Clinical Potential of Essential Oils: Cytotoxicity, Selectivity Index, and Efficacy for Combating Gram-Positive ESKAPE Pathogens
Abstract
1. Introduction
2. Methods
Selectivity Index of Essential Oils and Its Calculation
- Very high SI (maximum SI value ≥ 100): These EOs possess a wide safety margin, meaning that their MIC value is significantly lower than cytotoxic dose. Such oils may be relatively safe for use under proper guidance and are less likely to cause adverse effects even when small dosing variations occur.
- High SI (maximum SI value between 10 and 99): EOs within this range are also regarded as relatively safe, though they have a narrower margin of safety compared to those in the very high SI category. Careful dosage control may be important to prevent potential side effects. This has also been confirmed by previous studies, which state that EOs with a SI > 10 are more toxic to various bacteria and fungi with minimal harm to human cells [60].
- Low SI (maximum SI value between 19): EOs with a low SI present a limited safety margin. The MIC dose is closer to the toxic dose, so even minor increases in concentration or exposure duration can result in harmful effects. These oils would require cautious handling and should probably be used under strict supervision, especially in clinical or therapeutic contexts.
- Very low SI (maximum SI value < 1): EOs in this category are considered potentially hazardous, as their toxic dose is equal to or even lower than the MIC value. Such oils pose a significant risk of toxicity, and it is recommended not to be used. If used at all, they should be used with extreme caution, supported by strong clinical evidence and administered by qualified professionals.
3. Results and Discussion
3.1. Efficacy and Safety of Essential Oils Against S. aureus
Plant Name or EO | Cells Used to Test Toxicity | Toxic (IC50) μg/mL | MIC (μg/mL) | SI MIN | SI MAX | References |
---|---|---|---|---|---|---|
Eucalyptus cinerea | Jurkat, Hela, Calu-3, HRT-18 | 391.43–689.8 | 0.2 | 1881.9 | 3316.3 a | [61] |
Stachys parviflora (Phlomidoschema parviflorum) | HCT-116, A2780, B16F10 | 16.5–30.95 | 0.01 | 1650 | 3095 a | [72] |
Heracleum pyenaicum (Heracleum sphondylium subsp. pyrenaicum) | Hela, LS174 | 10.05–40.13 | 0.02–0.04 | 251.3 | 2006.5 a | [80] |
Satureja nabateorum | HeLa, HepG2, MCF-7 and COLO-205 | 82–1090 | 0.9–12.5 | 6.6 | 1282.4 a | [87] |
Heracleum orphanidis | Hela, LS174 | 7.5–24.95 | 0.02–2.5 | 6.6 | 1247.5 a | [80] |
Cedrus atlantica | MCF-7 | 143.13 | 0.25 | 572.5 | 572.5 a | [74] |
Foeniculum vulgare Mill | MCF-7 | 14,060 | 64 | 219.7 | 219.7 a | [75] |
Aeschynomene indica | MCF-7- HepG2, LO2 | 40.83–74.09 | 0.3–0.7 | 82.1 | 193.5 a | [88] |
Eucalyptus globulus | Hela, BHK21, MCF-7, A2780, PC3, DU-145, U-87-MG, C-26 | 33.2–54,870 | 23–330 | 1.44 | 166.3 a | [63] |
Cinnamomum sp. | HepG2, HCT-116, MCF-7, MCF10A, HK-2, 786-O, and ACHN | 9.1–83,510 | 7.8–780 | 8 | 137.6 a | [81,89] |
Lythrum salicaria | MCF-7, A2780, PC3, DU-145, U-87-MG and C-26 | 86 | 0.63 | 137.6 | 137.6 a | [90] |
Mentha sp. | HaCaT, A 2780, MCF-7, A549, HUVEC | 36–382 | 1.8–40 | 1.1 | 108.7 a | [91,92,93] |
Heracleum verticillatum | HepG2, HCT-116, MCF-7, | 5.9–13.9 | 0.14–4.3 | 1.4 | 99.3 b | [81] |
Nepeta sp. | MCF-7, PC-3, MDA-MB-231, A 2780, LS180, MCF-7, A549, KB and Lymphocyte T | 24.9–89.4 | 0.98–50 | 0.9 | 91.2 b | [94,95] |
Thymus sp. | HeLa, A375, LS174, A549, MRC-5, HepG-2 and PC-3 | 98.6–485 | 1.6–5781.3 | 0.03 | 86.7 b | [96,97,98,99] |
Heracleum pyrenaicum subsp. orsinii | HeLa, LS174, A549, MRC-5 | 6.49–13.92 | 0.2–2.6 | 2.5 | 63.7 b | [100] |
Iris haynei | MCF-7, Hep3B, HepG2, HeLa and Caco-2 | 757.9–915.47 | 20.8 | 36.4 | 42.1 b | [101] |
Limonium oleifolium | J774 | 90.23 | 2.5 | 36.1 | 36.1 b | [102] |
Ocimum basilicium | HeLa, Hep3B, and MCF-7, and PBMC | 53.7–80.35 | 2.3 | 23.4 | 34.9 b | [103,104] |
Heracleum ternatum | HeLa, LS174, A549 and MRC-5 | 6.7–17 | 0.52–1.88 | 3.6 | 34.1 b | [105] |
Hedychium sp. | L929, MRC-5, A549, NCI-H1299, PC-3 and K562 | 27.6–78,074 | 312.5–6250 | 0.04 | 22.6 b | [106,107,108] |
Withania adpressa Coss | MCF-12 | 1000 | 47 | 21.3 | 21.3 b | [109] |
Fritillaria imperialis | Vero | 62.5 | 3.12–6.5 | 10 | 20 b | [110] |
Syzygium aromaticum | HT31 | 13,510 | 780 | 17.3 | 17.3 b | [111] |
Pistacia sp. | MCF-7, HeLa, PC3 and DU-145 | 37.7–169 | 12.5–25 | 1.85 | 13.5 b | [112,113] |
Laurus sp. | CaCo-2, MCF-7, MCF10A, B16-F1, and Caco-2 | 32–324.12 | 39–64 | 0.5 | 6.48 c | [114,115] |
Piper nigrum | HepG2, HeLa, MCF-7, PC-3 and HEP-2, K562, A549, LS-174, FemX and MRC-5 | 5.3–56.74 | 3.9–630 | 0.04 | 5.7 c | [116,117] |
Tetraclinis articulata | RAW 264.7 | 577.32 | 125 | 4.6 | 4.6 c | [118] |
Pulicaria crispa | HT-29, MCF-7, Caco-2, Hep-G2 | 405–1062 | 236–936 | 0.4 | 4.5 c | [119] |
Dennettia tripetala | RBC | 600 | 150 | 4.13 | 4.1 c | [120] |
Peucedanum dhana A. Ham | Hela, A549, SW480 and 3T3L1 | 10.24–961.4 | 250 | 0.04 | 3.9 c | [121] |
Myristica sp. | RAW264.7, H295R and VERO | 11.1–440 | 3.12–12,500 | 0.01 | 3.6 c | [122,123] |
Salvia sp. | HCT-116, L929, A459, HT-29 and MCF-7 | 32–7000 | 5000–9500 | 0.0 | 3.4 c | [124,125,126] |
Cryptocarya alba | HK-2, MCF10A | 32–64 | 19 | 1.7 | 3.4 c | [115] |
Cymbopogon martiniivar (tegi-sar) | MCF-7, MCF10A | 39.23–358 | 130–500 | 0.1 | 2.8 c | [127] |
Marrubium vulgare | MCF-7 | 30.1–135.6 | 50 | 0.6 | 2.7 c | [94] |
Cuminum cyminum | U-87-MG, MCF-7, PC3, DU-145, C-26 and A2780 | 22.03–41.1 | 16–19 | 1.37 | 2.6 c | [128] |
Mikania micrantha Kunth | MIAPaCa2, PA1, HeLa and L6 | 5–82.5 | 32 | 0.17 | 2.6 d | [129] |
Leontopodium leontopodioides | HCT-116, MCF-7 and 501-MEL | 99.2 | 39 | 2.5 | 2.5 c | [130] |
Ephedra intermedia | HeLa and LnCap | 23.22–616.3 | 250 | 0.1 | 2.5 c | [131] |
Cistus sp. | NIH-3T3, MCF-7, PC-3 | 14.2–207 | 70–300 | 0.1 | 2.1 c | [132,133] |
Ferula sp. | HeLa, HepG-2, HT-29, HCT-116, CCRF-CEM and CEM/ADR5000 | 0.93–252 | 37.5–2000 | 0 | 2 c | [134,135,136,137,138,139] |
Melaleuca alternifoila | HeLa, K562, A549, LS-174, FemX, MRC-5 and BGM | 48.7–265.5 | 132–310 | 0.2 | 2 c | [117,140] |
Zingiber sp. | HaCaT, A549, PC-3 and K562 | 10.48–200 | 78.13–780 | 0.04 | 1.4 c | [141,142] |
Illicium verum | MCF-7 | 57.3–118.2 | 100 | 0.6 | 1.4 c | [143] |
Origanum sp. | A549, Vero, Hep2, HT29, MCF-7, NCI-H460, HCT-15, HeLa and HepG2 | 4–195 | 12.5–1380 | 0.06 | 1.1 c | [144,145,146] |
Elsholtzia sp. | CaCo2, NIH-3T3, MCF-7, A549 and PC-3 | 8–828 | 30–600 | 0.03 | 0.9 d | [147,148] |
Ficus tikoua Bur | NCI-H1299, A549, K562, PC-3 and MRC-5 | 31.1–130.8 | 200 | 0.3 | 0.8 d | [149] |
Opuntia macrorhiza | PLP2, MCF-7, HCT15, HeLa and HepG2 | 206–359 | 450–1850 | 0.1 | 0.8 d | [150] |
Curcuma sp. | B16 and LNCaP | 4.43–429 | 378–740 | 0.01 | 0.6 d | [151] |
Dictamnus angustifolius | B16 | 15–57 | 15–109 | 0.1 | 0.5 d | [152] |
Rosmarinus officinalis | HeLa, A549 and MCF-7 | 9.9–401.3 | 1000–2250 | 0.01 | 0.4 d | [99,153] |
Citrus sp. | HeLa, LX-2, K562, A549, LS-174, FemX, MRC-5, HepG2, Caco-2, and HaCaT | 25.7–2200 | 1250–8000 | 0.02 | 0.4 d | [117,154] |
Xylopia aethiopica | RAW 264.7 | 3.8 | 16 | 0.2 | 0.2 d | [155] |
Cousinia sp. | A2780, T-47D, A549 and Hep-G2 | 4.52–32.2 | 31.3–62.5 | 0.07 | 0.1 d | [156] |
Juniperus communis | HT-29 and HCT116 | 41–243 | 2250–6250 | 0.01 | 0.1 d | [157] |
Cupressus sempervirens | AGS | 20–289 | 2500–3000 | 0.01 | 0.1 d | [158] |
Eugenia uniflora | H295R and VERO | 101.3–323 | 3130 | 0.03 | 0.1 d | [123] |
Coriandrum sativum | MCF-7, NCI-H460, HCT-15, HeLa and HepG2 | 71–140 | 690–1380 | 0.05 | 0.1 d | [146] |
Myrcianthes gigantea | H295R and VERO | 316,6 | 3130 | 0.1 | 0.1 d | [123] |
Filifolium sibiricum | MCF-7, HepG-2, SKOV-3 and BGC-823 | 270–780 | 5200 | 0.05 | 0.1 d | [159] |
Citronella sp. | A431 | 41.2 | 500 | 0.08 | 0.08 d | [160] |
Zanthoxylum acanthopodium | SK-LU-1, MCF-7, and HepG-2 | 16.02–35.5 | 512 | 0.03 | 0.07 d | [161] |
Pimenta dioica | THP-1 | 29.6 | 500 | 0.06 | 0.06 d | [162] |
Hedyosmum sprucei | A549 and MCF-7 | 42.5–50.9 | 1000 | 0.04 | 0.05 d | [108] |
Erigeron floribundus | A375, MDA–MB 231 and HCT116 | 15.9–26.5 | 512–2048 | 0.01 | 0.04 d | [163] |
Trigonella teheranica | MDA-MB-231, MRC5 and HT-2 | 3.18–7.82 | 500 | 0.01 | 0.02 d | [164] |
Cannabis sp. | Caco-2, MCF-7 and MDA-MB-468 | 22.3–83.2 | 8000 | 0 | 0 d | [165] |
Telekia speciosa | C32, A375 and HaCaT | 7.2 | 7800 | 0 | 0 d | [166] |
Iryanthera polyneura | MCF-7 and PC-3 | 6.5–9.8 | 6000 | 0 | 0 d | [167] |
3.2. Efficacy and Safety of Essential Oils Against MRSA
3.3. Efficacy and Safety of Essential Oils Against E. faecium
Pathogens | Plant Name or EO | Cells Used to Test Toxicity | Toxic Concentration (IC50) μg/mL | MIC (μg/mL) | SI Min | SI Max | References |
---|---|---|---|---|---|---|---|
MRSA | Ocimum basilicium | HeLa, MCF-7, Hep3B | 53.7–80.4 | 2.3 | 23.4 | 34.9 b | [103] |
Iris haynei | MCF-7, Hep3B, HepG2, HeLa, Caco-2 | 757.9–915.47 | 50 | 15.2 | 18.3 b | [101] | |
Laurus nobilis | CaCo-2, MCF-7, B16F1 | 99.1–324.1 | 50 | 2.6 | 6.5 c | [114] | |
Illicium verum | HeLa, 3T3, LX-2, MCF-7 | 57.3–131.7 | 100 | 0.6 | 1.3 c | [143] | |
Citrus sp. | HeLa, HepG2, LX-2, Caco-2 | 338–534 | 25,000 | 0.01 | 0.02 d | [195] | |
E. faecium | Satureja nabateorum | HeLa, HepG2, MCF-7 and COLO-205 | 82–1090 | 1.25 | 65.6 | 872 a | [87] |
Dennettia tripetala | RBC | 620 | 100 | 6.2 c | 6.2 c | [120] | |
Myrciaria sp. | H295R | 70.1–414.7 | 780 | 0.09 | 0.5 d | [123] | |
Stachys viticina Boiss | HeLa, Colo-205 | 250 | 1600.00 | 0.16 d | 0.16 d | [101] | |
Eugenia uniflora | H295R, VERO | 101.4–323 | 3130 | 0.03 d | 0.1 d | [123] | |
Abies concolor | HMEC-1, CRL-1474 | 0.11–1.38 | 26 | 0 | 0.05 d | [199] | |
Myrcia oblongata | H295R, VERO, CRL-1474 | 119.3–440.7 | 25,000 | 0 | 0.02 d | [123,199] |
3.4. Improving Therapeutic Efficacy and Safety of Essential Oils by Nanoencapsulation
4. Conclusions
5. Future Directions
- Comprehensive cytotoxicity studies and clinical trial: Future research should focus on evaluating the cytotoxic effects of promising EOs using normal (non-cancerous) human cell lines. Large-scale longitudinal clinical trials are also essential to confirm the antimicrobial efficacy and safety of EOs, particularly against MDR pathogens such as MRSA and vancomycin-resistant enterococci. This will help validate their safety profiles and determine appropriate therapeutic doses.
- Standardization of SI reporting: To support clinical translation, standardized methods for calculating and reporting SI values are needed across studies. Establishing SI thresholds will improve the assessment of EO safety and efficacy.
- Formulation and delivery systems: Encapsulation techniques (e.g., nano- or micro-encapsulation) should be prioritized to enhance EO activity, help control release, reduce toxicity, and improve bioavailability and stability. Developing EO-based formulations suitable for therapeutic use is a promising area for pharmaceutical innovation.
- Synergistic studies with antibiotics: Investigating EO-antibiotic combinations could reveal synergistic effects, potentially restoring antibiotic efficacy against resistant strains and lowering required doses, thereby minimizing side effects.
- Mechanistic studies: Future research should explore the precise mechanisms of action of EOs on bacterial cells to better understand how they inhibit bacterial growth or induce cell death. This knowledge is vital for targeted therapy development.
6. Strength and Limitation of the Review
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
BPPL | Bacterial Priority Pathogens List |
CDC | Centers for Disease Control and Prevention |
EO | Essential Oil |
ESKAPE | Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Species |
FDA | Food and Drug Administration |
IC50 | Inhibit 50% of Cells |
ISO | International Organization for Standardization |
MDR | Multidrug Resistance |
MDRSA | Multidrug-Resistant Staphylococcus aureus |
MIC | Minimum Inhibitory Concentration |
MRSA | Methicillin Resistant Staphylococcus aureus |
PDR | Pan-Drug Resistance |
SI | Selectivity Index |
TTEO | Tea Tree Essential Oil |
VRE | Vancomycin resistant Enterococcus |
WHO | World Health Organization |
References
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Yammine, J.; Chihib, N.-E.; Gharsallaoui, A.; Ismail, A.; Karam, L. Advances in essential oils encapsulation: Development, characterization and release mechanisms. Polym. Bull. 2024, 81, 3837–3882. [Google Scholar] [CrossRef]
- Baser, K.H.; Bonello, J.M. Global trade of essential oils. J. Essent. Oil Res. 2025, 37, 208–214. [Google Scholar] [CrossRef]
- Narayanankutty, A.; Kuttithodi, A.M.; Alfarhan, A.; Rajagopal, R.; Barcelo, D. Chemical Composition, Insecticidal and Mosquito Larvicidal Activities of Allspice (Pimenta dioica) Essential Oil. Molecules 2021, 26, 6698. [Google Scholar] [CrossRef]
- Efsa Panel on Additives Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Kouba, M.; Kos Durjava, M.; Lopez-Alonso, M.; Lopez Puente, S.; Marcon, F.; et al. Safety and efficacy of an essential oil of Origanum vulgare ssp. hirtum (Link) leetsw. for all poultry species. EFSA J. 2019, 17, e05653. [Google Scholar] [CrossRef]
- Bilsland, D.; Strong, A. Allergic contact dermatitis from the essential oil of French marigold (Tagetes patula) in an aromatherapist. Contact Dermat. 1990, 23, 55–56. [Google Scholar] [CrossRef]
- Radulovic, N. Toxic effects of essential oils and their constituents. Food Chem. Toxicol. 2019, 128, 1. [Google Scholar]
- Bagetta, G.; Cosentino, M.; Sakurada, T. Aromatherapy: Basic Mechanisms and Evidence Based Clinical Use; CRC Press: Boca Raton, FL, USA, 2015; Volume 2. [Google Scholar]
- Leigh-de Rapper, S.; van Vuuren, S.F. Odoriferous Therapy: A Review Identifying Essential Oils against Pathogens of the Respiratory Tract. Chem. Biodivers. 2020, 17, e2000062. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals, 2nd ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Henley, D.V.; Lipson, N.; Korach, K.S.; Bloch, C.A. Prepubertal gynecomastia linked to lavender and tea tree oils. N. Engl. J. Med. 2007, 356, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Burfield, T. Safety of essential oils. Int. J. Aromather. 2000, 10, 16–29. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.-H. Synergistic antioxidant and antibacterial advantages of essential oils for food packaging applications. Biomolecules 2021, 11, 1267. [Google Scholar] [CrossRef]
- Hulankova, R. Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro—A Review. Plants 2024, 13, 2784. [Google Scholar] [CrossRef]
- Yu, Z.; Tang, J.; Khare, T.; Kumar, V. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia 2020, 140, 104433. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef]
- Al-Saman, M.A.; Abdella, A.; Mazrou, K.E.; Tayel, A.A.; Irmak, S. Antimicrobial and antioxidant activities of different extracts of the peel of kumquat (Citrus japonica Thunb). Food Meas. 2019, 13, 3221–3229. [Google Scholar] [CrossRef]
- Saleem, M.; Saeed, M.T. Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J. King Saud. Univ. Sci. 2020, 32, 805–810. [Google Scholar] [CrossRef]
- Kalaiselvan, P.; Yasir, M.; Kuppusamy, R.; Willcox, M.; Vijay, A.K. Ability of Essential Oil Vapours to Reduce Numbers of Culturable Aerosolised Coronavirus, Bacteria and Fungi. Antibiotics 2022, 11, 393. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Malik, A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: Microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement. Altern. Med. 2010, 10, 65. [Google Scholar] [CrossRef]
- Laird, K.; Phillips, C. Vapour phase: A potential future use for essential oils as antimicrobials? Lett. Appl. Microbiol. 2012, 54, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Khwaza, V.; Aderibigbe, B.A. Antibacterial Activity of Selected Essential Oil Components and Their Derivatives: A Review. Antibiotics 2025, 14, 68. [Google Scholar] [CrossRef]
- Lepaus, B.M.; Geringer, S.J.; Domingos, M.M.; Valiati, B.S.; Uliana, D.S.; Leal, R.M.L.; Guimarães, A.P.; de São José, J.F.B. Mechanistic Investigation on Antibacterial Activity of Essential Oils against Resistant Bacteria Species. In Plant Essential Oils: From Traditional to Modern-Day Application; Springer: Berlin/Heidelberg, Germany, 2023; pp. 77–104. [Google Scholar]
- Kaur, M.; Sharma, S.; Kalia, A.; Sandhu, N. Essential oils and their blends: Mechanism of antibacterial activity and antibiofilm potential on food-grade maize starch packaging films. Int. Microbiol. 2024, 27, 1707–1724. [Google Scholar] [CrossRef]
- Alhantoobi, W.A.; Alkatheri, A.H.; Parusheva, T.; Lai, K.S.; Thomas, W.; Lim, S.-H.E. Antimicrobial Activity of Essential Oils and Their Mechanism of Action Against Bacterial and Fungal Infections. Saudi J. Biomed. Res. 2025, 10, 168–186. [Google Scholar] [CrossRef]
- Marín, V.N.; Buccini, D.F.; da Silva, V.G.; Soliz, I.A.F.; Franco, O.L. Nanoformulations of bioactive compounds derived from essential oils with antimicrobial activity. J. Nano Trends 2025, 9, 100070. [Google Scholar] [CrossRef]
- Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef]
- Panda, S.K.; Buroni, S.; Swain, S.S.; Bonacorsi, A.; da Fonseca Amorim, E.A.; Kulshrestha, M.; da Silva, L.C.N.; Tiwari, V. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front. Microbiol. 2022, 13, 1029098. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; World Health Organization (WHO): Geneva, Switzerland, 2017.
- Sati, H.; Carrara, E.; Savoldi, A.; Hansen, P.; Garlasco, J.; Campagnaro, E.; Boccia, S.; Castillo-Polo, J.A.; Magrini, E.; Garcia-Vello, P.; et al. The WHO Bacterial Priority Pathogens List 2024: A prioritisation study to guide research, development, and public health strategies against antimicrobial resistance. Lancet Infect. Dis. 2025, 25, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Astley, R.; Miller, F.; Mursalin, M.; Coburn, P.; Callegan, M. An eye on Staphylococcus aureus toxins: Roles in ocular damage and inflammation. Toxins 2019, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, J.; Willcox, M.; Coroneo, M. A comparative analysis of the cephalic microbiome: The ocular, aural, nasal/nasopharyngeal, oral and facial dermal niches. Exp. Eye Res. 2022, 220, 109130. [Google Scholar] [CrossRef]
- O’Callaghan, R.J. The Pathogenesis of Staphylococcus aureus Eye Infections. Pathogens 2018, 7, 9. [Google Scholar] [CrossRef]
- Ghalehnoo, Z.R. Diseases caused by Staphylococcus aureus. Int. J. Med. Health Res. 2018, 4, 65–67. [Google Scholar]
- Willcox, M.; Hume, E.; Schubert, T.; Kumar, N. Treatment of Staphylococcus aureus with Antibiotic and Quorum-Sensing Inhibitor Combinations Reduces Severity of Keratitis. J. Ocular Biol. 2017, 5, 5. [Google Scholar]
- Al-Mebairik, N.F.; El-Kersh, T.A.; Al-Sheikh, Y.A.; Marie, M.A.M. A review of virulence factors, pathogenesis, and antibiotic resistance in Staphylococcus aureus. Rev. Med. Microbiol. 2016, 27, 50–56. [Google Scholar] [CrossRef]
- Vale de Macedo, G.H.R.; Costa, G.D.E.; Oliveira, E.R.; Damasceno, G.V.; Mendonca, J.S.P.; Silva, L.D.S.; Chagas, V.L.; Bazan, J.M.N.; Alianca, A.; Miranda, R.C.M.; et al. Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. Pathogens 2021, 10, 148. [Google Scholar] [CrossRef]
- Lin, J.Y.; Lai, J.K.; Chen, J.Y.; Cai, J.Y.; Yang, Z.D.; Yang, L.Q.; Zheng, Z.T.; Guo, X.G. Global insights into MRSA bacteremia: A bibliometric analysis and future outlook. Front. Microbiol. 2024, 15, 1516584. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; Aqib, A.I.; Muzammil, I.; Majeed, N.; Bhutta, Z.A.; Kulyar, M.F.; Fatima, M.; Zaheer, C.F.; Muneer, A.; Murtaza, M.; et al. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health framework. Front. Microbiol. 2022, 13, 1067284. [Google Scholar] [CrossRef]
- Wei, Y.; Palacios Araya, D.; Palmer, K.L. Enterococcus faecium: Evolution, adaptation, pathogenesis and emerging therapeutics. Nat. Rev. Microbiol. 2024, 22, 705–721. [Google Scholar] [CrossRef] [PubMed]
- Dahl, A.; Miro, J.M.; Bruun, N.E. Enterococcus faecalis bacteremia: Please do the echo. Aging 2019, 11, 10786. [Google Scholar] [CrossRef]
- Zhou, X.; Willems, R.J.; Friedrich, A.W.; Rossen, J.W.; Bathoorn, E. Enterococcus faecium: From microbiological insights to practical recommendations for infection control and diagnostics. Antimicrob. Resist. Infect. Control 2020, 9, 1–13. [Google Scholar] [CrossRef]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 2014, 8, 6. [Google Scholar] [CrossRef]
- Elangovan, S.; Mudgil, P. Antibacterial properties of Eucalyptus globulus essential oil against MRSA: A systematic review. J. Antibiot. 2023, 12, 474. [Google Scholar] [CrossRef] [PubMed]
- Lica, J.J.; Wieczor, M.; Grabe, G.J.; Heldt, M.; Jancz, M.; Misiak, M.; Gucwa, K.; Brankiewicz, W.; Maciejewska, N.; Stupak, A.; et al. Effective Drug Concentration and Selectivity Depends on Fraction of Primitive Cells. Int. J. Mol. Sci. 2021, 22, 4931. [Google Scholar] [CrossRef] [PubMed]
- Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst. Excip. Relat. Methodol. 2021, 46, 273–307. [Google Scholar] [PubMed]
- Cáceres, M.; Hidalgo, W.; Stashenko, E.; Torres, R.; Ortiz, C. Essential Oils of Aromatic Plants with Antibacterial, Anti-Biofilm and Anti-Quorum Sensing Activities against Pathogenic Bacteria. Antibiotics 2020, 9, 147. [Google Scholar] [CrossRef] [PubMed]
- Turnidge, J.; Paterson, D.L. Setting and revising antibacterial susceptibility breakpoints. Clin. Microbiol. Rev. 2007, 20, 391–408. [Google Scholar] [CrossRef]
- US Food and Drug Adminstration. FDA Rationale for Recognition Decision: Ceftaroline Fosamil; US Food and Drug Adminstration: Silver Spring, MD, USA, 2020.
- Livermore, D.M.; Mushtaq, S.; Warner, M.; James, D.; Woodford, N. Susceptibility testing challenges with ceftaroline, MRSA and a 1 mg/L breakpoint. J. Antimicrob. Chemother. 2015, 70, 3259–3266. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Ceftaroline Breakpoints for Staphylococcus aureus; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Bagla, V.P.; McGaw, L.J.; Elgorashi, E.E.; Eloff, J.N. Antimicrobial activity, toxicity and selectivity index of two biflavonoids and a flavone isolated from Podocarpus henkelii (Podocarpaceae) leaves. BMC Complement. Altern. Med. 2014, 14, 383. [Google Scholar] [CrossRef]
- Pauzer, M.S.; Borsato, T.d.O.; Almeida, V.P.d.; Raman, V.; Justus, B.; Pereira, C.B.; Flores, T.B.; Maia, B.H.L.N.S.; Meneghetti, E.K.; Kanunfre, C.C. Eucalyptus cinerea: Microscopic profile, chemical composition of essential oil and its antioxidant, microbiological and cytotoxic activities. Braz. Arch. Biol. Technol. 2021, 64, e21200772. [Google Scholar] [CrossRef]
- Ali, T.; Anjum, A.A.; Sattar, M.M.K.; Ali, M.A.; Kamran, M.; Tariq, M.; Manzoor, R. Antibacterial activity of plant essential oils against indigenously characterized methicillin-resistant Staphylococcus aureus (MRSA). Trop. Biomed. 2022, 39, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Azadmanesh, R.; Tatari, M.; Asgharzade, A.; Taghizadeh, S.F.; Shakeri, A. GC/MS profiling and biological traits of Eucalyptus globulus L. essential oil exposed to solid lipid nanoparticle (SLN). J. Essent. Oil-Bear. Plants 2021, 24, 863–878. [Google Scholar] [CrossRef]
- Ayed, A.; Caputo, L.; De Feo, V.; Elshafie, H.S.; Fratianni, F.; Nazzaro, F.; Hamrouni, L.; Amri, I.; Mabrouk, Y.; Camele, I.; et al. Antimicrobial, anti-enzymatic and antioxidant activities of essential oils from some Tunisian Eucalyptus species. Heliyon 2024, 10, e34518. [Google Scholar] [CrossRef]
- Bachir, R.G.; Benali, M. Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pac. J. Trop. Biomed. 2012, 2, 739–742. [Google Scholar] [CrossRef]
- Sadraoui Ajmi, I.; Sadraoui, R.; Guesmi, F.; Soltani, A.; Amari, R.; Chaib, S.; Boushih, E.; Fajraoui, A.; Mediouni Ben Jemâa, J. Chemical Composition, Antioxidant and Antimicrobial Activities of Eucalyptus Cinerea Essential Oil with Its Insecticidal Effect Against Ceratitis Capitata Adults. Int. J. Env. Res. 2023, 17, 47. [Google Scholar] [CrossRef]
- Sebei, K.; Sakouhi, F.; Herchi, W.; Khouja, M.L.; Boukhchina, S. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biol. Res. 2015, 48, 7. [Google Scholar] [CrossRef]
- Cmikova, N.; Galovicova, L.; Schwarzova, M.; Vukic, M.D.; Vukovic, N.L.; Kowalczewski, P.L.; Bakay, L.; Kluz, M.I.; Puchalski, C.; Kacaniova, M. Chemical Composition and Biological Activities of Eucalyptus globulus Essential Oil. Plants 2023, 12, 1076. [Google Scholar] [CrossRef]
- Paine, T.D.; Steinbauer, M.J.; Lawson, S.A. Native and exotic pests of eucalyptus: A worldwide perspective. Annu. Rev. Entomol. 2011, 56, 181–201. [Google Scholar] [CrossRef]
- Salvatori, E.S.; Morgan, L.V.; Ferrarini, S.; Zilli, G.A.L.; Rosina, A.; Almeida, M.O.P.; Hackbart, H.C.S.; Rezende, R.S.; Albeny-Simoes, D.; Oliveira, J.V.; et al. Anti-Inflammatory and Antimicrobial Effects of Eucalyptus spp. Essential Oils: A Potential Valuable Use for an Industry Byproduct. Evid. Based Complement. Altern. Med. 2023, 2023, 2582698. [Google Scholar] [CrossRef]
- Ghaffar, A.; Yameen, M.; Kiran, S.; Kamal, S.; Jalal, F.; Munir, B.; Saleem, S.; Rafiq, N.; Ahmad, A.; Saba, I.; et al. Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species. Molecules 2015, 20, 20487–20498. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; D’Urso, G.; Taghizadeh, S.F.; Piacente, S.; Norouzi, S.; Soheili, V.; Asili, J.; Salarbashi, D. LC-ESI/LTQOrbitrap/MS/MS and GC-MS profiling of Stachys parviflora L. and evaluation of its biological activities. J. Pharm. Biomed. Anal. 2019, 168, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Dilbar, S.; Sher, H.; Ali, A.; Ullah, Z.; Ali, I. Biological synthesis of Ag-nanoparticles using Stachys parviflora and its inhibitory potential against Xanthomonas campestris. S. Afr. J. Bot. 2023, 157, 409–422. [Google Scholar] [CrossRef]
- Belkacem, N.; Khettal, B.; Hudaib, M.; Bustanji, Y.; Abu-Irmaileh, B.; Amrine, C.S.M. Antioxidant, antibacterial, and cytotoxic activities of Cedrus atlantica organic extracts and essential oil. Eur. J. Integr. Med. 2021, 42, 101292. [Google Scholar] [CrossRef]
- Ghasemian, A.; Al-Marzoqi, A.H.; Mostafavi, S.K.S.; Alghanimi, Y.K.; Teimouri, M. Chemical Composition and Antimicrobial and Cytotoxic Activities of Foeniculum vulgare Mill Essential Oils. J. Gastrointest. Cancer 2020, 51, 260–266. [Google Scholar] [CrossRef]
- Ez-Zriouli, R.; El Yacoubi, H.; Rochdi, A. Study of the sensitivity of certain bacteria–pathogenic human health-to atlas cedar essential oils and antibiotics. In Proceedings of the E3S Web of Conferences, Kenitra, Morocco, 15–17 July 2021; EDP Sciences: Les Ulis, France, 2021; p. 01032. [Google Scholar]
- Benmerache, A.; Kabouche, A.; Kabouche, Z.; Ozturk, M.; Çakir, C.; Yilmaz, M.A.; Ertaş, A. Phenolic Compounds, Antioxidant and Antibacterial Activities of Cedrus Atlantica Stem Barks. Pharm. Chem. 2024, 58, 943–949. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Mrabti, H.N.; Al-Mijalli, S.H.; Jeddi, M.; Abdallah, E.M.; Benkhaira, N.; Hadni, H.; Assaggaf, H.; Qasem, A.; Goh, K.W.; et al. Antioxidant, Volatile Compounds; Antimicrobial, Anti-Inflammatory, and Dermatoprotective Properties of Cedrus atlantica (Endl.) Manetti Ex Carriere Essential Oil: In Vitro and In Silico Investigations. Molecules 2023, 28, 5913. [Google Scholar] [CrossRef]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical composition and In vitro antibacterial activity of the essential oil of Cedrus atlantica. Int. J. Agric. Biol. 2010, 12, 381–385. [Google Scholar]
- Usjak, L.; Petrovic, S.; Drobac, M.; Sokovic, M.; Stanojkovic, T.; Ciric, A.; Niketic, M. Chemical Composition and Bioactivity of the Essential Oils of Heracleum pyrenaicum subsp. pollinianum and Heracleum orphanidis. Nat. Prod. Commun. 2016, 11, 529–534. [Google Scholar] [CrossRef]
- Taha, A.M.; Eldahshan, O.A. Chemical Characteristics, Antimicrobial, and Cytotoxic Activities of the Essential Oil of Egyptian Cinnamomum glanduliferum Bark. Chem. Biodivers. 2017, 14, e1600443. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, Z.; Ramazani, A.; Razzaghi-Asl, N. Plants of the Genus Heracleum as a Source of Coumarin and Furanocoumarin. Chem. Rev. 2019, 1, 78–98. [Google Scholar]
- Ahmed, S.; Khan, H.; Aschner, M.; Mirzae, H.; Kupeli Akkol, E.; Capasso, R. Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects. Int. J. Mol. Sci. 2020, 21, 5622. [Google Scholar] [CrossRef]
- Kačániová, M.; Čmiková, N. Antimicrobial activity of cinnamon extracts and mechanisms of action. In Cinnamon: Production, Processing, and Functional Properties; Academic Press: Cambridge, MA, USA, 2025; pp. 351–366. [Google Scholar] [CrossRef]
- Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018, 120, 198–203. [Google Scholar] [CrossRef]
- Kapp, K.; Püssa, T.; Orav, A.; Roasto, M.; Raal, A.; Vuorela, P.; Vuorela, H.; Tammela, P. Chemical composition and antibacterial effect of Mentha spp. grown in Estonia. Nat. Prod. Commun. 2020, 15, 1934578X20977615. [Google Scholar] [CrossRef]
- Al-Maharik, N.; Jaradat, N. Phytochemical Profile, Antimicrobial, Cytotoxic, and Antioxidant Activities of Fresh and Air-Dried Satureja nabateorum Essential Oils. Molecules 2021, 27, 125. [Google Scholar] [CrossRef]
- Feng, L.; Xu, F.; Qiu, S.; Sun, C.; Lai, P. Chemical Composition and Antibacterial, Antioxidant, and Cytotoxic Activities of Essential Oils from Leaves and Stems of Aeschynomene indica L. Molecules 2024, 29, 3552. Molecules 2024, 29, 3552. [Google Scholar] [CrossRef]
- Alizadeh Behbahani, B.; Falah, F.; Lavi Arab, F.; Vasiee, M.; Tabatabaee Yazdi, F. Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomum zeylanicum Bark Essential Oil. Evid. Based Complement. Altern. Med. 2020, 2020, 5190603. [Google Scholar] [CrossRef] [PubMed]
- Srećković, N.; Katanić Stanković, J.S.; Matić, S.; Mihailović, N.R.; Imbimbo, P.; Monti, D.M.; Mihailović, V. Lythrum salicaria L. (Lythraceae) as a promising source of phenolic compounds in the modulation of oxidative stress: Comparison between aerial parts and root extracts. Ind. Crops Prod. 2020, 155, 112781. [Google Scholar] [CrossRef]
- Silva, W.M.F.; Bona, N.P.; Pedra, N.S.; Cunha, K.F.D.; Fiorentini, A.M.; Stefanello, F.M.; Zavareze, E.R.; Dias, A.R.G. Risk assessment of in vitro cytotoxicity, antioxidant and antimicrobial activities of Mentha piperita L. essential oil. J. Toxicol. Environ. Health A 2022, 85, 230–242. [Google Scholar] [CrossRef]
- Ranjbar, M.; Kiani, M.; Gholami, F. Phytochemical profiling and biocidal activity of four iranian Mentha (Lamiaceae) species. S. Afr. J. Bot. 2023, 155, 110–117. [Google Scholar] [CrossRef]
- Đurović, S.; Micić, D.; Pezo, L.; Radić, D.; Bazarnova, J.G.; Smyatskaya, Y.A.; Blagojević, S. Influence of the mowing and drying on the quality of the peppermint (Mentha x piperita L.) essential oil: Chemical profile, thermal properties, and biological activity. J. Ind. Crops 2022, 177, 114492. [Google Scholar] [CrossRef]
- Mannoubi, I.E.; Bashir, S.H.; Alghamdi, N.M.; Nazreen, S.; Zabin, S.A. Chemical composition, antimicrobial, antioxidant and anti-cancer activities of Nepeta deflersiana Schweinf. Ex Hedge and Marrubium vulgare L. essential oils: A comparative study. J. Essent. Oil-Bear. Plants 2023, 26, 1101–1122. [Google Scholar] [CrossRef]
- Ashrafi, B.; Rashidipour, M.; Gholami, E.; Sattari, E.; Marzban, A.; Kheirandish, F.; Khaksarian, M.; Taherikalani, M.; Soroush, S. Investigation of the phytochemicals and bioactivity potential of essential oil from Nepeta curvidens Boiss. & Balansa. S. Afr. J. Bot. 2020, 135, 109–116. [Google Scholar]
- Preljevic, K.; Pasic, I.; Vlaovic, M.; Matic, I.Z.; Krivokapic, S.; Petrovic, N.; Stanojkovic, T.; Zivkovic, V.; Perovic, S. Comparative analysis of chemical profiles, antioxidant, antibacterial, and anticancer effects of essential oils of two Thymus species from Montenegro. Fitoterapia 2024, 174, 105871. [Google Scholar] [CrossRef] [PubMed]
- Dash, K.T.; Jena, S.; Ray, A.; Sahoo, A.; Kar, S.K.; Sahoo, R.K.; Subudhi, E.; Panda, P.C.; Nayak, S. Chemical composition of carvacrol rich leaf essential oil of Thymus vulgaris from India: Assessment of antimicrobial, antioxidant and cytotoxic potential. J. Essent. Oil-Bear. Plants 2021, 24, 1134–1145. [Google Scholar] [CrossRef]
- Zernadji, W.; Jebri, S.; Rahmani, F.; Amri, I.; Aissaoui, D.; Trabelsi, M.H.; Yahya, M.; Amri, I.; Hmaied, F. Effect of Gamma Irradiation on Pathogenic Staphylococcus aureus in Packaged Ready-to-Eat Salads Treated with Biological Extracts. J. Food Prot. 2024, 87, 100232. [Google Scholar] [CrossRef] [PubMed]
- Zairi, A.; Nouir, S.; Khalifa, M.A.; Ouni, B.; Haddad, H.; Khelifa, A.; Trabelsi, M. Phytochemical Analysis and Assessment of Biological Properties of Essential Oils Obtained from Thyme and Rosmarinus Species. Curr. Pharm. Biotechnol. 2020, 21, 414–424. [Google Scholar] [CrossRef]
- Usjak, L.; Petrovic, S.; Drobac, M.; Sokovic, M.; Stanojkovic, T.; Ciric, A.; Niketic, M. Edible wild plant Heracleum pyrenaicum subsp. orsinii as a potential new source of bioactive essential oils. J. Food Sci. Technol. 2017, 54, 2193–2202. [Google Scholar] [CrossRef]
- Jaradat, N.; Qneibi, M.; Hawash, M.; Qadi, M.; Al-Maharik, N.; Bdir, S.; Bdair, M.; Bshir, J.; Saleh, N.; Ighbarieh, M. Exploring the Iris haynei essential oil: Analysis of phytochemical composition, evaluation of cytotoxicity, antimicrobial properties, and AMPA receptor modulation. Chem. Biol. Technol. Agric. 2024, 11, 117. [Google Scholar] [CrossRef]
- Mennai, I.; Lamera, E.; Slougui, N.; Benaicha, B.; Gasmi, S.; Samai, Z.; Rahmouni, N.; Bensouici, C.; D, C.G.A.P. Chemical Composition and Antioxidant, Antiparasitic, Cytotoxicity and Antimicrobial Potential of the Algerian Limonium Oleifolium Mill. Essential Oil and Organic Extracts. Chem. Biodivers. 2021, 18, e2100278. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Jaradat, N.; Shraim, N.; Hawash, M.; Issa, L.; Shakhsher, M.; Nawahda, N.; Hanbali, A.; Barahmeh, N.; Taha, B.; et al. Assessment of anticancer, antimicrobial, antidiabetic, anti-obesity and antioxidant activity of Ocimum Basilicum seeds essential oil from Palestine. BMC Complement. Med. Ther. 2023, 23, 221. [Google Scholar] [CrossRef]
- da Silva Gündel, S.; Velho, M.C.; Diefenthaler, M.K.; Favarin, F.R.; Copetti, P.M.; de Oliveira Fogaça, A.; Klein, B.; Wagner, R.; Gündel, A.; Sagrillo, M.R.; et al. Basil oil-nanoemulsions: Development, cytotoxicity and evaluation of antioxidant and antimicrobial potential. Drug Deliv. Sci. Technol. 2018, 46, 378–383. [Google Scholar] [CrossRef]
- Usjak, L.J.; Petrovic, S.D.; Drobac, M.M.; Sokovic, M.D.; Stanojkovic, T.P.; Ciric, A.D.; Grozdanic, N.; Niketic, M.S. Chemical Composition, Antimicrobial and Cytotoxic Activity of Heracleum verticillatum Pancic and H. ternatum Velen. (Apiaceae) Essential Oils. Chem. Biodivers. 2016, 13, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Wu, X.; Lu, T.; Zhao, X.; Wei, F.; Deng, G.; Zhou, Y. Phytochemical Analysis, Antioxidant, Antibacterial, Cytotoxic, and Enzyme Inhibitory Activities of Hedychium flavum Rhizome. Front. Pharmacol. 2020, 11, 572659. [Google Scholar] [CrossRef]
- Malik, K.M.; Khan, K.S.; Billah, M.; Akhtar, M.S.; Rukh, S.; Alam, S.; Munir, A.; Mahmood Aulakh, A.; Rahim, M.; Qaisrani, M.M. Organic amendments and elemental sulfur stimulate microbial biomass and sulfur oxidation in alkaline subtropical soils. J. Agronomy 2021, 11, 2514. [Google Scholar]
- Guerrini, A.; Sacchetti, G.; Grandini, A.; Spagnoletti, A.; Asanza, M.; Scalvenzi, L. Cytotoxic Effect and TLC Bioautography-Guided Approach to Detect Health Properties of Amazonian Hedyosmum sprucei Essential Oil. Evid. Based Complement. Altern. Med. 2016, 2016, 1638342. [Google Scholar] [CrossRef]
- Bourhia, M.; Alyousef, A.A.; Doumane, G.; Saghrouchni, H.; Giesy, J.P.; Ouahmane, L.; Gueddari, F.E.; Al-Sheikh, Y.A.; Aboul-Soud, M.A. Volatile constituents in essential oil from leaves of Withania adpressa Coss. Ex exhibit potent antioxidant and antimicrobial properties against clinically-relevant pathogens. Molecules 2023, 28, 2839. [Google Scholar] [CrossRef]
- Zakeri, Z.; Allafchian, A.; Vahabi, M.R.; Jalali, S.A.H. Synthesis and characterization of antibacterial silver nanoparticles using essential oils of crown imperial leaves, bulbs and petals. J. Micro Nano Lett. 2021, 16, 533–539. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Noshad, M.; Falah, F. Study of chemical structure, antimicrobial, cytotoxic and mechanism of action of Syzygium aromaticum essential oil on foodborne pathogens. Potravin. Slovak J. Food Sci. 2019, 13, 875–883. [Google Scholar] [CrossRef]
- Taghizadeh, S.F.; Davarynejad, G.; Asili, J.; Riahi-Zanjani, B.; Nemati, S.H.; Karimi, G. Chemical composition, antibacterial, antioxidant and cytotoxic evaluation of the essential oil from pistachio (Pistacia khinjuk) hull. Microb. Pathog. 2018, 124, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, N.; Al-Maharik, N.; Hawash, M.; Abualhasan, M.N.; Qadi, M.; Ayesh, O.; Marar, R.a.A.; Kharroub, H.; Abu-Hait, T.; Arar, M. Essential oil composition, antimicrobial, cytotoxic, and cyclooxygenase inhibitory areas of activity of Pistacia lentiscus from Palestine. Arab. J. Sci. Eng. 2022, 47, 6869–6879. [Google Scholar] [CrossRef]
- Jaradat, N.; Hawash, M.; Qaoud, M.T.; Al-Maharik, N.; Qadi, M.; Hussein, F.; Issa, L.; Saleh, A.; Saleh, L.; Jadallah, A. Biological, phytochemical and molecular docking characteristics of Laurus nobilis L. fresh leaves essential oil from Palestine. BMC Complement. Med. Ther. 2024, 24, 223. [Google Scholar] [CrossRef] [PubMed]
- Touma, J.; Navarro, M.; Sepulveda, B.; Pavon, A.; Corsini, G.; Fernandez, K.; Quezada, C.; Torres, A.; Larrazabal-Fuentes, M.J.; Paredes, A.; et al. The Chemical Compositions of Essential Oils Derived from Cryptocarya alba and Laurelia sempervirens Possess Antioxidant, Antibacterial and Antitumoral Activity Potential. Molecules 2020, 25, 5600. [Google Scholar] [CrossRef]
- Morsy, N.F.; Abd El-Salam, E. Antimicrobial and antiproliferative activities of black pepper (Piper nigrum L.) essential oil and oleoresin. J. Essent. Oil-Bear. Plants 2017, 20, 779–790. [Google Scholar] [CrossRef]
- Nikolić, M.M.; Jovanović, K.K.; Marković, T.L.; Marković, D.L.; Gligorijević, N.N.; Radulović, S.S.; Kostić, M.; Glamočlija, J.M.; Soković, M.D. Antimicrobial synergism and cytotoxic properties of Citrus limon L., Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel essential oils. J. Pharm. Pharmacol. 2017, 69, 1606–1614. [Google Scholar] [CrossRef]
- Salem, N.; Boulares, M.; Zarrouk, Y.; Kammoun, S.E.E.; Essid, R.; Jemai, M.; Djebbi, S.; Belloumi, S.; Jalouli, S.; Limam, F.; et al. Preservation of poultry meat using Tetraclinis articulata essential oil during refrigerated storage. Food Sci. Technol. Int. 2023, 29, 696–709. [Google Scholar] [CrossRef]
- AlMotwaa, S.M.; Al-Otaibi, W.A. Determination of the chemical composition and antioxidant, anticancer, and antibacterial properties of essential oil of Pulicaria crispa from Saudi Arabia. J. Indian. Chem. Soc. 2022, 99, 100341. [Google Scholar] [CrossRef]
- Okoh, S.O.; Iweriegbor, B.C.; Okoh, O.O.; Nwodo, U.U.; A, I.O. Bactericidal and antioxidant properties of essential oils from the fruits Dennettia tripetala G. Baker. BMC Complement. Altern. Med. 2016, 16, 486. [Google Scholar] [CrossRef]
- Khruengsai, S.; Sripahco, T.; Rujanapun, N.; Charoensup, R.; Pripdeevech, P. Chemical composition and biological activity of Peucedanum dhana A. Ham essential oil. Sci. Rep. 2021, 11, 19079. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-J.; Huang, C.-W.; Chen, L.-G.; Wang, C.-C. (+)-Erythro-Δ8′-7 S, 8 R-dihydroxy-3, 3′, 5′-trimethoxy-8-O-4′-neolignan, an Anti-Acne Component in Degreasing Myristica fragrans Houtt. Molecules 2020, 25, 4563. [Google Scholar] [PubMed]
- Antonelo, F.A.; Rodrigues, M.S.; Cruz, L.C.; Pagnoncelli, M.G.; da Cunha, M.A.A.; Bonatto, S.J.R.; Busso, C.; Júnior, A.W.; Montanher, P.F. Bioactive compounds derived from Brazilian Myrtaceae species: Chemical composition and antioxidant, antimicrobial and cytotoxic activities. Biocatal. Agric. Biotechnol. 2023, 48, 102629. [Google Scholar] [CrossRef]
- Jaderi, Z.; Tabatabaei Yazdi, F.; Mortazavi, S.A.; Koocheki, A. Investigation of the Composition, Antimicrobial, Antioxidant, and Cytotoxicity Properties of Salvia abrotanoides Essential Oil. Evid. Based Complement. Altern. Med. 2022, 2022, 9304977. [Google Scholar] [CrossRef]
- Alimpić, A.; Knežević, A.; Milutinović, M.; Stević, T.; Šavikin, K.; Stajić, M.; Marković, S.; Marin, P.D.; Matevski, V.; Duletić-Laušević, S. Biological activities and chemical composition of Salvia amplexicaulis Lam. extracts. J. Ind. Crops 2017, 105, 1–9. [Google Scholar] [CrossRef]
- Asadollahi, M.; Firuzi, O.; Jamebozorgi, F.H.; Alizadeh, M.; Jassbi, A.R. Ethnopharmacological studies, chemical composition, antibacterial and cytotoxic activities of essential oils of eleven Salvia in Iran. J. Herb. Med. 2019, 17, 100250. [Google Scholar] [CrossRef]
- Nikolić, M.; Marković, T.; Marković, D.; Calhelha, R.; Fernandes, Â.; Ferreira, I.; Stojković, D.; Ćirić, A.; Glamočlija, J.; Soković, M. Chemical composition and biological properties of Pelargonium graveolens, Leptospermum petersonii and Cymbopogon martinii var. motia essential oils and of Rosa centifolia absolute. J. Serb. Chem. Soc. 2021, 86, 1291–1303. [Google Scholar] [CrossRef]
- Taghizadeh, S.F.; Rezaee, R.; Mehmandoust, M.; Madarshahi, F.S.; Tsatsakis, A.; Karimi, G. Coronatine elicitation alters chemical composition and biological properties of cumin seed essential oil. Microb. Pathog. 2019, 130, 253–258. [Google Scholar] [CrossRef]
- Saikia, S.; Tamuli, K.J.; Narzary, B.; Banik, D.; Bordoloi, M. Chemical characterization, antimicrobial activity, and cytotoxic activity of Mikania micrantha Kunth flower essential oil from North East India. J. Chem. Pap. 2020, 74, 2515–2528. [Google Scholar] [CrossRef]
- Gao, Y.; Rao, H.; Mao, L.J.; Ma, Q.L. Chemical composition, antioxidant, antibacterial and cytotoxic activities of essential oil of Leontopodium leontopodioides (Willd.) Beauverd. Nat. Prod. Res. 2019, 33, 612–615. [Google Scholar] [CrossRef]
- Ni, J.; Mahdavi, B.; Ghezi, S. Chemical composition, antimicrobial, hemolytic, and antiproliferative activity of essential oils from Ephedra intermedia Schrenk & Mey. J. Essent. Oil-Bear. Plants 2019, 22, 1562–1570. [Google Scholar]
- Nur Onal, F.; Ozturk, I.; Aydin Kose, F.; Der, G.; Kilinc, E.; Baykan, S. Comparative Evaluation of Polyphenol Contents and Biological Activities of Five Cistus L. Species Native to Turkey. Chem. Biodivers. 2023, 20, e202200915. [Google Scholar] [CrossRef]
- Katina, N.; Mikhaylina, A.; Ilina, N.; Eliseeva, I.; Balobanov, V. Near-Wall Aggregation of Amyloidogenic Abeta 1-40 Peptide: Direct Observation by the FRET. Molecules 2021, 26, 7590. [Google Scholar] [CrossRef]
- Bay, M.; Souza de Oliveira, J.V.; Sales Junior, P.A.; Fonseca Murta, S.M.; Rogério Dos Santos, A.; Dos Santos Bastos, I.; Puccinelli Orlandi, P.; Teixeira de Sousa Junior, P. In Vitro Trypanocidal and Antibacterial Activities of Essential Oils from Four Species of the Family Annonaceae. Chem. Biodivers. 2019, 16, e1900359. [Google Scholar] [CrossRef]
- Jamalova, D.N.; Gad, H.A.; Akramov, D.K.; Tojibaev, K.S.; Musayeib, N.M.A.; Ashour, M.L.; Mamadalieva, N.Z. Discrimination of the Essential Oils Obtained from Four Apiaceae Species Using Multivariate Analysis Based on the Chemical Compositions and Their Biological Activity. Plants 2021, 10, 1529. [Google Scholar] [CrossRef]
- Sharopov, F.S.; Khalifaev, P.D.; Satyal, P.; Sun, Y.; Safomuddin, A.; Musozoda, S.; Wink, M.; Setzer, W.N. The chemical composition and biological activity of the essential oil from the underground parts of Ferula tadshikorum (Apiaceae). Rec. Nat. Prod. 2019, 13, 18–23. [Google Scholar]
- Tavakoli, S.; Yassa, N.; Delnavazi, M.; Akhbari, M.; Hadjiakhoondi, A.; Hajimehdipoor, H.; Khalighi-Sigaroodi, F.; Hajiaghaee, R. Chemical composition and biological activities of the essential oils from different parts of Ferulago trifida Boiss. J. Essent. Oil Res. 2017, 29, 407–419. [Google Scholar] [CrossRef]
- Ben Salem, S.; Znati, M.; Jabrane, A.; Casanova, J.; Ben Jannet, H. Chemical composition, antimicrobial, anti-acetylcholinesterase and cytotoxic activities of the root essential oil from the Tunisian Ferula lutea (Poir.) Maire (Apiaceae). J. Essent. Oil-Bear. Plants 2016, 19, 897–906. [Google Scholar]
- Baccari, W.; Saidi, I.; Filali, I.; Znati, M.; Tounsi, M.; Ascrizzi, R.; Flamini, G.; Ben Jannet, H. The root essential oil from the Tunisian endemic plant Ferula tunetana: Chemical composition, biological evaluation, molecular docking analysis and drug-likeness prediction. Arab. J. Chem. 2023, 16, 105044. [Google Scholar] [CrossRef]
- Iacovelli, F.; Romeo, A.; Lattanzio, P.; Ammendola, S.; Battistoni, A.; La Frazia, S.; Vindigni, G.; Unida, V.; Biocca, S.; Gaziano, R.; et al. Deciphering the Broad Antimicrobial Activity of Melaleuca alternifolia Tea Tree Oil by Combining Experimental and Computational Investigations. Int. J. Mol. Sci. 2023, 24, 12432. [Google Scholar] [CrossRef]
- Pintatum, A.; Laphookhieo, S.; Logie, E.; Berghe, W.V.; Maneerat, W. Chemical composition of essential oils from different parts of Zingiber kerrii Craib and their antibacterial, antioxidant, and tyrosinase inhibitory activities. Biomolecules 2020, 10, 228. [Google Scholar] [CrossRef]
- Tian, M.; Liu, T.; Wu, X.; Hong, Y.; Liu, X.; Lin, B.; Zhou, Y. Chemical composition, antioxidant, antimicrobial and anticancer activities of the essential oil from the rhizomes of Zingiber striolatum Diels. Nat. Prod. Res. 2020, 34, 2621–2625. [Google Scholar] [CrossRef]
- Alqub, M.; Hawash, M.; Al-Maharik, N.; Masri, O.; Arafat, M.; Jamous, A.; Ghanim, M. Exploring the Essential Oil of Illicium verum from Palestine: An Investigation into Composition, Antimicrobial Properties, and Anticancer Potential. Palest. Med. Pharm. J. 2024, 9, 9. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Mighri, H.; Aouni, M.; Gharsallah, N.; Kadri, A. Chemical composition and in vitro evaluation of antioxidant, antimicrobial, cytotoxicity and anti-acetylcholinesterase properties of Tunisian Origanum majorana L. essential oil. Microb. Pathog. 2016, 95, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Coccimiglio, J.; Alipour, M.; Jiang, Z.H.; Gottardo, C.; Suntres, Z. Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents. Oxid. Med. Cell. Longev. 2016, 2016, 1404505. [Google Scholar] [CrossRef]
- Kostić, M.; Ivanov, M.; Markovic, T.; Sanković Babić, S.; Barros, L.; Calhelha, R.; Sokovic, M.; Ciric, A. An in vitro study of the Origanum minutiflorum O. Schwarz & PH Davis and Coriandrum sativum L. essential oils as chronic tonsillitis therapeutics: Antibacterial, antibiofilm, antioxidant, and cytotoxic activities. J. Essent. Oil Res. 2022, 34, 533–543. [Google Scholar]
- Paudel, P.N.; Satyal, P.; Setzer, W.N.; Awale, S.; Watanabe, S.; Maneenet, J.; Satyal, R.; Acharya, A.; Phuyal, M.; Gyawali, R. Chemical-Enantiomeric Characterization and In-Vitro Biological Evaluation of the Essential oils from Elsholtzia strobilifera (Benth.) Benth. and E. blanda (Benth.) Benth. from Nepal. Nat. Prod. Commun. 2023, 18, 1934578X231189325. [Google Scholar] [CrossRef]
- Le, X.D.; Pham Thi, N.M.; Cam, T.I.; Do, H.N.; Nguyen Thi, H.V.; Thang, T.D.; Thao, L.P.P.; Do, T.S.; Nguyen, T.D.; Pham, Q.L. Optimization of the Essential Oil Extraction Process from Dong Van Marjoram (E. winitiana var. dongvanensis Phuong.) by Using Microwave Assisted Hydrodistillation, and the Bioactivities of the Oil Against Some Cancer Cell Lines and Bacteria. Nat. Prod. Commun. 2021, 16, 1934578X211054235. [Google Scholar] [CrossRef]
- Tian, M.; Zhao, X.; Wu, X.; Hong, Y.; Chen, Q.; Liu, X.; Zhou, Y. Chemical composition, antibacterial and cytotoxic activities of the essential oil from Ficus tikoua Bur. J. Rec. Nat. Prod. 2020, 14, 219–224. [Google Scholar] [CrossRef]
- Chahdoura, H.; Barreira, J.C.M.; Barros, L.; Dias, M.I.; Calhelha, R.C.; Flamini, G.; Soković, M.; Achour, L.; Ferreira, I.C.F.R. Bioactivity, hydrophilic, lipophilic and volatile compounds in pulps and skins of Opuntia macrorhiza and Opuntia microdasys fruits. LWT 2019, 105, 57–65. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Huang, Z.; Zhao, M.; Li, P.; Zhou, W.; Zhang, K.; Zheng, X.; Lin, L.; Tang, J.; et al. Variation in Essential Oil and Bioactive Compounds of Curcuma kwangsiensis Collected from Natural Habitats. Chem. Biodivers. 2017, 14, e1700020. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Wang, P.; Li, L.; Qu, W.; Liang, J. Antimicrobial, antioxidant and cytotoxic properties of essential oil from Dictamnus angustifolius. J. Ethnopharmacol. 2015, 159, 296–300. [Google Scholar] [CrossRef]
- Jardak, M.; Elloumi-Mseddi, J.; Aifa, S.; Mnif, S. Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health Dis. 2017, 16, 190. [Google Scholar] [CrossRef] [PubMed]
- Sreepian, P.M.; Rattanasinganchan, P.; Sreepian, A. Antibacterial efficacy of Citrus hystrix (makrut lime) essential oil against clinical multidrug-resistant methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates. Saudi Pharm. J. 2023, 31, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Alolga, R.N.; Chavez Leon, M.; Osei-Adjei, G.; Onoja, V. GC-MS-based metabolomics, antibacterial and anti-inflammatory investigations to characterize the quality of essential oil obtained from dried Xylopia aethiopica fruits from Ghana and Nigeria. J. Pharm. Pharmacol. 2019, 71, 1544–1552. [Google Scholar] [CrossRef]
- Salimi-Sabour, E.; F, H.S.; Mahboubi, A.; Mojab, F.; Irani, M. Biological Activities and the Essential Oil Analysis of Cousinia harazensis and C. calocephala. Iran. J. Pharm. Res. IJPR 2021, 20, 140–150. [Google Scholar] [CrossRef]
- Nikolić, B.; Vasilijević, B.; Ćirić, A.; Mitić-Ćulafić, D.; Cvetković, S.; Džamić, A.; Knežević-Vukčević, J. Bioactivity of Juniperus communis essential oil and post-distillation waste: Assessment of selective toxicity against food contaminants. Arch. Biol. Sci. 2019, 71, 235–244. [Google Scholar] [CrossRef]
- Xavier, V.; Finimundy, T.C.; Heleno, S.A.; Amaral, J.S.; Calhelha, R.C.; Vaz, J.; Pires, T.C.; Mediavilla, I.; Esteban, L.S.; Ferreira, I.C. Chemical and bioactive characterization of the essential oils obtained from three Mediterranean plants. Molecules 2021, 26, 7472. [Google Scholar] [CrossRef]
- Liang, S.; Wei, Q.; Xue, J.; Sun, Y.; Chen, Z.; Kuang, H.; Wang, Q. Chemical composition and biological activities of essential oil from Filifolium sibiricum (L.) Kitam. Nat. Prod. Res. 2016, 30, 2861–2863. [Google Scholar] [CrossRef]
- Jawaid, T.; Alaseem, A.M.; Khan, M.M.; Mukhtar, B.; Kamal, M.; Anwer, R.; Ahmed, S.; Alam, A. Preparation and Evaluation of Nanoemulsion of Citronella Essential Oil with Improved Antimicrobial and Anti-Cancer Properties. Antibiotics 2023, 12, 478. [Google Scholar] [CrossRef] [PubMed]
- Diep, T.T.; Dung, L.V.; Trung, P.V.; Hoai, N.T.; Thao, D.T.; Uyen, N.T.T.; Linh, T.T.H.; Ha, T.H.N.; Truc, H.T. Chemical Composition, Antimicrobial, Nitric Oxide Inhibition and Cytotoxic Activity of Essential Oils from Zanthoxylum acanthopodium DC. Leaves and Stems from Vietnam. Chem. Biodivers. 2023, 20, e202300649. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Leal, A.C.; Palou, E.; Lopez-Malo, A.; Bach, H. Antimicrobial, Cytotoxic, and Anti-Inflammatory Activities of Pimenta dioica and Rosmarinus officinalis Essential Oils. Biomed. Res. Int. 2019, 2019, 1639726. [Google Scholar] [CrossRef]
- Petrelli, R.; Orsomando, G.; Sorci, L.; Maggi, F.; Ranjbarian, F.; Biapa Nya, P.C.; Petrelli, D.; Vitali, L.A.; Lupidi, G.; Quassinti, L.; et al. Biological Activities of the Essential Oil from Erigeron floribundus. Molecules 2016, 21, 1065. [Google Scholar] [CrossRef]
- Kiashi, F.; Momeni Nasab, F.; Tavakoli, S.; Aghaahmadi, M.; Goodarzi, S.; Pirali Hamedani, M.; Heidari, F.; Hadjiakhoondi, A.; Tofighi, Z. Trigonella teheranica: A valuable source of phytochemicals with antibacterial, antioxidant and cytotoxic properties. Nat. Prod. Res. 2022, 36, 6405–6409. [Google Scholar] [CrossRef]
- Zengin, G.; Menghini, L.; Di Sotto, A.; Mancinelli, R.; Sisto, F.; Carradori, S.; Cesa, S.; Fraschetti, C.; Filippi, A.; Angiolella, L.; et al. Chromatographic Analyses, In Vitro Biological Activities, and Cytotoxicity of Cannabis sativa L. Essential Oil: A Multidisciplinary Study. Molecules 2018, 23, 3266. [Google Scholar] [CrossRef]
- Wajs-Bonikowska, A.; Szoka, Ł.; Kwiatkowski, P.; Meena, S.N.; Stojakowska, A. Bioprospecting of the Telekia speciosa: Uncovering the composition and biological properties of its essential oils. Appl. Sci. 2023, 13, 5674. [Google Scholar] [CrossRef]
- Martins, E.R.; Diaz, I.E.C.; Paciencia, M.L.B.; Fana, S.A.; Morais, D.; Eberlin, M.N.; Silva, J.S.; Silveira, E.R.; Barros, M.P.; Suffredini, I.B. Interference of Seasonal Variation on the Antimicrobial and Cytotoxic Activities of the Essential Oils from the Leaves of Iryanthera polyneura in the Amazon Rain Forest. Chem. Biodivers. 2019, 16, e1900374. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, T.; Gomes, D.; Simões, R.; da Graça Miguel, M. Tea Tree Oil: Properties and the Therapeutic Approach to Acne—A Review. Antioxidants 2023, 12, 1264. [Google Scholar] [CrossRef]
- da, S.F.G.; da Silva, D.J.; Souza, A.G.; Yudice, E.D.C.; de Campos, I.B.; Col, R.D.; Mourão, A.; Martinho, H.S.; Rosa, D.S. Eco-friendly and effective antimicrobial Melaleuca alternifolia essential oil Pickering emulsions stabilized with cellulose nanofibrils against bacteria and SARS-CoV-2. Int. J. Biol. Macromol. 2023, 243, 125228. [Google Scholar] [CrossRef]
- Kairey, L.; Agnew, T.; Bowles, E.J.; Barkla, B.J.; Wardle, J.; Lauche, R. Efficacy and safety of Melaleuca alternifolia (tea tree) oil for human health—A systematic review of randomized controlled trials. Front. Pharmacol. 2023, 14, 1116077. [Google Scholar] [CrossRef]
- Lee, R.L.; Leung, P.H.; Wong, T.K. A randomized controlled trial of topical tea tree preparation for MRSA colonized wounds. Int. J. Nurs. Sci. 2014, 1, 7–14. [Google Scholar] [CrossRef]
- Lee, M.-k.; Lim, S.; Song, J.-A.; Kim, M.-E.; Hur, M.-H. The effects of aromatherapy essential oil inhalation on stress, sleep quality and immunity in healthy adults: Randomized controlled trial. Eur. J. Integr. Med. 2017, 12, 79–86. [Google Scholar] [CrossRef]
- Hammer, K. Treatment of acne with tea tree oil (melaleuca) products: A review of efficacy, tolerability and potential modes of action. Int. J. Antimicrob. Agents 2015, 45, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Welder, W.M. Melaleuca alternifolia Australian Tea Tree oil as an effective antifungal agent topically for Tinea unguium (onychomycosis). J. Phytopharmacol 2020, 9, 419. [Google Scholar] [CrossRef]
- Kang, H.Y.; Ahn, H.Y.; Kang, M.J.; Hur, M.H. Effects of aromatherapy on sore throat, nasal symptoms and sleep quality in adults infected with COVID-19: A randomized controlled trial. Integr. Med. Res. 2023, 12, 101001. [Google Scholar] [CrossRef]
- Horvath, G.; Acs, K. Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their anti-inflammatory action: A review. Flavour. Fragr. J. 2015, 30, 331–341. [Google Scholar] [CrossRef]
- Capasso, L.; Abbinante, G.; Coppola, A.; Salerno, G.; De Bernardo, M. Recent Evidence of Tea Tree Oil Effectiveness in Blepharitis Treatment. Biomed. Res. Int. 2022, 2022, 9204251. [Google Scholar] [CrossRef]
- Wetmore, B.A. Quantitative in vitro-to-in vivo extrapolation in a high-throughput environment. Toxicology 2015, 332, 94–101. [Google Scholar] [CrossRef]
- Nesslany, F. The current limitations of in vitro genotoxicity testing and their relevance to the in vivo situation. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 106, 609–615. [Google Scholar] [CrossRef]
- Moreau, M.; Mallick, P.; Smeltz, M.; Haider, S.; Nicolas, C.I.; Pendse, S.N.; Leonard, J.A.; Linakis, M.W.; McMullen, P.D.; Clewell, R.A. Considerations for improving metabolism predictions for in vitro to in vivo extrapolation. Front. Toxicol. 2022, 4, 894569. [Google Scholar] [CrossRef]
- Gorwitz, R.J.; Kruszon-Moran, D.; McAllister, S.K.; McQuillan, G.; McDougal, L.K.; Fosheim, G.E.; Jensen, B.J.; Killgore, G.; Tenover, F.C.; Kuehnert, M.J. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001-2004. J. Infect. Dis. 2008, 197, 1226–1234. [Google Scholar] [CrossRef]
- Lade, H.; Joo, H.S.; Kim, J.S. Molecular Basis of Non-beta-Lactam Antibiotics Resistance in Staphylococcus aureus. Antibiotics 2022, 11, 1378. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Warnke, P.H.; Lott, A.J.; Sherry, E.; Wiltfang, J.; Podschun, R. The ongoing battle against multi-resistant strains: In-vitro inhibition of hospital-acquired MRSA, VRE, Pseudomonas, ESBL E. coli and Klebsiella species in the presence of plant-derived antiseptic oils. J. Craniomaxillofacial Surg. 2013, 41, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Dai, T.; Murray, C.K.; Wu, M.X. Bactericidal Property of Oregano Oil Against Multidrug-Resistant Clinical Isolates. Front. Microbiol. 2018, 9, 2329. [Google Scholar] [CrossRef] [PubMed]
- Uzair, B.; Niaz, N.; Bano, A.; Khan, B.A.; Zafar, N.; Iqbal, M.; Tahira, R.; Fasim, F. Essential oils showing in vitro anti MRSA and synergistic activity with penicillin group of antibiotics. Pak. J. Pharm. Sci. 2017, 30, 1997–2002. [Google Scholar]
- Buru, A.S.; Pichika, M.R.; Neela, V.; Mohandas, K. In vitro antibacterial effects of Cinnamomum extracts on common bacteria found in wound infections with emphasis on methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2014, 153, 587–595. [Google Scholar] [CrossRef]
- Almutairi, M.B.F.; Alrouji, M.; Almuhanna, Y.; Asad, M.; Joseph, B. In-Vitro and In-Vivo Antibacterial Effects of Frankincense Oil and Its Interaction with Some Antibiotics against Multidrug-Resistant Pathogens. Antibiotics 2022, 11, 1591. [Google Scholar] [CrossRef]
- Jiang, Y.-M.; Wang, Z.-J.; Tang, D.-M.; Huang, H.; Shi, Y.-Z.; Zhu, Y.-Y.; Luo, X.-D. Eucalyptus globulus residues inhibiting both MRSA and VRE in vitro and in vivo. Ind. Crops Prod. 2025, 226, 120725. [Google Scholar] [CrossRef]
- Kholiya, S.; Punetha, A.; Venkatesha, K.; Kumar, D.; Upadhyay, R.; Padalia, R. Essential oil yield and composition of Ocimum basilicum L. at different phenological stages, plant density and post-harvest drying methods. S. Afr. J. Bot. 2022, 151, 919–925. [Google Scholar]
- Hamid, S.; Oukil, N.F.; Moussa, H.; Djihad, N.; Mróz, M.; Kusznierewicz, B.; Attia, A.; Djenadi, K.; Mahdjoub, M.M.; Bouhenna, M.M. Chemical and biological characterization of Ocimum basilicum L. phenolic extract and essential oil derived through ultrasound and microwave-assisted extraction techniques. J. Food Biosci. 2024, 60, 104359. [Google Scholar] [CrossRef]
- Pandey, A.K.; Singh, P.; Tripathi, N.N. Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pac. J. Trop. Biomed. 2014, 4, 682–694. [Google Scholar] [CrossRef]
- Opalchenova, G.; Obreshkova, D. Comparative studies on the activity of basil--an essential oil from Ocimum basilicum L.—Against multidrug resistant clinical isolates of the genera Staphylococcus, Enterococcus and Pseudomonas by using different test methods. J. Microbiol. Methods 2003, 54, 105–110. [Google Scholar] [CrossRef]
- Garcia, N.G.G.; Daigdigan, V.D.R.; Landingin, E.J.P.; Garcia, G.G.; Natividad, L.R. Antibacterial Effect of Basil (Ocimum basilicum) and Table Salt as Alternative Disinfectants against Staphylococcus aureus. Mindanao J. Sci. Technol. 2023, 21, 1–13. [Google Scholar] [CrossRef]
- Hamdan, M.; Jaradat, N.; Al-Maharik, N.; Ismail, S.; Qadi, M. Chemical composition, cytotoxic effects and antimicrobial activity of combined essential oils from Citrus meyeri, Citrus paradise, and Citrus sinensis leaves. J. Ind. Crops Prod. 2024, 210, 118096. [Google Scholar] [CrossRef]
- Srisukh, V.; Tribuddharat, C.; Nukoolkarn, V.; Bunyapraphatsara, N.; Chokephaibulkit, K.; Phoomniyom, S.; Chuanphung, S.; Srifuengfung, S. Antibacterial activity of essential oils from Citrus hystrix (makrut lime) against respiratory tract pathogens. J. Sci. Asia 2012, 38, 212–217. [Google Scholar] [CrossRef]
- Almeida-Santos, A.C.; Novais, C.; Peixe, L.; Freitas, A.R. Vancomycin-resistant Enterococcus faecium: A current perspective on resilience, adaptation, and the urgent need for novel strategies. J. Glob. Antimicrob. Resist. 2025, 41, 233–252. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, Y.; Tang, J.; Liu, H.; Jing, N.; Li, F.; Xu, R.; Shu, S. Functional Analysis of Sterol O-Acyltransferase Involved in the Biosynthetic Pathway of Pachymic Acid in Wolfiporia cocos. Molecules 2021, 27, 143. [Google Scholar] [CrossRef] [PubMed]
- Wajs-Bonikowska, A.; Szoka, Ł.; Karna, E.; Wiktorowska-Owczarek, A.; Sienkiewicz, M. Abies Concolor Seeds and Cones as New Source of Essential Oils-Composition and Biological Activity. Molecules 2017, 22, 1880. [Google Scholar] [CrossRef] [PubMed]
- Jamil, B.; Abbasi, R.; Abbasi, S.; Imran, M.; Khan, S.U.; Ihsan, A.; Javed, S.; Bokhari, H.; Imran, M. Encapsulation of Cardamom Essential Oil in Chitosan Nano-composites: In-vitro Efficacy on Antibiotic-Resistant Bacterial Pathogens and Cytotoxicity Studies. Front. Microbiol. 2016, 7, 1580. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, C.; Ruiz-Rico, M.; Fuentes, A.; Barat, J.M.; Ruiz, M.J. Comparative cytotoxic study of silica materials functionalised with essential oil components in HepG2 cells. Food Chem. Toxicol. 2021, 147, 111858. [Google Scholar] [CrossRef]
- Weisany, W.; Yousefi, S.; Tahir, N.A.; Golestanehzadeh, N.; McClements, D.J.; Adhikari, B.; Ghasemlou, M. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Adv. Colloid. Interface Sci. 2022, 303, 102655. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Encapsulation strategies to enhance the antibacterial properties of essential oils in food system. J. Food Control 2021, 123, 107856. [Google Scholar] [CrossRef]
- Naz, S.; Javaid, S.; Rehman, S.U.; Razzaq, H. Recent advances in polymer nanoencapsulation of essential oils for multi-functional textile finishing. Mater. Adv. 2025, 6, 2460–2476. [Google Scholar] [CrossRef]
- Samavati, S.S.; Hadizadeh, M.; Abedi, M.; Rabiei, M.; Derakhshankhah, H. Encapsulation of eucalyptus essential oil in chitosan nanoparticles and its effect on MDA-MB-231 cells. J. Nanomed. 2023, 10, 234. [Google Scholar]
- Elmi, A.; Abdoul-Latif, F.M.; Pasc, A.; Risler, A.; Philippot, S.; Gil-Ortiz, R.; Laurain-Mattar, D.; Spina, R. Exploring the Antibacterial Potency of Cymbopogon Essential Oils: Liposome Encapsulation and Phytochemical Insights. Antibiotics 2025, 14, 510. [Google Scholar] [CrossRef]
- Aguzzi, C.; Perinelli, D.R.; Cespi, M.; Zeppa, L.; Mazzara, E.; Maggi, F.; Petrelli, R.; Bonacucina, G.; Nabissi, M. Encapsulation of Hemp (Cannabis sativa L.) Essential Oils into Nanoemulsions for Potential Therapeutic Applications: Assessment of Cytotoxicological Profiles. Molecules 2023, 28, 6479. [Google Scholar] [CrossRef]
- Essid, R.; Ayed, A.; Djebali, K.; Saad, H.; Srasra, M.; Othmani, Y.; Fares, N.; Jallouli, S.; Abid, I.; Alothman, M.R.; et al. Anti-Candida and Anti-Leishmanial Activities of Encapsulated Cinnamomum verum Essential Oil in Chitosan Nanoparticles. Molecules 2023, 28, 5681. [Google Scholar] [CrossRef]
- Omar Zaki, S.S.; Ibrahim, M.N.; Katas, H. Particle size affects concentration—Dependent cytotoxicity of chitosan nanoparticles towards mouse hematopoietic stem cells. J. Nanotechnol. 2015, 2015, 919658. [Google Scholar] [CrossRef]
- Hu, Z.; Zheng, H.; Li, D.; Xiong, X.; Tan, M.; Huang, D.; Guo, X.; Zhang, X.; Yan, H. Self-assembled nanoparticles based on folic acid modified carboxymethyl chitosan conjugated with targeting antibody. Org. Mater. 2016, 31, 446–453. [Google Scholar] [CrossRef]
- Yoncheva, K.; Benbassat, N.; Zaharieva, M.M.; Dimitrova, L.; Kroumov, A.; Spassova, I.; Kovacheva, D.; Najdenski, H.M. Improvement of the Antimicrobial Activity of Oregano Oil by Encapsulation in Chitosan-Alginate Nanoparticles. Molecules 2021, 26, 7017. [Google Scholar] [CrossRef] [PubMed]
- Haggag, M.G.; Shafaa, M.W.; Kareem, H.S.; El-Gamil, A.M.; El-Hendawy, H.H. Screening and enhancement of the antimicrobial activity of some plant oils using liposomes as nanoscale carrier. Bull. Natl. Res. Cent. 2021, 45, 38. [Google Scholar] [CrossRef]
- van Vuuren, S.F.; du Toit, L.C.; Parry, A.; Pillay, V.; Choonara, Y.E. Encapsulation of essential oils within a polymeric liposomal formulation for enhancement of antimicrobial efficacy. Nat. Prod. Commun. 2010, 5, 1401–1408. [Google Scholar] [CrossRef]
- Sathiyaseelan, A.; Zhang, X.; Wang, M.H. Enhancing the Antioxidant, Antibacterial, and Wound Healing Effects of Melaleuca alternifolia Oil by Microencapsulating It in Chitosan-Sodium Alginate Microspheres. Nutrients 2023, 15, 1319. [Google Scholar] [CrossRef]
- Oluoch, G.; Matiru, V.; Mamati, E.G.; Nyongesa, M. Nanoencapsulation of thymol and eugenol with chitosan nanoparticles and the effect against Ralstonia solanacearum. Adv. Microbiol. 2021, 11, 723–739. [Google Scholar] [CrossRef]
- Maccelli, A.; Vitanza, L.; Imbriano, A.; Fraschetti, C.; Filippi, A.; Goldoni, P.; Maurizi, L.; Ammendolia, M.G.; Crestoni, M.E.; Fornarini, S.; et al. Satureja montana L. Essential Oils: Chemical Profiles/Phytochemical Screening, Antimicrobial Activity and O/W NanoEmulsion Formulations. Pharmaceutics 2019, 12, 7. [Google Scholar] [CrossRef]
- Franklyne, J.S.; Andrew Ebenazer, L.; Mukherjee, A.; Natarajan, C. Cinnamon and clove oil nanoemulsions: Novel therapeutic options against vancomycin intermediate susceptible Staphylococcus aureus. Appl. Nanosci. 2019, 9, 1405–1415. [Google Scholar] [CrossRef]
- Blowman, K.; Magalhaes, M.; Lemos, M.F.L.; Cabral, C.; Pires, I.M. Anticancer Properties of Essential Oils and Other Natural Products. Evid. Based Complement. Altern. Med. 2018, 2018, 3149362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belete, B.B.; Ozkan, J.; Kalaiselvan, P.; Willcox, M. Clinical Potential of Essential Oils: Cytotoxicity, Selectivity Index, and Efficacy for Combating Gram-Positive ESKAPE Pathogens. Molecules 2025, 30, 3873. https://doi.org/10.3390/molecules30193873
Belete BB, Ozkan J, Kalaiselvan P, Willcox M. Clinical Potential of Essential Oils: Cytotoxicity, Selectivity Index, and Efficacy for Combating Gram-Positive ESKAPE Pathogens. Molecules. 2025; 30(19):3873. https://doi.org/10.3390/molecules30193873
Chicago/Turabian StyleBelete, Biruk Bayleyegn, Jerome Ozkan, Parthasarathi Kalaiselvan, and Mark Willcox. 2025. "Clinical Potential of Essential Oils: Cytotoxicity, Selectivity Index, and Efficacy for Combating Gram-Positive ESKAPE Pathogens" Molecules 30, no. 19: 3873. https://doi.org/10.3390/molecules30193873
APA StyleBelete, B. B., Ozkan, J., Kalaiselvan, P., & Willcox, M. (2025). Clinical Potential of Essential Oils: Cytotoxicity, Selectivity Index, and Efficacy for Combating Gram-Positive ESKAPE Pathogens. Molecules, 30(19), 3873. https://doi.org/10.3390/molecules30193873