Conformational Analysis of 3-Indoleacetamide: Unveiling Structural Rigidity in the Tryptophan-Derived Bioactive Molecule Family
Abstract
1. Introduction
2. Results and Discussion
2.1. Conformational Space
2.2. Rotational Spectrum and Conformational Identification
2.3. The Acetamide N-H•••π Interaction
2.4. Conformational Complexity Across the Tryptophan Family
2.5. Structure-Function Relationships
3. Materials and Methods
3.1. Experimental Methods
3.2. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sainio, E.L.; Pulkki, K.; Young, S.N. L-Tryptophan: Biochemical, nutritional and pharmacological aspects. Amino Acids 1996, 10, 21–47. [Google Scholar] [CrossRef]
- Richard, D.M.; Dawes, M.A.; Mathias, C.W.; Acheson, A.; Hill-Kapturczak, N.; Dougherty, D.M. L-tryptophan: Basic metabolic functions, behavioral research and therapeutic indications. Int. J. Tryptophan Res. 2009, 2, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.N.; Singh, R.B.; Buttar, H.S. Biochemical and dietary functions of tryptophan and its metabolites in human health. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Academic Press: San Diego, CA, USA, 2021; pp. 783–798. ISBN 9780128198155. [Google Scholar]
- Fernstrom, J.D. Role of precursor availability in control of monoamine biosynthesis in brain. Physiol. Rev. 1983, 63, 484–546. [Google Scholar] [CrossRef] [PubMed]
- Barik, S. The uniqueness of tryptophan in biology: Properties, metabolism, interactions and localization in proteins. Int. J. Mol. Sci. 2020, 21, 8776. [Google Scholar] [CrossRef]
- Nonhebel, H.M. Tryptophan-independent indole-3-acetic acid synthesis: Critical evaluation of the evidence. Plant Physiol. 2015, 169, 1001–1005. [Google Scholar] [CrossRef]
- Zhao, Y. Auxin biosynthesis: A simple two-step pathway converts tryptophan to indole-3-Acetic acid in plants. Mol. Plant 2012, 5, 334–338. [Google Scholar] [CrossRef]
- Leyser, O. Molecular genetics of auxin signaling. Annu. Rev. Plant Biol. 2002, 53, 377–398. [Google Scholar] [CrossRef]
- Leyser, O. Auxin signaling. Plant Physiol. 2018, 176, 465–479. [Google Scholar] [CrossRef]
- Mano, Y.; Nemoto, K. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 2012, 63, 2853–2872. [Google Scholar] [CrossRef] [PubMed]
- Robertson, E.G.; Simons, J.P. Getting into shape: Conformational and supramolecular landscapes in small biomolecules and their hydrated clusters. Phys. Chem. Chem. Phys. 2001, 3, 1–18. [Google Scholar] [CrossRef]
- De Vries, M.S.; Hobza, P. Gas-Phase Spectroscopy of Biomolecular Building Blocks DFT: Density-functional theory. Annu. Rev. Phys. Chem. 2007, 58, 585–612. [Google Scholar] [CrossRef] [PubMed]
- Oomens, J.; Steill, J.D.; Redlich, B. Gas-Phase IR of Deprotonated Amino Acids. J. Am. Chem. Soc. 2009, 131, 4310–4319. [Google Scholar] [CrossRef]
- Caminati, W. Nucleic Acid Bases in the Gas Phase. Angew. Chem. Int. Ed. 2009, 48, 9030–9033. [Google Scholar] [CrossRef]
- Alonso, E.R.; León, I.; Alonso, J.L. The role of the intramolecular interactions in the structural behavior of biomolecules: Insights from rotational spectroscopy. In Intra- and Intermolecular Interactions Between Non-Covalently Bonded Species; Elsevier: Amsterdam, The Netherlands, 2021; pp. 93–141. [Google Scholar]
- Alonso, J.L.; López, J.C. Microwave Spectroscopy of Biomolecular Building Blocks. In Encyclopedia of Signaling Molecules; Springer: Berlin/Heidelberg, Germany, 2015; pp. 2–4. [Google Scholar]
- León, I.; Alonso, E.R.; Mata, S.; Cabezas, C.; Alonso, J.L. Unveiling the Neutral Forms of Glutamine. Angew. Chem. Int. Ed. 2019, 58, 16002–16007. [Google Scholar] [CrossRef]
- Alonso, J.L.; Cortijo, V.; Mata, S.; Pérez, C.; Cabezas, C.; López, J.C.; Caminati, W. Nuclear quadrupole coupling interactions in the rotational spectrum of tryptamine. J. Mol. Spectrosc. 2011, 269, 41–48. [Google Scholar] [CrossRef]
- Cabezas, C.; Varela, M.; Peña, I.; López, J.C.; Alonso, J.L. The microwave spectrum of neurotransmitter serotonin. Phys. Chem. Chem. Phys. 2012, 14, 13618–13623. [Google Scholar] [CrossRef]
- Wilke, M.; Brand, C.; Wilke, J.; Schmitt, M. The conformational space of the neurotransmitter serotonin: How the rotation of a hydroxyl group changes all. Phys. Chem. Chem. Phys. 2016, 18, 13538–13545. [Google Scholar] [CrossRef]
- Sanz, M.E.; Cabezas, C.; Mata, S.; Alonso, J.L. Rotational spectrum of tryptophan. J. Chem. Phys. 2014, 140, 204308. [Google Scholar] [CrossRef] [PubMed]
- Snoek, L.C.; Kroemer, R.T.; Hockridge, M.R.; Simons, J.P. Conformational landscapes of aromatic amino acids in the gas phase: Infrared and ultraviolet ion dip spectroscopy of tryptophan. Phys. Chem. Chem. Phys. 2001, 3, 1819–1826. [Google Scholar] [CrossRef]
- Rizzo, T.R.; Park, Y.D.; Peteanu, L.A.; Levy, D.H. The electronic spectrum of the amino acid tryptophan in the gas phase. J. Chem. Phys. 1986, 84, 2534–2541. [Google Scholar] [CrossRef]
- Piuzzi, F.; Dimicoli, I.; Mons, M.; Tardivel, B.; Zhao, Q. A simple laser vaporization source for thermally fragile molecules coupled to a supersonic expansion: Application to the spectroscopy of tryptophan. Chem. Phys. Lett. 2000, 320, 282–288. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian; Gaussian 09 Rev. D01.; Gaussian, Inc.: Wallingford, CT, USA, 2012; Available online: http://www.gaussian.com (accessed on 13 July 2025).
- Mata, S.; Pena, I.; Cabezas, C.; López, J.C.; Alonso, J.L. A broadband Fourier-transform microwave spectrometer with laser ablation source: The rotational spectrum of nicotinic acid. J. Mol. Spectrosc. 2012, 280, 91–96. [Google Scholar] [CrossRef]
- Peña, I.; Cabezas, C.; Alonso, J.L. The nucleoside uridine isolated in the gas phase. Angew. Chem. Int. Ed. 2015, 54, 2991–2994. [Google Scholar] [CrossRef]
- Plusquellic, D.F. JB95 Spectral Fitting Program|NIST. Available online: https://www.nist.gov/services-resources/software/jb95-spectral-fitting-program (accessed on 16 June 2025).
- Kisiel, Z. Software Packages for Broadband High-Resolution Spectroscopy. Available online: http://www.ifpan.edu.pl/~kisiel/prospe.htm (accessed on 16 June 2025).
- Kisiel, Z. PROSPE—Programs for ROtational SPEctroscopy. Available online: http://www.ifpan.edu.pl/~kisiel/prospe.htm (accessed on 16 June 2025).
- Kisiel, Z.; Pszczółkowski, L.; Medvedev, I.R.; Winnewisser, M.; De Lucia, F.C.; Herbst, E. Rotational spectrum of trans-trans diethyl ether in the ground and three excited vibrational states. J. Mol. Spectrosc. 2005, 233, 231–243. [Google Scholar] [CrossRef]
- Pickett, H.M. The fitting and prediction of vibration-rotation spectra with spin interactions. J. Mol. Spectrosc. 1991, 148, 371–377. [Google Scholar] [CrossRef]
- Grabow, J.U.; Stahl, W.; Dreizler, H. A multioctave coaxially oriented beam-resonator arrangement Fourier-transform microwave spectrometer. Rev. Sci. Instrum. 1996, 67, 4072–4084. [Google Scholar] [CrossRef]
- León, I.; Alonso, E.R.; Mata, S.; Cabezas, C.; Rodríguez, M.A.; Grabow, J.-U.; Alonso, J.L. The role of amino acid side chains in stabilizing dipeptides: The laser ablation Fourier transform microwave spectrum of Ac-Val-NH2. Phys. Chem. Chem. Phys. 2017, 19, 24985–24990. [Google Scholar] [CrossRef]
- Nygaard, U.; Nielsen, J.T.; Kirchheiner, J.; Maltesen, G.; Rastrup-Andersen, J.; Sørensen, G.O. Microwave spectra of isotopic pyrroles. Molecular structure, dipole moment, and 14N quadrupole coupling constants of pyrrole. J. Mol. Struct. 1969, 3, 491–506. [Google Scholar] [CrossRef]
- Arnold, W.; Dreizler, H.; Rudolph, H.D. Mikrowellenspektrum, Hinderungspotential der internen Rotation, Dipolmoment und Quadrupolkopplungskonstanten des N-Methylpyrrols1. Z. Naturforsch. Sect. A J. Phys. Sci. 1968, 23, 301–306. [Google Scholar] [CrossRef]
- Sørensen, G.O. Centrifugal distortion analysis of microwave spectra of asymmetric top molecules. The microwave spectrum of pyridine. J. Mol. Spectrosc. 1967, 22, 325–346. [Google Scholar] [CrossRef]
- Suenram, R.D.; Lovas, F.J.; Fraser, G.T. Microwave spectrum and 14N quadrupole coupling constants of indole. J. Mol. Spectrosc. 1988, 127, 472–480. [Google Scholar] [CrossRef]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.P.; Beratan, D.N.; Yang, W. NCIPLOT: A program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Schrödinger, LLC. Schrödinger Release 2018-3: Maestro Schrödinger; Schrödinger, LLC: New York, NY, USA, 2018. [Google Scholar]
- Schwabe, T.; Grimme, S. Double-hybrid density functionals with long-range dispersion corrections: Higher accuracy and extended applicability. Phys. Chem. Chem. Phys. 2007, 9, 3397–3406. [Google Scholar] [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Møller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Density functionals for noncovalent interaction energies of biological importance. J. Chem. Theory Comput. 2007, 3, 289–300. [Google Scholar] [CrossRef]
Parameters | Rot I | B3LYP-D3BJ | MP2 | B2PLYP-D3BJ | |
---|---|---|---|---|---|
LA-CP-FTMW | LA-MB-FTMW | ||||
A 1 | 1522.17866 (93) 7 | 1522.1819 (15) 7 | 1514 | 1445 | 1487 |
B | 565.86458 (37) | 565.86416 (38) | 567 | 592 | 574 |
C | 456.92186 (43) | 456.92042 (55) | 457 | 469 | 460 |
μa 2 | Observed | Observed | −4.2 | −3.8 | −4.0 |
μb | Observed | Observed | −3.2 | 3.6 | 3.5 |
μc | Observed | Observed | 1.9 | 1.7 | 1.9 |
χaa,r 3 | 1.446 (24) | 1.4386 (66) | 1.56 | 1.44 | 1.52 |
χbb,r | 1.608 (23) | 1.5938 (64) | 1.86 | 1.73 | 1.85 |
χcc,r | −3.054 (23) | −3.0324 (64) | −3.43 | −3.17 | −3.36 |
χaa,a | 0.301 (35) | 0.4469 (68) | 0.57 | −0.40 | 0.12 |
χbb,a | −2.047 (28) | −2.0935 (64) | −2.40 | −1.64 | −2.15 |
χcc,a | 1.746 (28) | 1.6466 (64) | 1.84 | 2.04 | 2.03 |
ΔJ 4 | 0.1114 (15) | 0.1052 (28) | 0.091 | - | - |
ΔJK | −0.5085 (54) | −0.524 (15) | −0.415 | - | - |
ΔK | 1.653 (25) | 1.792 (99) | 1.407 | - | - |
δJ | 0.03624 (65) | 0.0358 (17) | 0.029 | - | - |
σ 5 | 30 | 2.8 | - | - | - |
N 6 | 328 | 56 | - | - | - |
Par. | IAM 1 | Pyrrol 2 | N-Methyl-Pyrrole 3 | Pyridine 4 | Indole 5 | Tryptamine GPy-Out 6 | Tryptamine GPh-Out 6 |
---|---|---|---|---|---|---|---|
χaa,r | 1.4386 (66) | 1.45 (2) | 2.05 (5) | −4.88 (4) | 1.7263 (43) | 1.491 (17) | 1.491 (87) |
χbb,r | 1.5938 (64) | 1.21 (2) | −1.69 (3) | 1.43 (3) | 1.6525 (50) | 1.529 (14) | 1.464 (37) |
χcc,r | −3.0324 (64) | −2.66 (2) | −0.37 (3) | 3.45 (2) | −3.3788 (48) | −3.020 (14) | −2.955 (28) |
χaa,a | 0.4469 (68) | - | - | −0.725 (19) | 1.692 (33) | ||
χbb,a | −2.0935 (64) | - | - | −0.576 (19) | −0.331 (25) | ||
χcc,a | 1.6466 (64) | - | - | 1.301 (16) | −1.361 (25) |
Molecule | Number of Conformers | Key Structural Features |
---|---|---|
Tryptamine 1 | 4 | Ethylamine chain flexibility, N-H•π interaction (both rings) |
Serotonin 2 | 4 | Ethylamine chain flexibility, phenolic OH, N-H•π interaction (both rings) |
IAA 3 | 4 | Carboxyl group orientations, cis and trans, planar and out-of-plane, C-H•O and O-H•π interaction |
Tryptophan 4 | 2 | Trans-COOH, O-H•N and N-H•π interaction (both rings) |
IAM 5 | 1 | N-H•π interaction (pyrrol) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Municio, S.; Mato, S.; Alonso, J.L.; Alonso, E.R.; León, I. Conformational Analysis of 3-Indoleacetamide: Unveiling Structural Rigidity in the Tryptophan-Derived Bioactive Molecule Family. Molecules 2025, 30, 4156. https://doi.org/10.3390/molecules30214156
Municio S, Mato S, Alonso JL, Alonso ER, León I. Conformational Analysis of 3-Indoleacetamide: Unveiling Structural Rigidity in the Tryptophan-Derived Bioactive Molecule Family. Molecules. 2025; 30(21):4156. https://doi.org/10.3390/molecules30214156
Chicago/Turabian StyleMunicio, Sofía, Sergio Mato, José Luis Alonso, Elena Rita Alonso, and Iker León. 2025. "Conformational Analysis of 3-Indoleacetamide: Unveiling Structural Rigidity in the Tryptophan-Derived Bioactive Molecule Family" Molecules 30, no. 21: 4156. https://doi.org/10.3390/molecules30214156
APA StyleMunicio, S., Mato, S., Alonso, J. L., Alonso, E. R., & León, I. (2025). Conformational Analysis of 3-Indoleacetamide: Unveiling Structural Rigidity in the Tryptophan-Derived Bioactive Molecule Family. Molecules, 30(21), 4156. https://doi.org/10.3390/molecules30214156