Enhanced Stability and Charge Separation of InP by Assembling Al2O3 and Metallic Al for Photocatalytic Overall Water Splitting
Abstract
1. Introduction
2. Results and Discussion
2.1. XRD Analysis
2.2. Morphological Analysis
2.3. UV-Vis-NIR Analysis
2.4. XPS Analysis
2.5. Photocatalytic Hydrogen Production Performance
2.6. Isotope Tracing Experiment and AQE Analysis
2.7. Electrochemical Analysis
2.8. Photoluminescence Spectra Analysis
2.9. Mechanism Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of Photocatalysts
3.2.1. Preparation of InP/Al Sample
3.2.2. Preparation of Al2O3/InP/Al Sample
3.3. Photocatalytic H2 Evolution Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.; Khan, M.K.; Kim, J. Revolutionary advancements in carbon dioxide valorization via metal-organic framework-based strategies. Carbon Capture Sci. Technol. 2025, 15, 100405. [Google Scholar] [CrossRef]
- Sohail, M.; Rauf, S.; Irfan, M.; Hayat, A.; Alghamdi, M.M.; El-Zahhar, A.A.; Ghernaout, D.; Al-Hadeethi, Y.; Lv, W. Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. Nanoscale Adv. 2024, 6, 1286–1330. [Google Scholar] [CrossRef]
- Riera, J.A.; Lima, R.M.; Knio, O.M. A review of hydrogen production and supply chain modeling and optimization. Int. J. Hydrogen Energy 2023, 48, 13731–13755. [Google Scholar] [CrossRef]
- Zhou, J.; Tian, Y.; Gu, H.; Jiang, B. Photocatalytic hydrogen evolution: Recent advances in materials, modifications, and photothermal synergy. Int. J. Hydrogen Energy 2025, 115, 113–130. [Google Scholar] [CrossRef]
- Lin, Z.; Saito, H.; Sato, H.; Sugimoto, T. Positive and Negative Impacts of Interfacial Hydrogen Bonds on Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2024, 146, 22276–22283. [Google Scholar] [CrossRef]
- Jana, B.; Reva, Y.; Scharl, T.; Strauss, V.; Cadranel, A.; Guldi, D.M. Carbon Nanodots for All-in-One Photocatalytic Hydrogen Generation. J. Am. Chem. Soc. 2021, 143, 20122–20132. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.Z.; Gascon, J. Is photocatalytic hydrogen production closer to application? Chem Catal. 2023, 3, 100536. [Google Scholar] [CrossRef]
- Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414. [Google Scholar] [CrossRef]
- Suzuki, T.M.; Saeki, S.; Sekizawa, K.; Kitazumi, K.; Takahashi, N.; Morikawa, T. Photoelectrochemical hydrogen production by water splitting over dual-functionally modified oxide: P-Type N-doped Ta2O5 photocathode active under visible light irradiation. Appl. Catal. B 2017, 202, 597–604. [Google Scholar] [CrossRef]
- Impemba, S.; Provinciali, G.; Filippi, J.; Salvatici, C.; Berretti, E.; Caporali, S.; Banchelli, M.; Caporali, M. Engineering the heterojunction between TiO2 and In2O3 for improving the solar-driven hydrogen production. Int. J. Hydrogen Energy 2024, 63, 896–904. [Google Scholar] [CrossRef]
- Edalati, K.; Fujita, I.; Takechi, S.; Nakashima, Y.; Kumano, K.; Razavi-Khosroshahi, H.; Arita, M.; Watanabe, M.; Sauvage, X.; Akbay, T.; et al. Photocatalytic activity of aluminum oxide by oxygen vacancy generation using high-pressure torsion straining. Scr. Mater. 2019, 173, 120–124. [Google Scholar] [CrossRef]
- Liu, E.; Chen, J.; Ma, Y.; Feng, J.; Jia, J.; Fan, J.; Hu, X. Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting. J. Colloid Interface Sci. 2018, 524, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Nan, H.; Wu, W.; Feng, K.; Shan, B.; Qiu, Y.; Zhang, Y. Improved photocatalytic efficiency and stability of CdS/ZnO shell/core nanoarrays with high coverage and enhanced interface combination. Int. J. Hydrogen Energy 2017, 42, 848–857. [Google Scholar] [CrossRef]
- Wang, Z.; Su, B.; Xu, J.; Hou, Y.; Ding, Z. Direct Z-scheme ZnIn2S4/LaNiO3 nanohybrid with enhanced photocatalytic performance for H2 evolution. Int. J. Hydrogen Energy 2020, 45, 4113–4121. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Yang, L.; Zhang, M.; Zhu, H.; Wang, F.; Yin, J. Co3O4 imbedded g-C3N4 heterojunction photocatalysts for visible-light-driven hydrogen evolution. Renew. Energy 2020, 145, 691–698. [Google Scholar] [CrossRef]
- Deng, C.; Zhu, J.; Huang, Y. Performance of nanoparticle-enhanced thin-film solar cell with near-perfect absorption. Phys. B 2024, 685, 416032. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, M.; Zhong, M.; Ma, L.; Wang, F.; Ma, L.; Shen, W. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production. Sci. Rep. 2016, 6, 29738. [Google Scholar] [CrossRef]
- Jo, J.-H.; Jo, D.-Y.; Choi, S.-W.; Lee, S.-H.; Kim, H.-M.; Yoon, S.-Y.; Kim, Y.; Han, J.-N.; Yang, H. Highly Bright, Narrow Emissivity of InP Quantum Dots Synthesized by Aminophosphine: Effects of Double Shelling Scheme and Ga Treatment. Adv. Opt. Mater. 2021, 9, 2100427. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, P.; Zhao, X.; Qu, L.; Lai, X. InP and Sn:InP based quantum dot sensitized solar cells. J. Mater. Chem. A 2015, 3, 21922–21929. [Google Scholar] [CrossRef]
- Dursap, T.; Fadel, M.; Regreny, P.; Tapia Garcia, C.; Chevalier, C.; Nguyen, H.S.; Drouard, E.; Brottet, S.; Gendry, M.; Danescu, A.; et al. Enhanced Light Trapping in GaAs/TiO2-Based Photocathodes for Hydrogen Production. ACS Appl. Mater. Interfaces 2023, 15, 53446–53454. [Google Scholar] [CrossRef] [PubMed]
- Rana, P.; Soni, V.; Kumar, R.; Sonu; Chawla, A.; Parwaz Khan, A.A.; Singh, P.; Thakur, S.; Raizada, P.; Alzahrani, K.A. Advances in photocatalytic hydrogen production with ZnO/ZnS-Based nanostructured materials. Fuel 2025, 386, 134286. [Google Scholar] [CrossRef]
- Chen, Z.; Cheng, C.; Xing, F.; Huang, C. Strong interfacial coupling for NiS thin layer covered CdS nanorods with highly efficient photocatalytic hydrogen production. New J. Chem. 2020, 44, 19083–19090. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.; Choi, B.J. Interfacial characteristics of Au/Al2O3/InP metal-insulator-semiconductor diodes. AIP Adv. 2018, 8, 095022. [Google Scholar] [CrossRef]
- He, G.; Gao, J.; Chen, H.; Cui, J.; Sun, Z.; Chen, X. Modulating the Interface Quality and Electrical Properties of HfTiO/InGaAs Gate Stack by Atomic-Layer-Deposition-Derived Al2O3 Passivation Layer. ACS Appl. Mater. Interfaces 2014, 6, 22013–22025. [Google Scholar] [CrossRef]
- Lu, H.-L.; Sun, L.; Ding, S.-J.; Xu, M.; Zhang, D.W.; Wang, L.-K. Characterization of atomic-layer-deposited Al2O3/GaAs interface improved by NH3 plasma pretreatment. Appl. Phys. Lett. 2006, 89, 152910. [Google Scholar] [CrossRef]
- Ning, X.; Zhen, W.; Wu, Y.; Lu, G. Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Appl. Catal. B 2018, 226, 373–383. [Google Scholar] [CrossRef]
- Willis, D.E.; Taheri, M.M.; Kizilkaya, O.; Leite, T.R.; Zhang, L.; Ofoegbuna, T.; Ding, K.; Dorman, J.A.; Baxter, J.B.; McPeak, K.M. Critical Coupling of Visible Light Extends Hot-Electron Lifetimes for H2O2 Synthesis. ACS Appl. Mater. Interfaces 2020, 12, 22778–22788. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Q.; Zhang, S.; Yang, Y.; Zhang, X.; Zhao, H.; Qin, W.; Zhou, W.; Wang, X.; Liu, H.; et al. Electromagnetic induction derived micro-electric potential in metal-semiconductor core-shell hybrid nanostructure enhancing charge separation for high performance photocatalysis. Nano Energy 2020, 71, 104624. [Google Scholar] [CrossRef]
- Bayles, A.; Tian, S.; Zhou, J.; Yuan, L.; Yuan, Y.; Jacobson, C.R.; Farr, C.; Zhang, M.; Swearer, D.F.; Solti, D.; et al. Al@TiO2 Core–Shell Nanoparticles for Plasmonic Photocatalysis. ACS Nano 2022, 16, 5839–5850. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, M.; Li, J. Enhanced photocatalysis of TiO2 by aluminum plasmonic. Catal. Today 2021, 376, 162–167. [Google Scholar] [CrossRef]
- Ma, H.; Wei, Q.; Chen, W.; Li, Q. Corrosion shielding effect of polyaluminium sulphate on metallic aluminium during the solidification of radioactive incineration bottom ash by low alkalinity cement. Constr. Build. Mater. 2024, 447, 137970. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Liu, Y.; Zhao, Y.; Zhang, H.; Chen, D.; Zong, S.; Wang, J. Synthesis of InP quantum dot decorated Bi2WO6 microspheres for the efficient photocatalytic production of hydrogen peroxide in water. J. Alloys Compd. 2025, 1011, 178253. [Google Scholar] [CrossRef]
- Fazal, T.; Ismail, B.; Khan, A.; Khan, I.; Shah, M.; Bahadur, A.; Iqbal, S.; Mahmood, S.; Alam, S.; Ali, F.; et al. Synthesis and Characterization of Undoped and Strontium-Doped Zinc Ferrites for Applications of Solid Oxide Fuel Cells and Photocatalytic Hydrogen Generation. Luminescence 2025, 40, e70210. [Google Scholar] [CrossRef]
- Mittal, H.; Kumar, A.; Sharma, D.; Khanuja, M. Z-Scheme Enabled 1D/2D Nanocomposite of ZnO Nanorods and Functionalized g-C3N4 Nanosheets for Sustainable Degradation of Terephthalic Acid. ChemSusChem 2025, 18, e202401408. [Google Scholar] [CrossRef]
- Pan, J.S.; Tay, S.T.; Huan, C.H.A.; Wee, A.T.S. XPS study of incident angle effects on the ion beam modification of InP surfaces by 6 keV O2+. Surf. Interface Anal. 1999, 27, 993–997. [Google Scholar] [CrossRef]
- Gonçalves, A.-M.; Mézailles, N.; Mathieu, C.; Le Floch, P.; Etcheberry, A. Fully Protective yet Functionalizable Monolayer on InP. Chem. Mater. 2010, 22, 3114–3120. [Google Scholar] [CrossRef]
- Quinlan, K.P.; Yip, P.W.; Rai, A.K.; Wittberg, T.N. Oxidation of n-InP and Indium in the Negative Potential Region at pH 5. J. Electrochem. Soc. 1996, 143, 524. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; So, S.; Nguyen, Q.H.; Kim, I.T.; Hur, J. Mechanochemical synthesis of InP nanoparticles embedded in hybrid conductive matrix for high-performance lithium-ion batteries. Chem. Eng. J. 2020, 399, 125826. [Google Scholar] [CrossRef]
- Huang, K.; Demadrille, R.; Silly, M.G.; Sirotti, F.; Reiss, P.; Renault, O. Internal Structure of InP/ZnS Nanocrystals Unraveled by High-Resolution Soft X-ray Photoelectron Spectroscopy. ACS Nano 2010, 4, 4799–4805. [Google Scholar] [CrossRef]
- Ghori, M.Z.; Veziroglu, S.; Hinz, A.; Shurtleff, B.B.; Polonskyi, O.; Strunskus, T.; Adam, J.; Faupel, F.; Aktas, O.C. Role of UV Plasmonics in the Photocatalytic Performance of TiO2 Decorated with Aluminum Nanoparticles. ACS Appl. Nano Mater. 2018, 1, 3760–3764. [Google Scholar] [CrossRef]
- Chen, S.-Z.; Zhang, P.-Y.; Zhu, W.-P.; Chen, L.; Xu, S.-M. Deactivation of TiO2 photocatalytic films loaded on aluminium: XPS and AFM analyses. Appl. Surf. Sci. 2006, 252, 7532–7538. [Google Scholar] [CrossRef]
- Lin, J.-H.; Patil, R.A.; Devan, R.S.; Liu, Z.-A.; Wang, Y.-P.; Ho, C.-H.; Liou, Y.; Ma, Y.-R. Photoluminescence mechanisms of metallic Zn nanospheres, semiconducting ZnO nanoballoons and metal-semiconductor Zn/ZnO nanospheres. Sci. Rep. 2014, 4, 6967. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, X.; Liu, J.; Tian, Z.; Dai, L.; He, B.; Han, C.; Wu, Y.; Zeng, Z.; Hu, Z. On the role of localized surface plasmon resonance in UV-Vis light irradiated Au/TiO2 photocatalysis systems: Pros and cons. Nanoscale 2015, 7, 4114–4123. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Wang, H. ZIF-8 Derived ZnO Decorated with Polydopamine and Au Nanoparticles for Efficient Photocatalytic Degradation of Rhodamine B. ChemistrySelect 2021, 6, 5356–5365. [Google Scholar] [CrossRef]
- Galatage, R.V.; Dong, H.; Zhernokletov, D.M.; Brennan, B.; Hinkle, C.L.; Wallace, R.M.; Vogel, E.M. Electrical and chemical characteristics of Al2O3/InP metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 2013, 102, 132903. [Google Scholar] [CrossRef]
- Besland, M.P.; Jourba, S.; Lambrinos, M.; Louis, P.; Viktorovitch, P.; Hollinger, G. Optimized SiO2/InP structures prepared by electron cyclotron resonance plasma. J. Appl. Phys. 1996, 80, 3100–3109. [Google Scholar] [CrossRef]
- Virieux, H.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W.-S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS Nanocrystals: Coupling NMR and XPS for Fine Surface and Interface Description. J. Am. Chem. Soc. 2012, 134, 19701–19708. [Google Scholar] [CrossRef]
- Geisz, J.F.; France, R.M.; Schulte, K.L.; Steiner, M.A.; Norman, A.G.; Guthrey, H.L.; Young, M.R.; Song, T.; Moriarty, T. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy 2020, 5, 326–335. [Google Scholar] [CrossRef]
- Feng, Y.; Fang, X.; Zang, J.; Song, B.; Hu, C.; Dong, X.; Ding, Y. Improvement of charge-transfer kinetics via MXene and cobalt containing polyoxometalate loading on CdS for photocatalytic hydrogen production. Sci. China Chem. 2025, 68, 772–780. [Google Scholar] [CrossRef]
- Zhao, Z.; Han, H.; Dong, J.; Zhou, J.; Shu, Z. Simultaneously optimizing optical response and exciton dissociation of amino-rich red poly(heptazine imide) nanoparticles with tunable n–π* electronic transition for improved photocatalytic hydrogen evolution. Sep. Purif. Technol. 2025, 361, 131331. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, C.; Guo, L.; Ali Soomro, R.; Niu, M.; Yang, Z.; Du, R.; Wang, D.; Fu, F.; Xu, B. Synergism of electronic structure regulation and interface engineering for boosting hydrogen evolution reaction on S-Scheme FeS2/S-ZnSnO3 heterostructure. Appl. Surf. Sci. 2023, 625, 157192. [Google Scholar] [CrossRef]
- Liu, G.; Narangari, P.R.; Trinh, Q.T.; Tu, W.; Kraft, M.; Tan, H.H.; Jagadish, C.; Choksi, T.S.; Ager, J.W.; Karuturi, S.; et al. Manipulating Intermediates at the Au–TiO2 Interface over InP Nanopillar Array for Photoelectrochemical CO2 Reduction. ACS Catal. 2021, 11, 11416–11428. [Google Scholar] [CrossRef]
- Jia, M.; Lu, G. 750 nm visible light-driven overall water splitting to H2 and O2 over Boron-doped Zn3As2 photocatalyst. Appl. Catal. B 2023, 338, 123045. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, S.; Zheng, X.; Li, D.; Zhu, J.; Zhang, M.; Jiang, D. Synergizing Cobalt Ruthenium Alloy with Chromium Oxyhydroxide for Highly Efficient Electrocatalytic Water Splitting. Inorg. Chem. 2022, 61, 17557–17567. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, Y.; Li, Y.; Zhao, K.; Deng, H.; Lou, Y.; Chen, J.; Yu, H.; Cheng, L. Efficient photocatalytic overall water splitting by synergistically enhancing bulk charge separation and surface reaction kinetics in Co3O4–decorated ZnO@ZnS core-shell structures. Chem. Eng. J. 2020, 393, 124681. [Google Scholar] [CrossRef]
- Dingemans, G.; Kessels, W.M.M. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J. Vac. Sci. Technol. A 2012, 30, 040802. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhu, X.; Mei, A.; Qin, F.; Liu, S.; Zhang, S.; Jiang, Y.; Zhou, Y.; Han, H. Bifunctional Al2O3 Interlayer Leads to Enhanced Open-Circuit Voltage for Hole-Conductor-Free Carbon-Based Perovskite Solar Cells. Sol. RRL 2018, 2, 1800002. [Google Scholar] [CrossRef]
- Vequizo, J.J.M.; Kato, K.; Chen, S.; Hisatomi, T.; Wang, Z.; Takata, T.; Yamakata, A.; Domen, K. Boosted Photocatalytic Water Oxidation over BaTaO2N Produced from Perovskite Oxides Based on Photoinduced Charge Carriers. Energy Fuels 2025, 39, 6584–6591. [Google Scholar] [CrossRef]
- Deonikar, V.G.; Kim, H. Energy exchange potentials and superior reversibility of modulated tungsten oxide hydrate photochromic thin films and nano inks with the assistance of LSPR and non-LSPR agents. Mater. Today Chem. 2022, 26, 101080. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, Z.; Zhang, X.; Cai, Y.; Wang, W.; Liang, Y. Synergetic effect of surface plasmon resonance and Schottky junction to drastically boost solar-driven photoelectrochemical hydrogen production and photocatalytic performance of CdS/Al nanorod arrays. Energy Convers. Manag. 2022, 268, 115978. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Song, M.; Liu, F.; Lan, D.-H.; Yin, S.-F.; Chen, P. Local polarization redistribution in ZnmIn2S3+m for the enhancing synergetic piezo-photocatalytic overall water splitting. J. Colloid Interface Sci. 2024, 665, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; Hu, W.; Wang, J.; Sun, M.; Huang, Z.; Xie, M.; Yu, Y. Dramatically promoted photocatalytic water splitting over InVO4 via extending hole diffusion length by surface polarization. Chem. Eng. J. 2022, 435, 135005. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Li, L.; Yan, W.; Wang, H.; Mao, W.; Cui, Y.; Li, Y.; Zhu, X. Synergizing the internal electric field and ferroelectric polarization of the BiFeO3/ZnIn2S4 Z-scheme heterojunction for photocatalytic overall water splitting. J. Mater. Chem. A 2023, 11, 434–446. [Google Scholar]
- Liu, X.; Zhang, J.; Xu, J.; Li, Y.; Du, Y.; Jiang, Y.; Lin, K. Hydroxyl-modified Nb4C3Tx MXene@ZnIn2S4 sandwich structure for photocatalytic overall water splitting. J. Colloid Interface Sci. 2023, 633, 992–1001. [Google Scholar] [CrossRef]
- Sun, B.; Bu, J.; Chen, X.; Fan, D.; Li, S.; Li, Z.; Zhou, W.; Du, Y. In-situ interstitial zinc doping-mediated efficient charge separation for ZnIn2S4 nanosheets visible-light photocatalysts towards optimized overall water splitting. Chem. Eng. J. 2022, 435, 135074. [Google Scholar] [CrossRef]
- Jia, M.; Ning, X.; Lu, G. Stable and wide spectrum response Zn3As2/Al2O3 photocatalyst for photocatalytic overall water splitting. Int. J. Hydrogen Energy 2024, 51, 1366–1374. [Google Scholar] [CrossRef]
Samples | Lifetime (ns) | Pre-Exponential Factors B | Average Lifetime (ns) | Residual Weighting (X2) |
---|---|---|---|---|
InP | T1 | 6.60 | 2.34 | 0.9951 |
T2 | 0.95 | |||
InP/Al | T1 | 13.91 | 4.14 | 0.9987 |
T2 | 1.01 | |||
0.6%Al2O3/InP/Al | T1 | 17.42 | 5.23 | 1.0404 |
T2 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Zhen, W.; Ning, X.; Han, Z.; Lu, G. Enhanced Stability and Charge Separation of InP by Assembling Al2O3 and Metallic Al for Photocatalytic Overall Water Splitting. Molecules 2025, 30, 3822. https://doi.org/10.3390/molecules30183822
Yin Z, Zhen W, Ning X, Han Z, Lu G. Enhanced Stability and Charge Separation of InP by Assembling Al2O3 and Metallic Al for Photocatalytic Overall Water Splitting. Molecules. 2025; 30(18):3822. https://doi.org/10.3390/molecules30183822
Chicago/Turabian StyleYin, Zhiquan, Wenlong Zhen, Xiaofeng Ning, Zhengzhi Han, and Gongxuan Lu. 2025. "Enhanced Stability and Charge Separation of InP by Assembling Al2O3 and Metallic Al for Photocatalytic Overall Water Splitting" Molecules 30, no. 18: 3822. https://doi.org/10.3390/molecules30183822
APA StyleYin, Z., Zhen, W., Ning, X., Han, Z., & Lu, G. (2025). Enhanced Stability and Charge Separation of InP by Assembling Al2O3 and Metallic Al for Photocatalytic Overall Water Splitting. Molecules, 30(18), 3822. https://doi.org/10.3390/molecules30183822