared and characterized by the emulsion solvent evaporation and the freeze drying combination method. Int. J. Pharm. 2014, 477, 148–158. [Google Scholar] [CrossRef]
- Rogovskii, V.S.; Matyushin, A.I.; Koroteev, A.M.; Koroteev, M.P.; Pozdeev, A.O.; Knyazev, V.V.; Shimanovsky, N.L. Antioxidant and anti-inflammatory activities of dihydroquercetin, its aminomethylated derivative, and their inclusion complexes with cyclodextrin. Pharm. Chem. J. 2021, 55, 778–780. [Google Scholar] [CrossRef]
- Selivanova, I.A.; Terekhov, R.P. Engineering of Dihydroquercetin Crystals. Pharm. Chem. J. 2020, 53, 1081–1085. [Google Scholar] [CrossRef]
- Terekhov, R.P.; Ilyasov, I.R.; Beloborodov, V.L.; Zhevlakova, A.K.; Pankov, D.I.; Dzuban, A.V.; Bogdanov, A.G.; Davidovich, G.N.; Shilov, G.V.; Utenyshev, A.N.; et al. Solubility Enhancement of Dihydroquercetin via “Green” Phase Modification. Int. J. Mol. Sci. 2022, 23, 15965. [Google Scholar] [CrossRef]
- Taldaev, R.P.; Terekhov, I.A.; Selivanova, D.I.; Pankov, M.N.; Anurova, I.Y.; Markovina, Z.; Cong, S.; Ma, Z.; Dong, F.; Yang, Y.; et al. Modification of taxifolin properties by spray drying. Sci. Pharm. 2022, 90, 67. [Google Scholar] [CrossRef]
- Hassan, M.A.; Tamer, T.M.; Valachová, K.; Omer, A.M.; El-Shafeey, M.; Mohy Eldin, M.S.; Šoltés, L. Antioxidant and antibacterial polyelectrolyte wound dressing based on chitosan/hyaluronan/phosphatidylcholine dihydroquercetin. Int. J. Biol. Macromol. 2021, 166, 18–31. [Google Scholar] [CrossRef]
- Schauss, A.G.; Tselyico, S.S.; Kuznetsova, V.A.; Yegorova, I. Toxicological and genotoxicity assessment of a dihydroquercetin-rich Dahurian larch tree (Larix gmelinii Rupr) extract (Lavitol). Int. J. Toxicol. 2015, 34, 162. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, K.; Ding, C.; Sun, S.; Zheng, Y.; Ding, Q.; Hong, B.; Liu, W. Fabrication of chitosan/PVP/dihydroquercetin nanocomposite film for in vitro and in vivo evaluation of wound healing. Int. J. Biol. Macromol. 2022, 206, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Kundrapu, D.B.; Rao, P.A.; Malla, R.R. Enhanced efficacy of quercetin and taxifolin encapsulated with pH-responsive injectable BSA hydrogel for targeting triple-negative breast cancer cells. Int. J. Biol. Macromol. 2025, 287, 138477. [Google Scholar] [CrossRef] [PubMed]
- Lakeev, A.P.; Yanovskaya, E.A.; Yanovsky, V.A.; Frelikh, G.A.; Andropov, M.O. Novel aspects of taxifolin pharmacokinetics: Dose proportionality, cumulative effect, metabolism, microemulsion dosage forms. J. Pharm. Biomed. Anal. 2023, 236, 115744. [Google Scholar] [CrossRef] [PubMed]
- Zu, Y.; Wu, W.; Zhao, X.; Li, Y.; Wang, W.; Zhong, C.; Zhang, Y.; Zhao, X. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. Int. J. Pharm. 2014, 471, 366–376. [Google Scholar] [CrossRef]
- Li, Y.; Su, H.; Wang, W.; Yinm, Z.; Li, J.; Yuan, E.; Zhang, Q. Fabrication of taxifolin loaded zein-caseinate nanoparticles and its bioavailability in rat. Food Sci. Hum. Wellness 2023, 12, 2306–2313. [Google Scholar] [CrossRef]
- Sundraraman, G.; Jayakumari, L.S. Meticulous taxifolin releasing performance by the zinc oxide nanoparticles: As a short road to drug delivery system for cancer therapeutics. J. Clust. Sci. 2020, 31, 241–255. [Google Scholar] [CrossRef]
- Luo, F.; Zhu, B.; Wang, X.; Chen, T.; Chen, L.; Wu, D.; Du, Y.; Hu, J. Taxifolin-iron nanozymes with excellent RONS scavenging ability for alleviating ethanol-induced gastric ulcer. Mater. Today Nano 2024, 28, 100513. [Google Scholar] [CrossRef]
- Luo, F.; Wang, X.; Tian, W.; Zhu, B.; Hu, J. Multifunctional CuTax nanozyme-based chitosan edible coatings for fruit preservation. Int. J. Biol. Macromol. 2025, 310, 143204. [Google Scholar] [CrossRef]
- Shikov, A.N.; Pozharitskaya, O.N.; Sabiruddin Mirza, I.M.; UrakovaIrina, N.; Hirsjarvi, S.; Makarov, V.G.; Heinamaki, J.; Yliruusi, J.; Hiltunenc, R. Nanodispersions of taxifolin: Impact of solid-state propertieson dissolution behavior. Int. J. Pharm. 2009, 377, 148–152. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y.; Hong, B.; Ma, L.; Zhao, Y.; Zhang, S.; Sun, S.; Ding, Q.; Wang, Y.; Liu, W.; et al. Dihydroquercetin composite nanofibrous membrane prevents UVA radiation-mediated inflammation, apoptosis and oxidative stress by modulating MAPKs/Nrf2 signaling in human epidermal keratinocytes. Biomed. Pharmacother. 2022, 155, 113727. [Google Scholar] [CrossRef]
- Jiao, K.; Sun, M.; Jia, W.; Liu, Y.; Wang, S.; Yang, Y.; Dai, Z.; Liu, L.; Cheng, Z.; Liu, G.; et al. The polycaprolactone and silk fibroin nanofibers with Janus-structured sheaths for antibacterial and antioxidant by loading Taxifolin. Heliyon 2024, 10, e33770. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ding, C.; Zhao, Y.; Zhang, J.; Ding, Q.; Zhang, S.; Wang, N.; Yang, J.; Xi, S.; Zhao, T.; et al. Sodium alginate/poly(vinyl alcohol)/taxifolin nanofiber mat promoting diabetic wound healing by modulating the inflammatory response, angiogenesis, and skin flora. Int. J. Biol. Macromol. 2023, 252, 126530. [Google Scholar] [CrossRef] [PubMed]
- Naumov, A.A.; Potselueva, M.M. Liposomal form of dihydroquercetin contributes to skin regeneration after thermal burns. Cell Tissue Biol. 2010, 4, 240. [Google Scholar] [CrossRef]
- Ding, Q.; Ding, C.; Liu, X.; Zheng, Y.; Zhao, Y.; Zhang, S.; Sun, S.; Peng, Z.; Liu, W. Preparation of nanocomposite membranes loaded with taxifolin liposome and its mechanism of wound healing in diabetic mice. Int. J. Biol. Macromol. 2023, 241, 124537. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, Q.; He, Q.; Zu, T.; Rong, Z.; Wu, Y.; Shmanai, V.V.; Jiao, J.; Zheng, R. Reno protective potential of taxifolin liposomes modified by chitosan in diabetic mice. Int. J. Biol. Macromol. 2025, 30, 6141464. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, K.; Liu, X.; Ding, C.; Zhao, Y.; Sun, S.; Zhang, Y.; Zhang, J.; Liu, S.; Liu, W. Modification of taxifolin particles with an enteric coating material promotes repair of acute liver injury in mice through modulation of inflammation and autophagy signaling pathway. Biomed. Pharmacother. 2022, 152, 113242. [Google Scholar] [CrossRef]
- Ding, Q.; Liu, X.; Liu, X.; Chai, G.; Wang, N.; Ma, S.; Zhang, L.; Zhang, S.; Yang, J.; Wang, Y.; et al. Polyvinyl alcohol/carboxymethyl chitosan-based hydrogels loaded with taxifolin liposomes promote diabetic wound healing by inhibiting inflammation and regulating autophagy. Int. J. Biol. Macromol. 2024, 263 Pt 1, 130226. [Google Scholar] [CrossRef]
- Ding, Q.; Liu, W.; Zhang, S.; Sun, S.; Yang, J.; Zhang, L.; Wang, N.; Ma, S.; Chai, G.; Shen, L.; et al. Hydrogel loaded with thiolated chitosan modified taxifolin liposome promotes osteoblast proliferation and regulates Wnt signaling pathway to repair rat skull defects. Carbohydr. Polym. 2024, 336, 122115. [Google Scholar] [CrossRef]
- Jiang, J.; Cai, C.; Li, S.; Xiong, Y.; Liu, C.; Shu, Z.; Yang, J.; Zheng, M.; Tang, T.; Liu, W.; et al. Triple-effect strategy with taxifolin-whitlockite nanoparticles embedded hydrogel for osteoporotic bone defect repair and bone homeostasis modulation. Chem. Eng. J. 2025, 515, 163133. [Google Scholar] [CrossRef]
- Hernandez-Bautista, M.; Gutiérrez, T.J.; Tovar, J.; Bello-Pérez, L.A. Effect of starch structuring and processing on the bioaccessibility of polyphenols in starchy foodstuffs: A review. Food Res. Int. 2025, 208, 116199. [Google Scholar] [CrossRef]
- Sahraeian, S.; Rashidinejad, A.; Golmakani, M.-T. Recent advances in the conjugation approaches for enhancing the bioavailability of polyphenols. Food Hydrocoll. 2024, 146, 109221. [Google Scholar] [CrossRef]
- Artem’eva, O.A.; Pereselkova, D.A.; Fomichev, Y.P. Dihydroquercetin, the bioactive substance, to be used against pathogenic microorganisms as an alternative to antibiotics. Agric. Biol. 2015, 50, 513. [Google Scholar] [CrossRef][Green Version]
- Yang, D.; Zhu, R.; Xu, H.-X.; Zhang, Q.-F. Antibacterial Mechanism of Taxifolin and its Application in Milk Preservation. Food Biosci. 2023, 53, 102811. [Google Scholar] [CrossRef]
- Shevelev, A.B.; Isakova, E.P.; Trubnikova, E.V.; La Porta, N.; Martens, S.; Medvedeva, O.A.; Trubnikov, D.V.; Akbaev, R.M.; Biryukova, Y.K.; Zylkova, M.V.; et al. A study of antimicrobial activity of polyphenols derived from wood. Bull. RSMU 2018, 4, 46–49. [Google Scholar] [CrossRef]
- Kozhikkadan Davis, C.; Nasla, K.; Anjana, A.K.; Rajanikant, G.K. Taxifolin as dual inhibitor of Mtb DNA gyrase and isoleucyl-tRNA synthetase: In silico molecular docking, dynamics simulation and in vitro assays. Silico Pharmacol. 2018, 6, 8. [Google Scholar] [CrossRef]
- Jeong, K.W.; Lee, J.Y.; Kang, D.I.; Lee, J.U.; Shin, S.Y.; Kim, Y. Screening of flavonoids as candidate antibiotics against Enterococcus faecalis. J. Nat. Prod. 2009, 72, 719–724. [Google Scholar] [CrossRef]
- Oh, E.; Jeon, B. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds. Front. Microbiol. 2015, 6, 1129. [Google Scholar] [CrossRef]
- Wang, L.; Wang, G.; Qu, H.; Wang, K.; Jing, S.; Guan, S.; Su, L.; Li, Q.; Wang, D. Taxifolin, an inhibitor of sortase a, interferes with the adhesion of methicillin-resistant Staphylococcal aureus. Front. Microbiol. 2021, 12, 686864. [Google Scholar] [CrossRef]
- Hou, X.; Wang, M.; Wen, Y.; Ni, T.; Guan, X.; Lan, L.; Zhang, N.; Zhang, A.; Yang, C.G. Quinone skeleton as a new class of irreversible inhibitors against Staphylococcus aureus sortase A. Bioorg. Med. Chem. Lett. 2018, 28, 1864–1869. [Google Scholar] [CrossRef] [PubMed]
- Abid, N.A.; Hamad, E.M.; Ibragim, M.A.; Abid, H. Antibacterial and antibiofilm activities of taxifolin against vancomycin-resistant S. aureus (VRSA). Baghdad J. Biochem. Appl. Biol. Sci. 2022, 3, 262. [Google Scholar] [CrossRef]
- Kuspradini, H.; Mitsunaga, T.; Ohashi, H. Antimicrobial activity against Streptococcus sobrinus and glucosyltransferase inhibitory activity of taxifolin and some flavanonol rhamnosides from kempas (Koompassia malaccensis) extracts. J. Wood Sci. 2009, 55, 308. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, S.; Chi, Y.; Fu, D.; Yao, L.; Ji, M.; Jiang, L.; Han, Q.; Zou, L. Preventive effects of taxifolin on dental caries in vitro and in vivo. Arch. Oral Biol. 2025, 172, 106174. [Google Scholar] [CrossRef]
- Hou, J.; Hu, M.; Zhang, L.; Gao, Y.; Ma, L.; Xu, Q. Dietary taxifolin protects against dextran sulfate sodium-induced colitis via NF-κB signaling, enhancing intestinal barrier and modulating gut microbiota. Front. Immunol. 2021, 11, 631809. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Xu, Q.; Yang, W.; Zhao, J.; Ren, Y.; Yu, Z.; Ma, L. Taxifolin alleviates DSS-induced ulcerative colitis by acting on gut microbiome to produce butyric acid. Nutrients 2022, 14, 1069. [Google Scholar] [CrossRef]
- Yang, D.; Li, M.M.; Xu, H.X.; Wang, W.J.; Yin, Z.P.; Zhang, Q.F. Retrograded starch as colonic delivery carrier of taxifolin for treatment of DSS-induced ulcerative colitis in mice. Int. J. Biol. Macromol. 2025, 288, 138602. [Google Scholar] [CrossRef]
- Wang, L.; Hu, R.; Ma, S.; Yang, X.; Gong, J.; Xiang, H.; Shi, M.; Yuan, X.; Chen, L.; Zhang, H.; et al. Dihydroquercetin attenuated Prevotella copri-caused intestinal injury by modulating gut microbiota and bile acids in weaned piglets. Anim. Nutr. 2025, 20, 303. [Google Scholar] [CrossRef]
- Stenger Moura, F.C.; Cechinel-Filho, V.; Greco, F.A.; Venzon, L.; Meurer, M.C.; França, T.C.D.S.; Longo, B.; Somensi, L.B.; Mariano, L.N.B.; Cruz, A.; et al. Taxifolin and gastro-adhesive microparticles containing taxifolin promotes gastric healing in vivo, inhibits Helicobacter pylori in vitro and proton pump reversibly in silico. Chem. Biol. Interact. 2021, 339, 109445. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, X.; Tian, Y.; Zhai, S.; Liu, Y.; Xiong, Z.; Chu, S. An insight into novel therapeutic potentials of taxifolin. Front. Pharmacol. 2023, 14, 1173855. [Google Scholar] [CrossRef]
- Zhu, Y.; Scholle, F.; Kisthardt, S.C.; Xie, D.Y. Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E. Virology 2022, 571, 21. [Google Scholar] [CrossRef]
- Castro e Silva, J.H.; Souza, J.T.; Schitine, C.; Júnior, A.d.F.S.; Bastos, E.M.S.; Costa, S.L. Pharmacological Potential of Flavonoids against Neurotropic Viruses. Pharmaceuticals 2022, 15, 1149. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, Y.; Chen, X.; Li, Y.; Kang, L.; Liu, Y. The antiviral properties of flavonoids. CTMP 2025, 6, 200192. [Google Scholar] [CrossRef]
- Galochkina, A.V.; Anikin, V.B.; Babkin, V.A.; Ostrouhova, L.A.; Zarubaev, V.V. Virus-inhibiting activity of dihydroquercetin, a flavonoid from Larix sibirica, against coxsackievirus B4 in a model of viral pancreatitis. Arch. Virol. 2016, 161, 929. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Sellner, M.; Neranjan, S.; Smieško, M.; Lill, M.A. Potential inhibitors for novel coronavirus protease identified by virtual screening of 606 million compounds. Int. J. Mol. Sci. 2020, 21, 3626. [Google Scholar] [CrossRef]
- Gogoi, N.; Chowdhury, P.; Goswami, A.K.; Das, A.; Chetia, D.; Gogoi, B. Computational guided identification of a citrus flavonoid as potential inhibitor of SARSCoV-2 main protease. Mol. Divers. 2021, 25, 1745. [Google Scholar] [CrossRef]
- Al-Karmalawy, A.A.; Farid, M.M.; Mostafa, A.; Ragheb, A.Y.; Mahmoud, H.S.; Shehata, M.; Abo Shama, N.M.; GabAllah, M.; Mostafa-Hedeab, G.; Marzouk, M.M. Naturally available flavonoid aglycones as potential antiviral drug candidates against SARS-CoV-2. Molecules 2021, 26, 6559. [Google Scholar] [CrossRef]
- Yang, X.; He, Z.; Zheng, Y.; Wang, N.; Mulinge, M.; Schmit, J.-C.; Steinmetz, A.; Seguin-Devaux, C. Chemical Constituents of Cassia abbreviata and Their Anti-HIV-1 Activity. Molecules 2021, 26, 2455. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, X.-W.; Schols, D.; Mori, M.; Botta, B.; Chevigné, A.; Mulinge, M.; Steinmetz, A.; Schmit, J.-C.; Seguin-Devaux, C. Active Components from Cassia abbreviata Prevent HIV-1 Entry by Distinct Mechanisms of Action. Int. J. Mol. Sci. 2021, 22, 5052. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499. [Google Scholar] [CrossRef]
- Cheng, Y.W.; Liu, J.; Finkel, T. Mitohormesis. Cell Metab. 2023, 35, 1872. [Google Scholar] [CrossRef]
- Pusev, M.S.; Klein, O.I.; Gessler, N.N.; Bachurina, G.P.; Filippovich, S.Y.; Isakova, E.P.; Deryabina, Y.I. Effect of Dihydroquercetin During Long-Last Growth of Yarrowia lipolytica Yeast: Anti-Aging Potential and Hormetic Properties. Int. J. Mol. Sci. 2024, 25, 12574. [Google Scholar] [CrossRef] [PubMed]
- Dergacheva, D.I.; Mashkova, A.A.; Isakova, E.P.; Gessler, N.N.; Deryabina, Y.I. Influence of Resveratrol and Dihydroquercetin on Physiological and Biochemical Parameters of Poly-Extremophile Yarrowia lipolytica Yeast at Temperature Stress. Appl. Biochem. Microbiol. 2019, 55, 152. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhao, Y.C.; Zhu, H.Y.; Wu, M.; Zheng, Y.N.; Yang, M.; Cheng, Z.Q.; Ding, C.B.; Liu, W.C. Taxifolin retards the D-galactose-induced aging process through inhibiting Nrf2-mediated oxidative stress and regulating the gut microbiota in mice. Food Funct. 2021, 12, 12142. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.M.; Pedrosa, S.S.; Kirkland, J.L.; Reis, F.; Madureira, A.R. The senotherapeutic potential of phytochemicals for age-related intestinal disease. Ageing Res. Rev. 2025, 104, 102619. [Google Scholar] [CrossRef]
- Liu, X.L.; Zu, S.; Yue, H.; Li, A.N.; Sun, P.P.; Li, J.G.; Yan, L.; Ma, L.-N.; Zhang, S. Taxifolin ameliorates the D-galactose-induced aging of mouse hippocampal neurons HT-22 cells through modulating SIRT1/p53 and PI3K/AKT signaling pathways. J. Asian Nat. Prod. Res. 2024, 27, 615. [Google Scholar] [CrossRef]
- Xie, X.; Feng, J.; Kang, Z.; Zhang, S.; Zhang, L.; Zhang, Y.; Li, X.; Tang, Y. Taxifolin protects RPE cells against oxidative stress-induced apoptosis. Mol. Vis. 2017, 23, 520–528. [Google Scholar]

| Item | Bacteria | Reference |
|---|---|---|
| Inhibition of pathogenic bacteria | Esherichia coli and Staphylococccus aureus | [76] |
| S. aureus | [77] | |
| Mycobacterium tuberculosis | [78] | |
| Enterococcus faecalis | [79] | |
| Streptococcus sorbinus | [84] | |
| Streptococcus mutans | [85] | |
| Helicobacter pilori | [90] | |
| Inhibition of antibiotic-resistant bacteria | Methicillin-resistant S. aureus (MRSA) | [81] |
| S. aureus | [82] | |
| vancomycin-resistant S. aureus (VRSA) | [83] | |
| Alternative to antibiotics | Staphylococcus epidermidis, Micrococcus lysodeicticus, E. coli and Pseudomonas aeruginosa | [75] |
| Synergistic activity with antibiotics | Campilobacter jejuni + ciprofloxacin and erythromycin | [80] |
| Normalization of the gut bacterial microflora | Clostridium spp. | [86] |
| Akkermansia, Lactobacillus, and Bacteroides | [87] | |
| Lachnospiraceae | [89] | |
| Prevotella copri | [89] |
| Virus | Possible Mechanism of Action | Reference |
|---|---|---|
| Coxsackie virus (enterovirus) | Direct antiviral action against the definite viral protein; alteration of ROS-mediated signals/metabolic reactions in viral replication; reduction in ROS levels in inflammatory tissues | [95] |
| SARS-CoV-2 (coronavirus) | Inhibition of Mpro essential for viral replication | [92,97,98] |
| HIV (retrovirus) | Prevention of the HIV-1 entry in different types of human cells | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filippovich, S.Y.; Isakova, E.P.; Bachurina, G.P.; Deryabina, Y.I. Modern Developing Directions in the Dihydroquercetin Study. Molecules 2025, 30, 4187. https://doi.org/10.3390/molecules30214187
Filippovich SY, Isakova EP, Bachurina GP, Deryabina YI. Modern Developing Directions in the Dihydroquercetin Study. Molecules. 2025; 30(21):4187. https://doi.org/10.3390/molecules30214187
Chicago/Turabian StyleFilippovich, Svetlana Yu., Elena P. Isakova, Galina P. Bachurina, and Yulia I. Deryabina. 2025. "Modern Developing Directions in the Dihydroquercetin Study" Molecules 30, no. 21: 4187. https://doi.org/10.3390/molecules30214187
APA StyleFilippovich, S. Y., Isakova, E. P., Bachurina, G. P., & Deryabina, Y. I. (2025). Modern Developing Directions in the Dihydroquercetin Study. Molecules, 30(21), 4187. https://doi.org/10.3390/molecules30214187

