Determination of Theophylline Across Biological, Environmental and Food Matrices Using Liquid-Phase Microextraction Coupled with LC-MS/MS
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimization of Extraction Parameters
2.1.1. Selection of Organic Solvent
2.1.2. Optimization of Donor Phase
2.1.3. Optimization of Acceptor Phase
2.1.4. Optimization of Temperature and Time
2.2. Validation of Analytical Method
2.3. Analysis of Real Samples
2.4. Comparison with Other Methods
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Extraction Setup and Procedures
3.3. Method Validation and Application
3.4. LC-MS/MS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COPD | Chronic obstructive pulmonary disease |
CYP1A2 | Cytochrome P450 family 1 subfamily A member 2 |
TDM | Therapeutic drug monitoring |
UV-Vis | Ultraviolet–visible spectroscopy |
HPLC | High-performance liquid chromatography |
LC-MS/MS | Liquid chromatography–tandem mass spectrometry |
LPME | Liquid-phase microextraction |
SLM | Supported liquid membrane |
FM-LPME | Flat membrane-based LPME |
TBP | Tributyl phosphate |
LOD | Limit of detection |
LOQ | Limit of quantification |
Cl | Confidence interval |
RSD | Relative standard deviation |
UPLC | Ultra-performance liquid chromatography |
References
- Nassif, E.G.; Weinberger, M.; Thompson, R.; Huntley, W. The value of maintenance theophylline in steroid-dependent asthma. N. Engl. J. Med. 1981, 304, 71–75. [Google Scholar] [CrossRef]
- Szarłowicz, J.; Mazur, M.; Waz, D.; Goliszek, Z.; Sobek, K.Ł.; Tabin-Barczak, W.; Sokołowska, A.; Fikas, K.; Chwaliszewski, K.; Samuła, S. Theophylline revisited. mechanisms, challenges, and new horizons. Qual. Sport 2025, 37, 57009. [Google Scholar] [CrossRef]
- Goh, J.W.; Thaw, M.M.; Ramim, J.U.; Mukherjee, R.; Ramim, M.J.U. Theophylline toxicity: A differential to consider in patients on Long-Term Theophylline presenting with nonspecific symptoms. Cureus 2023, 15, e48480. [Google Scholar] [CrossRef]
- Scurek, M.; Brat, K. A narrative review of theophylline: Is there still a place for an old friend? J. Thorac. Dis. 2024, 16, 3450. [Google Scholar] [CrossRef]
- Hendeles, L.; Bighley, L.; Richardson, R.H.; Hepler, C.D.; Carmichael, J. Frequent toxicity from IV aminophylline infusions in critically ill patients. Ann. Pharmacother. 2006, 40, 1417–1423. [Google Scholar] [CrossRef]
- Weinberger, M. The pharmacology and therapeutic use of theophylline. J. Allergy Clin. Immunol. 1984, 73, 525–540. [Google Scholar] [CrossRef] [PubMed]
- Menacherry, S.P.M.; Aravind, U.K.; Aravindakumar, C.T. Oxidative degradation of pharmaceutical waste, theophylline, from natural environment. Atmosphere 2022, 13, 835. [Google Scholar] [CrossRef]
- Gonzales-Yépez, K.A.; Vilela, J.L.; Reátegui, O. Determination of caffeine, theobromine, and theophylline by HPLC-DAD in beverages commonly consumed in Lima, Peru. Int. J. Food Sci. 2023, 2023, 4323645. [Google Scholar] [CrossRef] [PubMed]
- Yim, E.Y.; Kang, H.R.; Jung, J.W.; Sohn, S.W.; Cho, S.H. CYP1A2 polymorphism and theophylline clearance in Korean non-smoking asthmatics. Asia Pac. Allergy 2013, 3, 231–240. [Google Scholar] [CrossRef]
- Shuai, T.; Zhang, C.; Zhang, M.; Wang, Y.; Xiong, H.; Huang, Q.; Liu, J. Low-dose theophylline in addition to ICS therapy in COPD patients: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251348. [Google Scholar] [CrossRef]
- Ginsberg, G.; Hattis, D.; Russ, A.; Sonawane, B. Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonates and adults: Implications for assessing children’s risks from environmental agents. J. Toxicol. Environ. Health A 2004, 67, 297–329. [Google Scholar] [CrossRef]
- Okada, A.; Sera, S.; Taguchi, M.; Yamada, H.; Nagai, N. Current status and usefulness of therapeutic drug monitoring implementation of theophylline in elderly patients based on a nationwide database study and modeling approach. Sci. Prog. 2024, 107, 00368504241285122. [Google Scholar] [CrossRef]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999, 107, 907–938. [Google Scholar] [CrossRef]
- Hassaninejad-Darzi, S.K.; Samadi-Maybodi, A.; Nikou, S.M. UV-vis spectrophotometry and multivariate calibration method for simultaneous determination of theophylline, montelukast and loratadine in tablet preparations and spiked human plasma. Iran. J. Pharm. Res. 2016, 15, 379. [Google Scholar] [PubMed]
- Zhou, M.X.; Guan, C.Y.; Chen, G.; Xie, X.Y.; Wu, S.H. Determination of theophylline concentration in serum by chemiluminescent immunoassay. J. Zhejiang Univ. Sci. B 2005, 6, 1148–1152. [Google Scholar] [CrossRef] [PubMed]
- Nirogi, R.V.; Kandikere, V.N.; Shukla, M.; Mudigonda, K.; Ajjala, D.R. A simple and rapid HPLC/UV method for the simultaneous quantification of theophylline and etofylline in human plasma. J. Chromatogr. B 2007, 848, 271–276. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.E.; Phillips, O.A. LC–MS/MS determination of carbamazepine, pindolol, and theophylline in human serum. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 1937–1957. [Google Scholar] [CrossRef]
- Chae, J.W.; Kim, D.H.; Lee, B.Y.; Kim, E.; Kwang, K.I. Development and validation of a sensitive LC-MS/MS method for the simultaneous quantitation of theophylline and its metabolites in rat plasma. J. Chromatogr. B 2012, 889, 44–49. [Google Scholar] [CrossRef]
- Kaufmann, A. High-resolution mass spectrometry for bioanalytical applications: Is this the new gold standard? J. Mass Spectrom. 2020, 55, e4533. [Google Scholar] [CrossRef]
- Panuwet, P.; Hunter, R.E., Jr.; D’Souza, P.E.; Chen, X.; Radford, S.A.; Cohen, J.R.; Marder, M.E.; Kartavenka, K.; Ryan, P.B.; Barr, D.B. Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: Advancing biomonitoring. Crit. Rev. Anal. Chem. 2016, 46, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, S.G.; Queiroga, K.F.; De Oliveira, A.M.F.; Tavares, J.F.; Gutierrez, S.J.C.; Diniz, M.D.F.F.M.; Barbosa-Filho, J.M.; da Silva, M.S. Blood matrix effects for male and female Wistar rats, in simultaneous HPLC-UV determination of riparin I and III from Aniba riparia (Nees) Mez. (Lauraceae). Talanta 2011, 86, 233–240. [Google Scholar] [CrossRef]
- Wamsley, M.; Zou, S.; Zhang, D. Advancing evidence-based data interpretation in UV–Vis and fluorescence analysis for nanomaterials: An analytical chemistry perspective. Anal. Chem. 2023, 95, 17426–17437. [Google Scholar] [CrossRef]
- Sotnikov, D.V.; Zherdev, A.V.; Zvereva, E.A.; Eremin, S.A.; Dzantiev, B.B. Changing cross-reactivity for different immunoassays using the same antibodies: Theoretical description and experimental confirmation. Appl. Sci. 2021, 11, 6581. [Google Scholar] [CrossRef]
- Paci, E.; Pigini, D.; Caporossi, L.; De Rosa, M.; Santoro, A.; Sisto, R.; Papaleo, B.; Tranfo, G. Matrix effect in the quantitative determination of mandelic and phenylglyoxylic acid in urine samples by HPLC-MS/MS with isotopic dilution. Curr. Anal. Chem. 2013, 9, 439–446. [Google Scholar]
- Trufelli, H.; Palma, P.; Famiglini, G.; Cappiello, A. An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrom. Rev. 2011, 30, 491–509. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, P.; Liu, M.L.; Zhang, X. Effects of metal ions on human serum albumin studied by radiation damping water-ligand observed via gradient spectroscopy. Chin. J. Magn. Reson. 2017, 34, 266–274. [Google Scholar]
- Antosova, A.; Gancar, M.; Bednarikova, Z.; Marek, J.; Bystrenova, E.; Gazova, Z. The influence of cations on α-lactalbumin amyloid aggregation. J. Biol. Inorg. Chem. 2022, 27, 679–689. [Google Scholar] [CrossRef]
- Clifford, M.N.; Stoupi, S.; Kuhnert, N. Profiling and characterization by LC-MSn of the galloylquinic acids of green tea, tara tannin, and tannic acid. J. Agric. Food Chem. 2007, 55, 2797–2807. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Li, G.; Row, K.H.; Zhu, T. Preparation of hybrid molecularly imprinted polymer with double-templates for rapid simultaneous purification of theophylline and chlorogenic acid in green tea. Talanta 2016, 152, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Shen, J.; Wang, C.; Wei, Y. Selective extraction of theophylline from plasma by copper-doped magnetic microspheres prior to its quantification by HPLC. Microchim. Acta 2018, 185, 113. [Google Scholar] [CrossRef]
- Khorrami, A.R.; Rashidpur, A. Design of a new cartridge for selective solid phase extraction using molecularly imprinted polymers: Selective extraction of theophylline from human serum samples. Biosens. Bioelectron. 2009, 25, 647–651. [Google Scholar] [CrossRef]
- Ghoraba, Z.; Aibaghi, B.; Soleymanpour, A. Ultrasound-assisted surfactant-enhanced emulsification microextraction and determination of caffeine and theophylline in human plasma and cocoa powder. Chem. Pap. 2022, 76, 5487–5496. [Google Scholar] [CrossRef]
- Dolatabadi, R.; Zaheri, M.; Ebrahimi, S.; Mohammadi, A. A study on determination of theophylline in plasma and urine sample using electromembrane extraction combined with high-performance liquid chromatography–ultraviolet. Chem. Pap. 2022, 76, 681–690. [Google Scholar] [CrossRef]
- Zhu, R.Q.; Dong, Y.; Cai, X.Y.; Huang, C.X. Determination of barbiturates in biological specimens by flat membrane-based liquid-phase microextraction and liquid chromatography-mass spectrometry. Molecules 2019, 24, 1494. [Google Scholar] [CrossRef]
- Huang, C.X.; Seip, K.F.; Gjelstad, A.; Shen, X.T.; Pedersen-Bjergaard, S. Combination of electromembrane extraction and liquid-phase microextraction in a single step: Simultaneous group separation of acidic and basic drugs. Anal. Chem. 2015, 87, 6951–6957. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.Q.; Chen, M.; Hou, J.X.; Chen, X.; Zhang, X.; Cui, S.F. Calibration of pre-equilibrium HF-LPME and its application to the rapid determination of free analytes in biological fluids. J. Chromatogr. B 2015, 980, 28–33. [Google Scholar] [CrossRef]
- Han, D.D.; Row, K.H. Trends in liquid-phase microextraction, and its application to environmental and biological samples. Microchim. Acta 2012, 176, 1–22. [Google Scholar] [CrossRef]
- Bello-López, M.Á.; Ramos-Payán, M.; Ocaña-González, J.A.; Fernández-Torres, R.; Callejón-Mochón, M. Analytical applications of hollow fiber liquid phase microextraction (HF-LPME): A review. Anal. Lett. 2012, 45, 804–830. [Google Scholar] [CrossRef]
- Ghambarian, M.; Yamini, Y.; Esrafili, A. Developments in hollow fiber based liquid-phase microextraction: Principles and applications. Microchim. Acta 2012, 177, 271–294. [Google Scholar] [CrossRef]
- Wan, L.B.; Lin, B.; Zhu, R.Q.; Huang, C.X.; Pedersen-Bjergaard, S.; Shen, X.T. Liquid-phase microextraction or electromembrane extraction? Anal. Chem. 2019, 91, 8267–8273. [Google Scholar] [CrossRef]
- Lin, B.; Liu, H.J.; Huang, C.X.; Xiao, X.J.; Pedersen-Bjergaard, S.; Shen, X.T. Versatile integration of liquid-phase microextraction and fluorescent aptamer beacons: A synergistic effect for bioanalysis. Anal. Chem. 2021, 93, 14323–14333. [Google Scholar] [CrossRef]
- Pedersen-Bjergaard, S.; Rasmussen, K.E. Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid–liquid extraction. J. Chromatogr. A 2008, 1184, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Psillakis, E.; Kalogerakis, N. Hollow-fibre liquid-phase microextraction of phthalate esters from water. J. Chromatogr. A 2003, 999, 145–153. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.K.; Rasmussen, K.E.; Pedersen-Bjergaard, S. Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: A review. Anal. Chim. Acta 2008, 624, 253–268. [Google Scholar] [CrossRef]
- Zhao, L.M.; Lee, H.K. Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry. Anal. Chem. 2002, 74, 2486–2492. [Google Scholar] [CrossRef]
- Basheer, C.; Jayaraman, A.; Kee, M.K.; Valiyaveettil, S.; Lee, H.K. Polymer-coated hollow-fiber microextraction of estrogens in water samples with analysis by gas chromatography–mass spectrometry. J. Chromatogr. A 2005, 1100, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Pedersen-Bjergaard, S.; Rasmussen, K.E. Liquid−liquid−liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal. Chem. 1999, 71, 2650–2656. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.M.; Lee, H.K. Solvent bar microextraction. Anal. Chem. 2004, 76, 5591–5596. [Google Scholar] [CrossRef]
- Psillakis, E.; Kalogerakis, N. Developments in liquid-phase microextraction. TrAC Trends Anal. Chem. 2003, 22, 565–574. [Google Scholar] [CrossRef]
- Mazars, F.; Delaude, L. “Greening” ruthenium—Arene catalyst precursors with N-heterocyclic carbene ligands derived from caffeine and theophylline. Organometallics 2023, 42, 1589–1597. [Google Scholar] [CrossRef]
- Stevens, J.S.; Byard, S.J.; Muryn, C.A.; Schroeder, S.L. Identification of protonation state by XPS, solid-state NMR, and DFT: Characterization of the nature of a new theophylline complex by experimental and computational methods. J. Phys. Chem. B 2010, 114, 13961–13969. [Google Scholar] [CrossRef] [PubMed]
- Marta, R.A.; Wu, R.; Eldridge, K.R.; Martens, J.K.; McMahon, T.B. Infrared vibrational spectra as a structural probe of gaseous ions formed by caffeine and theophylline. Phys. Chem. Chem. Phys. 2010, 12, 3431–3442. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.I.; Ramos, M.L.; Justino, L.L.; Burrows, H.D.; Valente, A.J.; Esteso, M.A.; Leaist, D.G.; Ribeiro, A.C. Effect of pH in the structure and mass transport by diffusion of theophylline. J. Chem. Thermodyn. 2017, 110, 162–170. [Google Scholar] [CrossRef]
- Turner, A., Jr.; Osol, A. The spectrophotometric determination of the dissociation constants of theophylline, theobromine, and caffeine. J. Am. Pharm. Assoc. 1949, 38, 158–161. [Google Scholar] [CrossRef]
- Sigel, H. Acid-base properties of purine residues and the effect of metal ions: Quantification of rare nucleobase tautomers. Pure Appl. Chem. 2004, 76, 1869–1886. [Google Scholar] [CrossRef][Green Version]
- Xiong, J.H.; Tian, L.X.; Shen, X.T.; Huang, C.X. Comparison of the applicability of electromembrane extraction and liquid-phase microextraction for extraction of non-polar basic drugs from different biological samples: Using clozapine as the model analyte. J. Sep. Sci. 2024, 47, 2300745. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.S.; Aravind, U.K.; Pramod, G.; Saha, A.; Aravindakumar, C.T. Hydroxyl radical induced oxidation of theophylline in water: A kinetic and mechanistic study. Org. Biomol. Chem. 2014, 12, 5611–5620. [Google Scholar] [CrossRef]
- Sarafraz-Yazdi, A.; Amiri, A. Liquid-phase microextraction. TrAC Trends Anal. Chem. 2010, 29, 1–14. [Google Scholar] [CrossRef]
Matrix | Background (μg mL−1) | Spiked (μg mL−1) | Detected (μg mL−1) | Accuracy (%) | 95% CI | RSD (%) |
---|---|---|---|---|---|---|
Plasma | ND | 0.1 | 0.09 | 91.1 | 77.1–105.0 | 6.18 |
0.2 | 0.17 | 87.2 | 74.3–100.1 | 6.01 | ||
0.5 | 0.43 | 86.7 | 68.8–104.6 | 8.57 | ||
Urine | ND | 0.1 | 0.11 | 107.9 | 105.2–110.5 | 1.04 |
0.2 | 0.19 | 96.3 | 91.9–100.7 | 1.77 | ||
0.5 | 0.48 | 95.3 | 89.8–100.7 | 2.25 | ||
Hospital sewage | 0.09 | 0.2 | 0.30 | 103.3 | 87.2–119.3 | 6.20 |
1 | 1.15 | 105.4 | 92.1–118.7 | 5.06 | ||
5 | 5.56 | 109.3 | 104.5–114.1 | 1.81 | ||
Green tea | 0.18 | 0.2 | 0.39 | 103.8 | 98.9–108.7 | 1.94 |
1 | 1.18 | 99.1 | 96.9–101.3 | 0.83 | ||
5 | 5.75 | 111.3 | 105.5–117.1 | 2.10 |
Analytical Method | Extraction Principle | Sample | LOD (μg L−1) | Linear Range (μg mL−1) | Reference |
---|---|---|---|---|---|
MIP a-HPLC-UV | Material adsorption | Green tea | 10 | 0.1–100 | [29] |
MSPE b-HPLC-UV | Material adsorption | Plasma | 3 | 0.02–20 | [30] |
MIP a-SPE-HPLC-UV | Material adsorption | Serum | 90 | 0.5–30 | [31] |
SEME c-HPLC-UV | Emulsification transfer | Cocoa powder/Plasma | 0.15 | 0.002–0.15 | [32] |
EME d-HPLC-UV | Electric migration | Plasma/Urine | 15 | 0.05–0.5 | [33] |
LPME-LC-MS/MS | Passive diffusion | Plasma/Urine/Hospital sewage/Green tea | 0.2 | 0.01–10 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, B.; Wang, F.; Wang, H.; Huang, X.; Liu, X.; Wang, X.; Wang, C.; Xing, Y.; Dai, C.; Zheng, Y. Determination of Theophylline Across Biological, Environmental and Food Matrices Using Liquid-Phase Microextraction Coupled with LC-MS/MS. Molecules 2025, 30, 3797. https://doi.org/10.3390/molecules30183797
Lin B, Wang F, Wang H, Huang X, Liu X, Wang X, Wang C, Xing Y, Dai C, Zheng Y. Determination of Theophylline Across Biological, Environmental and Food Matrices Using Liquid-Phase Microextraction Coupled with LC-MS/MS. Molecules. 2025; 30(18):3797. https://doi.org/10.3390/molecules30183797
Chicago/Turabian StyleLin, Bin, Fen Wang, Hongliang Wang, Xinsheng Huang, Xueqin Liu, Xuechun Wang, Chihua Wang, Yan Xing, Chunqing Dai, and Yi Zheng. 2025. "Determination of Theophylline Across Biological, Environmental and Food Matrices Using Liquid-Phase Microextraction Coupled with LC-MS/MS" Molecules 30, no. 18: 3797. https://doi.org/10.3390/molecules30183797
APA StyleLin, B., Wang, F., Wang, H., Huang, X., Liu, X., Wang, X., Wang, C., Xing, Y., Dai, C., & Zheng, Y. (2025). Determination of Theophylline Across Biological, Environmental and Food Matrices Using Liquid-Phase Microextraction Coupled with LC-MS/MS. Molecules, 30(18), 3797. https://doi.org/10.3390/molecules30183797