Liquid Metal Gallium Promotes the Activity and Stability of the Cu-ZnO Catalyst for CO2 Hydrogenation to Methanol
Abstract
1. Introduction
2. Results
2.1. Structures of Catalysts
2.2. Chemisorptive and Reductive–Hydrogenative Properties of Catalysts
2.3. Catalytic Performance
3. Discussion
4. Materials and Methods
4.1. Material Preparation
4.2. Catalyst Preparation
4.3. Characterization
4.4. Catalytic Activity Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dang, S.; Yang, H.; Gao, P.; Wang, H.; Li, X.; Wei, W.; Sun, Y. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catal. Today 2019, 330, 61–75. [Google Scholar] [CrossRef]
- Yang, H.; Wei, Z.; Zhang, J.; Dang, Y.; Li, S.; Bu, X.; Zhou, Z.; Gong, C.; Wang, H.; Li, J.; et al. Tuning the selectivity of CO2 hydrogenation to alcohols by crystal structure engineering. Chem 2024, 10, 2245–2265. [Google Scholar] [CrossRef]
- Bushuyev, O.S.; De Luna, P.; Dinh, C.T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S.O.; Sargent, E.H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832. [Google Scholar] [CrossRef]
- Gao, B.; Wen, Z.; Wang, Y.; Chen, D.; Yang, B.; Ishihara, T.; Guo, L. Recent advances in alloy catalysts for CO2 hydrogenation to methanol. ChemCatChem 2024, 16, e202400814. [Google Scholar] [CrossRef]
- Onishi, N.; Himeda, Y. Homogeneous catalysts for CO2 hydrogenation to methanol and methanol dehydrogenation to hydrogen generation. Coord. Chem. Rev. 2022, 472, 214767. [Google Scholar] [CrossRef]
- Feng, Z.; Tang, C.; Zhang, P.; Li, K.; Li, G.; Wang, J.; Feng, Z.; Li, C. Asymmetric sites on the ZnZrOx catalyst for promoting formate formation and transformation in CO2 hydrogenation. J. Am. Chem. Soc. 2023, 145, 12663–12672. [Google Scholar] [CrossRef]
- Feng, S.; He, X.; Deng, Y.; Xu, H.; Dun, C.; Huang, W. Unraveling reaction pathways in CO2 hydrogenation to methanol at metal-oxide interfaces. ACS Catal. 2025, 15, 11981–11992. [Google Scholar] [CrossRef]
- Song, L.; Liu, G.; Jiang, X.; Qu, Z. Tuning the electronic metal–support interaction in Cu/ZnAl2O4 spinel via La modification for efficient CO2 hydrogenation to methanol. ACS Catal. 2025, 15, 11243–11256. [Google Scholar] [CrossRef]
- Gan, Y.; Ng, C.; Elgowainy, A.; Marcinkoski, J. Considering embodied greenhouse emissions of nuclear and renewable power plants for electrolytic hydrogen and its use for synthetic ammonia, methanol, Fischer–Tropsch fuel production. Environ. Sci. Technol. 2024, 58, 18654–18662. [Google Scholar] [CrossRef]
- Tedeeva, M.A.; Kustov, A.L.; Batkin, A.M.; Garifullina, C.; Zalyatdinov, A.A.; Yang, D.; Dai, Y.; Yang, Y.; Kustov, L.M. Catalytic systems for hydrogenation of CO2 to methanol. Mol. Catal. 2024, 566, 114403. [Google Scholar] [CrossRef]
- Xia, Y.; Cha, X.; Yan, X.; Wang, X.; Cai, Y.; Tan, K.B.; He, J.; Qiu, T.; Cai, D.; Zhan, G. Fine regulation of Cu-ZnO interfaces for enhanced CO2 hydrogenation to methanol by atomic layer depositing thin ZnO films on copper phyllosilicates. Appl. Catal. B Environ. 2025, 361, 124620. [Google Scholar] [CrossRef]
- Guo, T.; Wang, L.; Zhai, D.; Yuan, Y.; Guo, Q. Systematic investigation of Cu-ZnO-MnOX catalysts for CO2 hydrogenation to methanol. ChemCatChem 2025, 17, e202500103. [Google Scholar] [CrossRef]
- Li, M.M.-J.; Zeng, Z.; Liao, F.; Hong, X.; Tsang, S.C.E. Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts. J. Catal. 2016, 343, 157–167. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Y.; Zhang, Y.; Qiu, J.; He, L.; Gu, B. Facilitation of CO2 hydrogenation to methanol by spinel ZnGa2O4 in Cu-ZnO catalysts. Processes 2025, 13, 1420. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Rao, W. Precise regulation of Ga-based liquid metal oxidation. Acc. Mater. Res. 2021, 2, 1093–1103. [Google Scholar] [CrossRef]
- Zhang, Y.; Xin, Y.; Zhao, Q. Research and application of Ga-based liquid metals in catalysis. Nanomaterials 2025, 15, 1176. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, H.; Yang, L.; Yang, G.; Yang, H.; Song, S.; Mei, Z.; Csányi, G.; Cao, B. Unraveling thermal transport correlated with atomistic structures in amorphous gallium oxide via machine learning combined with experiments. Adv. Mater. 2023, 35, 2210873. [Google Scholar] [CrossRef]
- Liu, L.; Mezari, B.; Kosinov, N.; Hensen, E.J.M. Al promotion of In2O3 for CO2 hydrogenation to methanol. ACS Catal. 2023, 13, 15730–15745. [Google Scholar] [CrossRef]
- Wang, S.-Q.; Yang, J.-H.; Zhao, N.; Xiao, F.-K. Mechanistic study on the hydrogenation of CO2 to methanol over Cu-Mn-La-Zr catalysts prepared by different methods. J. Fuel Chem. Technol. 2023, 51, 970–976. [Google Scholar] [CrossRef]
- Choi, E.J.; Lee, Y.H.; Lee, D.-W.; Moon, D.-J.; Lee, K.-Y. Hydrogenation of CO2 to methanol over Pd–Cu/CeO2 catalysts. Mol. Catal. 2017, 434, 146–153. [Google Scholar] [CrossRef]
- Karaca, H.; Safonova, O.V.; Chambrey, S.; Fongarland, P.; Roussel, P.; Griboval-Constant, A.; Lacroix, M.; Khodakov, A.Y. Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer–Tropsch synthesis. J. Catal. 2011, 277, 14–26. [Google Scholar] [CrossRef]
- Gu, B.; Bahri, M.; Ersen, O.; Khodakov, A.; Ordomsky, V.V. Self-regeneration of cobalt and nickel catalysts promoted with bismuth for non-deactivating performance in carbon monoxide hydrogenation. ACS Catal. 2019, 9, 991–1000. [Google Scholar] [CrossRef]
- Zhou, Y.; Santos, S.; Shamzhy, M.; Marinova, M.; Blanchenet, A.-M.; Kolyagin, Y.G.; Simon, P.; Trentesaux, M.; Sharna, S.; Ersen, O.; et al. Liquid metals for boosting stability of zeolite catalysts in the conversion of methanol to hydrocarbons. Nat. Commun. 2024, 15, 2228. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; de la Piscina, P.R.; Toyir, J.; Homs, N. CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods. Catal. Today 2015, 242, 193–199. [Google Scholar] [CrossRef]
- Wang, J.; Tang, C.; Li, G.; Han, Z.; Li, Z.; Liu, H.; Cheng, F.; Li, C. High-Performance MaZrOx (Ma = Cd, Ga) Solid-Solution Catalysts for CO2 Hydrogenation to Methanol. ACS Catal. 2019, 9, 10253–10259. [Google Scholar] [CrossRef]
- Medina, J.C.; Figueroa, M.; Manrique, R.; Rodríguez Pereira, J.; Srinivasan, P.D.; Bravo-Suárez, J.J.; Baldovino Medrano, V.G.; Jiménez, R.; Karelovic, A. Catalytic consequences of Ga promotion on Cu for CO2 hydrogenation to methanol. Catal. Sci. Technol. 2017, 7, 3375–3387. [Google Scholar] [CrossRef]
- Hong, S.; Reddy, K.P.; Song, Y.; Park, D.; Park, J.Y. Enhanced methanol formation in CO2 hydrogenation through synergistic copper and gallium interaction. J. Catal. 2024, 437, 115643. [Google Scholar] [CrossRef]
Samples | Percent of Cu (%) | Percent of Zn (%) | Percent of Ga (%) |
---|---|---|---|
CuZn | 78.9 | 21.1 | - |
CuZnGa-i | 74.1 | 17.6 | 8.3 |
CuZnGa-p | 75.9 | 15.2 | 8.9 |
CuZnGa-p (used) | 76.1 | 15.1 | 8.8 |
Catalyst | CO2 Conversion (%) | Methanol Selectivity | Temperature (°C) | Pressure (MPa) | Refenence |
---|---|---|---|---|---|
CuZnGa-p | 10.2 | 64.4 | 240 | 4 | This work |
Cu(ZnGa) | 3.4 | 35.4 | 250 | 3 | [24] |
GaZrOx | 2.30 | 73.0 | 300 | 2 | [25] |
CuGa10/SiO2 | 1.9 | 11.0 | 280 | 0.8 | [26] |
Cu10Ga10/SBA-15 | <0.5 | 100 | 220 | 0.5 | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zheng, Y.; Wang, X.; Nie, S.; Zhang, W.; He, L.; Gu, B. Liquid Metal Gallium Promotes the Activity and Stability of the Cu-ZnO Catalyst for CO2 Hydrogenation to Methanol. Molecules 2025, 30, 4033. https://doi.org/10.3390/molecules30204033
Zhang Y, Zheng Y, Wang X, Nie S, Zhang W, He L, Gu B. Liquid Metal Gallium Promotes the Activity and Stability of the Cu-ZnO Catalyst for CO2 Hydrogenation to Methanol. Molecules. 2025; 30(20):4033. https://doi.org/10.3390/molecules30204033
Chicago/Turabian StyleZhang, Yu, Yuanshuang Zheng, Xiulin Wang, Suofu Nie, Wenqian Zhang, Lun He, and Bang Gu. 2025. "Liquid Metal Gallium Promotes the Activity and Stability of the Cu-ZnO Catalyst for CO2 Hydrogenation to Methanol" Molecules 30, no. 20: 4033. https://doi.org/10.3390/molecules30204033
APA StyleZhang, Y., Zheng, Y., Wang, X., Nie, S., Zhang, W., He, L., & Gu, B. (2025). Liquid Metal Gallium Promotes the Activity and Stability of the Cu-ZnO Catalyst for CO2 Hydrogenation to Methanol. Molecules, 30(20), 4033. https://doi.org/10.3390/molecules30204033