From Synthesis to Sensing: The Insight into the Properties of Fe3O4 Magnetic Nanoparticles and Their Surface Modification Strategies in Voltammetric Trace Determination of Heavy Metal Ions
Abstract
1. Introduction
2. The Properties, Synthesis, and Modification Strategies of Fe3O4 MNPs
2.1. The Insight into Magnetite Properties
2.2. The Synthesis of Fe3O4 Magnetic Nanoparticles
2.3. The MNPs Modification Strategies
3. Voltammetric Determination of HMIs via Fe3O4-Based Sensors
3.1. The Type of Support and Procedure for Working Electrode Preparation
3.2. The Application of Fe3O4 MNPs-Based Sensors in Trace Voltammetric HMIs Analysis
Sensor | Technique | Base Electrolyte Composition | Analytical Parameters [mol L−1] | Determined Ion [mol L−1] | Application | Ref. |
---|---|---|---|---|---|---|
Determination of Ag(I): | Ag(I) | |||||
Fe3O4@SiO2@IIP/CPE | DPASV | 0.1 mol L−1 HCl | LOD * Linear range * | 1.39 × 10−10 4.64 × 10−10–1.39 × 10−6 | dam water, aqueduct water, and well water | [37] |
Fe3O4@Au/mGCE | DPAV | 0.1 mol L−1 KCl | LOD Linear range | 5.9 × 10−10 1.17 × 10−7–1.77 × 10−5 | tap water, lake water, and synthesized water | [65] |
Determination of Cd(II): | Cd(II) | |||||
BiF/Fe3O4/ILSPE | DPASV | 0.2 mol L−1 PBS pH = 5.0 | LOD * Linear range * | 4.45 × 10−10 4.45× 10−9–3.56 × 10−7 | soil samples | [61] |
Fe3O4-PEI-Au-SPCE-Apt | DPV | - | LOD Linear range | 1.00 × 10−11 4.00× 10−11–2.50× 10−8 | drinking water, dam water, river water, and wastewater | [62] |
Determination of Pb(II): | Pb(II) | |||||
Fe3O4@Citrate/GCE | DPASV CV | 0.1 mol L−1 NaNO3 | LOD Linear range | 3.0× 10−7 5.0 × 10−7–1.5× 10−5 | - | [23] |
Fe3O4@PDA@MnO2/mGCE | DPV | 1.0 mol L−1 HCl | LOD * Linear range * | 1.4 × 10−10 4.8 × 10−10–7.2× 10−7 | lake water samples | [43] |
Fe3O4/GN/GE/GCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.5 | LOD Linear range | 1.23 × 10−14 1.0 × 10−12–5× 10−10 5.0 × 10−10–1.0× 10−6 | tap water, rain water, river water, and industrial effluents | [24] |
Determination of Cu(II): | Cu(II) | |||||
Fe3O4/SiO2/CS/Nafion/GCE | DPASV | 0.1 mol L−1 PBS pH = 4.0 | LOD Linear range | 5.0 × 10−9 1.0 × 10−8–2.0× 10−5 | river and tap water | [44] |
Determination of Hg(II): | Hg(II) | |||||
Fe3O4@Au/CA/T-COOH/SPCE | DPASV | 0.01 mol L−1 PBS pH = 7.5 | LOD * Linear range * | 2.41 × 10−9 4.83 × 10−9–9.65× 10−7 | environmental water, wastewater, certified reference material, and organic samples, such as fish samples | [60] |
mCPE/HNTs-Fe3O4–MnO2 | DPV | 0.1 mol L−1 HCl | LOD * Linear range * | 1.0 × 10−9 2.49 × 10−9–7.48 × 10−7 | water samples | [66] |
Determination of As(III): | As(III) | |||||
mGCE/GO-g-Fe3O4-PAMA-COOH/AuNPs | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.0 | LOD * Linear range * | 6.27 × 10−9 1.33 × 10−8–1.67× 10−6 | tap water, mineral water, and groundwater | [53] |
Au NPs/Fe3O4/GCE | SWASV | 0.1 mol L−1 PBS pH = 5.0 | LOD * Linear range * | 1.29 × 10−11 1.33 × 10−10–1.33× 10−8 | tap water, spring water, and lake water | [9] |
Determination of Cr(III)/Cr(IV) | Cr(III) or Cr(IV) | |||||
mCPE/MNPZ/Cr(III) | CV | 0.5 mmol L−1 [Fe(CN)6]3-/4- + 0.1 mol L−1 NaClO4 + 0.1 mol L−1 PBS of pH = 3.5 probe | LOD Linear range | 8.05 × 10−10 1.00 × 10−9–1.00× 10−3 | - | [7] |
EIS | LOD Linear range | 6.90 × 10−11 1.00 × 10−9–1.00× 10−6 | ||||
mCPE/MNPZ/Cr(VI) | CV | 5.0 mmol L−1 PBQ/H2QH2O + 0.1 mol L−1 NaClO4 + 0.1 mol L−1 PBS of pH 4.0 probe | LOD Linear range | 5.30 × 10−10 5.00 × 10−9–1.00× 10−4 | ||
EIS | LOD Linear range | 4.46 × 10−10 5.00 × 10−9–5.00× 10−5 |
Sensor | Technique | Base Electrolyte Composition | Analytical Parameters [mol L−1] | Determined Ions [mol L−1] | Application | Ref. | |
---|---|---|---|---|---|---|---|
Simultaneous determination of Cd(II) and Pb(II): | Cd(II) | Pb(II) | |||||
Fe3O4@G2-PAD/mCPE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.5 | LOD * Linear range * | 1.87 × 10−9 4.45 × 10−9–7.11× 10−7 | 8.2 × 10−10 2.41 × 10−9–3.86 × 10−7 | river water, wastewater, and lake water | [40] |
GSH@Fe3O4/mGCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 4.5 | LOD * Linear range * | 1.53 × 10−9 4.49 × 10−9–8.90 × 10−7 | 8.7 × 10−10 2.41 × 10−9–4.82 × 10−7 | water samples | [5] |
Fe3O4/Bi2O3/C3N4/GCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.0 | LOD Linear range | 3.00 × 10−9 1.00 × 10−8–3.0 × 10−7 | 1.00 × 10−9 1.00 × 10−8–3.0 × 10−7 | river water | [33] |
BiF/Fe3O4/MWCNTs/LSG/CS/GCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.0 | LOD * Linear range * | 8.90 × 10−10 8.90 × 10−9–1.78 × 10−6 | 3.40 × 10−10 4.83 × 10−9–9.65 × 10−7 | tap water | [26] |
GO-Fe3O4-PAMAM/GCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 4.5 + 0.1 mol L−1 KCl | LOD * Linear range * | 6.20 × 10−10 1.78 × 10−9–1.25 × 10−6 | 6.30 × 10−10 1.93 × 10−9–5.79 × 10−7 | lake and river samples | [41] |
PDA@Fe3O4/mGCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.0 | LOD Linear range | 9.20 × 10−11 2.0 × 10−8–5.9 × 10−7 | 1.40 × 10−11 5.0 × 10−9–6.0 × 10−7 | aqueous effluent | [67] |
GCE/ Nafion@MWCNTs@PEG-Fe3O4/BiF | DPASV | 0.075 mol L−1 CH3COOH/CH3COONa pH = 4.5 + 2.75 μmol L−1 Bi(III) | LOD Linear range | 4.90 × 10−10 2.0 × 10−9–5.0 × 10−7 | 4.60 × 10−10 2.0 × 10−9–5.0 × 10−7 | SRM 1640a, Tap water, spring water, and mineral water | [52] |
Simultaneous determination of Hg(II) and Pb(II): | Hg(II) | Pb(II) | |||||
Fe3O4@SiO2-NH2/mGCE | DPASV | 1.0 mol L−1 CH3COOH/CH3COONa pH = 5.0 | LOD Linear range | 9.09 × 10−9 3.0 × 10−8–5.0 × 10−5 | 6.06 × 10−9 2.0 × 10−8–1.0 × 10−4 | milk | [63] |
Simultaneous determination of Hg(II) and Ag(I): | Hg(II) | Ag(I) | |||||
DNA Modified Fe3O4@AuNPs/mGCE | SWV | Tris-HCl pH 7.4 + 0.14 mol L−1 NaCl and 0.005 MgCl2 | LOD Linear range | 1.70 × 10−9 1.0 × 10−8–1.0 × 10−7 | 3.40 × 10−9 1.0 × 10−8–1.5 × 10−7 | lake water, drinking water, orange juice, and red wine | [45] |
Simultaneous determination of As(III) and Cu(II): | Cd(II) | As(III) | |||||
GCE/GO/Fe3O4@PMDA/AuNPs | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 6.0 + 0.1 mol L−1 KCl | LOD * Linear range * | 1.73 × 10−9 7.87 × 10−9–1.18 × 10−5 | 2.00 × 10−9 6.67 × 10−8–6.67 × 10−6 | drinking water, pool water, and agricultural water pools | [42] |
Sensor | Technique | Base Electrolyte Composition | Determined Ions | Analytical Parameters [mol L−1] | Application | Ref. | |
---|---|---|---|---|---|---|---|
Simultaneous determination of Cd(II), Pb(II) and As (III): | LOD * | Linear range * | |||||
(BiO)2CO3-rGO-Nafion/SPE + Fe3O4-Au-IL/SPE | SWASV | 0.2 mol L−1 CH3COOH/CH3COONa pH = 5.0 | Cd(II) Pb(II) As(III) | 7.12× 10−9 5.79 × 10−9 3.20 × 10−8 | 0–4.45 × 10−7 0–2.41 × 10−7 0–6.67 × 10−7 | Simulated river water | [69] |
Simultaneous determination of Cd(II), Pb(II) and Hg(II): | LOD | Linear range | |||||
SPE/MBA-BiFE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 4.5 | Cd(II) Pb(II) Hg(II) | 3.60× 10−11 3.00 × 10−12 1.10 × 10−11 | 1.00 × 10−10–3.00 × 10−6 1.00 × 10−11–2.50 × 10−6 1.00 × 10−10–2.00 × 10−6 | tap water, lake water | [70] |
TA/Fe3O4 modified GCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.0 | Cd(II) Pb(II) Hg(II) | 2.00× 10−7 4.00 × 10−8 3.00 × 10−7 | 4 × 10−7–1.10 × 10−6 4.4 × 10−7–1.10 × 10−6 4.4 × 10−7–1.10 × 10−6 | river water | [71] |
Simultaneous determination of Cd(II), Pb(II), Cu(II) and Hg(II): | LOD | Linear range | |||||
Fe3O4@SiO2/mGCE | DPASV | 1.0 mol L−1 CH3COOH/CH3COONa pH = 5.0 | Cd(II) Pb(II) Cu(II) Hg(II) | 5.61× 10−8 1.65 × 10−8 7.94 × 10−8 5.67 × 10−8 | 1.00 × 10−7–1.00 × 10−4 1.00 × 10−7–8.00 × 10−5 1.00 × 10−7–8.00 × 10−5 1.00 × 10−7–1.00 × 10−4 | milk samples | [68] |
F-MWCNTs/Fe3O4/Nafion/GCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.0 | Cd(II) Pb(II) Cu(II) Hg(II) | 5.00× 10−11 8.00 × 10−11 2.00 × 10−11 5.00 × 10−11 | 5.00 × 10−10–3.00 × 10−8 5.00 × 10−10–3.00 × 10−8 5.00 × 10−10–3.00 × 10−8 5.00 × 10−10–2.00 × 10−8 | river water, soybean | [27] |
Simultaneous determination of Cd(II), Pb(II), Cu(II), Zn(II) and Hg(II): | LOD | Linear range | |||||
F-MWCNT/Fe3O4/0.5% Nafion/GCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.0 | Cd(II) Pb(II) Cu(II) Zn(II) Hg(II) | 1.40× 10−8 8.40 × 10−9 5.30 × 10−9 1.20 × 10−8 3.90 × 10−9 | 4.80 × 10−8–3.00 × 10−5 2.80 × 10−8–3.00 × 10−5 1.70 × 10−8–3.15 × 10−5 3.90 × 10−8–3.25 × 10−5 1.30 × 10−8–3.25 × 10−5 | lake water, laboratory water, and rice samples | [36] |
Individual determination of Cd(II), Pb(II) and Cu(II): | LOD | Linear range | |||||
Fe3O4@C/GCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.0 | Cd(II) Pb(II) Cu(II) | 4.09 × 10−8 2.07 × 10−8 7.93 × 10−8 | 5.00 × 10−7–1.30 × 10−5 1.00 × 10−6–9.00 × 10−6 4.00 × 10−7–9.40 × 10−6 | - | [57] |
NH2-Fe3O4@C/GCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.0 | Cd(II) Pb(II) Cu(II) | 2.31 × 10−8 2.85 × 10−8 3.84 × 10−8 | 6.00 × 10−7–9.00 × 10−6 1.20 × 10−6–1.00 × 10−5 4.00 × 10−7–9.40 × 10−6 | tap water | [57] |
Individual determination of Cd(II), Pb(II), Cu(II) and Hg(II): | LOD | Linear range | |||||
Fe3O4-chitosan NPs/GCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.0 | Cd(II) Pb(II) Cu(II) Hg(II) | 3.92× 10−8 4.22 × 10−8 9.67 × 10−8 9.57 × 10−8 | 1.20 × 10−6–1.70 × 10−6 1.00 × 10−7–1.30 × 10−6 3.00 × 10−7–1.20 × 10−6 4.00 × 10−7–1.10 × 10−6 | river water Pb(II) content | [38] |
Fe3O4/GCE | SWASV | 0.1 mol L−1 CH3COOH/CH3COONa pH = 5.0 | Cd(II) Pb(II) Cu(II) Hg(II) | 1.54 × 10−7 1.19 × 10−7 7.65 × 10−8 8.39 × 10−8 | 3.00 × 10−7–1.30 × 10−6 3.00 × 10−7–1.30 × 10−6 3.00 × 10−7–1.70 × 10−6 1.30 × 10−6–1.80 × 10−6 | river water | [64] |
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahu, P.; Patel, A.R.; Pandey, A.; Hait, M.; Patra, G.K. Assessment of heavy metal ion toxicity in wastewater: A comprehensive review. Inorganica Chim. Acta 2025, 585. [Google Scholar] [CrossRef]
- El Mouden, A.; El Messaoudi, N.; El Guerraf, A.; Bouich, A.; Mehmeti, V.; Lacherai, A.; Jada, A.; Pinê Américo-Pinheiro, J.H. Removal of Cadmium and Lead Ions from Aqueous Solutions by Novel Dolomite-quartz@Fe3O4 Nanocomposite Fabricated as Nanoadsorbent. Environmental Research 2023, 225, 115606. [Google Scholar] [CrossRef]
- Ahmad, S.Z.N.; Salleh, W.N.W.; Ismail, A.F.; Yusof, N.; Yusop, M.Z.M.; Aziz, F. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere 2020, 248, 126008. [Google Scholar] [CrossRef]
- Agarwal, S.; Kaushik, S.; Saha, H.; Paramanick, D.; Mazhar, M.; Basist, P.; Khan, R.; Alhalmi, A. Therapeutic potential of traditional herbal plants and their polyphenols in alleviation of mercury toxicity. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398, 7737–7763. [Google Scholar] [CrossRef]
- Baghayeri, M.; Amiri, A.; Maleki, B.; Alizadeh, Z.; Reiser, O. A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sens. Actuators B Chem. 2018, 273, 1442–1450. [Google Scholar] [CrossRef]
- Shekhawat, K.; Chatterjee, S.; Joshi, B. Chromium Toxicity and Its Health Hazards. Int. J. Adv. Res. 2015, 3, 167–172. [Google Scholar]
- Bagherzadeh, M.; Hadizadeh, Z.; Akrami, Z.; Ghahfarokhi, Z.S. Electrochemical detection of Cr(III) and Cr(VI) in solution by using ZrO2 modified magnetic nanoparticles by redox probes. Mater. Sci. Semicond. Process. 2021, 131. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Yang, W.; Li, X.; Zhao, H.; Yuan, Z. An electrochemical sensor based on a magnetic Fe3O4 nanoparticles and gold nanoparticles modified electrode for sensitive determination of trace amounts of arsenic(iii). Anal. Methods 2012, 4, 4176–4181. [Google Scholar] [CrossRef]
- Lu, H.; Mou, S.; Riviello, J. Use of ion chromatography for the determination of heavy and transition metals in biochemical samples. J. Chromatogr. A 1999, 857, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Bruno, P.; Caselli, M.; Gennaro, G.; Ielpo, P.; Ladisa, T.; Placentino, C.M. Ion Chromatography Determination of Heavy Metals in Airborne Particulate with Preconcentration and Large Volume Direct Injection. Chromatographia 2006, 64, 537–542. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, Y.; Wang, H.; Tong, Y.; Sheng, X.; Sun, Y.; Zhou, X.; Zhou, Q. Simultaneous enrichment and determination of cadmium and mercury ions using magnetic PAMAM dendrimers as the adsorbents for magnetic solid phase extraction coupled with high performance liquid chromatography. J. Hazard. Mater. 2020, 386, 121658. [Google Scholar] [CrossRef]
- Li, A.; Chuai, X.; Liu, Y.; Qiu, L.; Cui, H.; Zhao, W. Confocal controlled laser-induced breakdown spectroscopy for quantitative detection of cadmium in soil. Spectrochim. Acta Part B At. Spectrosc. 2024, 216. [Google Scholar] [CrossRef]
- Santos, D.; Nunes, L.C.; Trevizan, L.C.; Godoi, Q.; Leme, F.O.; Braga, J.W.B.; Krug, F.J. Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils. Spectrochim. Acta Part B: At. Spectrosc. 2009, 64, 1073–1078. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, Y.; Hu, Z.; Zhang, S.; Ma, S.; Khan, M.S.; Chen, F.; Zhang, D.; Guo, L.; Lau, C. High-sensitivity determination of trace lead and cadmium in cosmetics using laser-induced breakdown spectroscopy with ultrasound-assisted extraction. Microchem. J. 2020, 158. [Google Scholar] [CrossRef]
- Gorylewski, D.; Tyszczuk-Rotko, K.; Keller, A.; Staniec, K.; Liwak, A. Voltammetric Procedures for Simultaneous Determination of Cd(II) and Pb(II) at the Trace Concentration Level via Composite Electrode Materials Based on Magnetic Nanoparticles. In Science and Industry Challenges and Opportunities; UMCS: Lublin, Poland, 2025; pp. 93–96. ISBN 978-83-227-9909-3. [Google Scholar]
- Abollino, O.; Giacomino, A.; Malandrino, M. Stripping Voltammetry. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 238–257. [Google Scholar] [CrossRef]
- Kulpa-Koterwa, A.; Ossowski, T.; Niedziałkowski, P. Functionalized Fe3O4 Nanoparticles as Glassy Carbon Electrode Modifiers for Heavy Metal Ions Detection—A Mini Review. Materials 2021, 14, 7725. [Google Scholar] [CrossRef] [PubMed]
- Gorylewski, D.; Tyszczuk-Rotko, K.; Staniec, K.; Keller, A.; Liwak, A. Zastosowanie Nanocząstek Magnetycznych Jako Modyfikatorów Powierzchni Czujników Woltamperometrycznych w Analizie Śladowej Jonów Cd(II) i Pb(II). In Nauka i Przemysł-Lubelskie Spotkania Studenckie; UMCS: Lublin, Poland, 2025; pp. 183–186. ISBN 978-83-227-9906-2. [Google Scholar]
- Şentürk, Z. A Journey from the Drops of Mercury to the Mysterious Shores of the Brain: The 100-Year Adventure of Voltammetry. Crit. Rev. Anal. Chem. 2022, 54, 1–12. [Google Scholar] [CrossRef]
- Neto, A.G.d.S.; Costa, J.H.; Morawski, F.d.M.; Valentini, G.; Faita, F.L.; Parize, A.L.; Jost, C.L. Core–Shell Chitosan Cobalt Ferrite Nanoparticles for Ultrasensitive Simultaneous Voltammetric Determination of Pb(II) and Cd(II). ACS Appl. Nano Mater. 2024, 7, 18499–18510. [Google Scholar] [CrossRef]
- Bagheri, H.; Afkhami, A.; Khoshsafar, H.; Rezaei, M.; Shirzadmehr, A. Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sens. Actuators B Chem. 2013, 186, 451–460. [Google Scholar] [CrossRef]
- Qureashi, A.; Pandith, A.H.; Bashir, A.; Manzoor, T.; Malik, L.A.; A Sheikh, F. Citrate coated magnetite: A complete magneto dielectric, electrochemical and DFT study for detection and removal of heavy metal ions. Surfaces Interfaces 2021, 23. [Google Scholar] [CrossRef]
- He, B.; Shen, X.-F.; Nie, J.; Wang, X.-L.; Liu, F.-M.; Yin, W.; Hou, C.-J.; Huo, D.-Q.; Fa, H.-B. Electrochemical sensor using graphene/Fe3O4 nanosheets functionalized with garlic extract for the detection of lead ion. J. Solid State Electrochem. 2018, 22, 3515–3525. [Google Scholar] [CrossRef]
- Mansoori, G.; Soelaiman, T.F. Nanotechnology—An Introduction for the Standards Community. J. ASTM Int. 2005, 2, 1–22. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, X.; Ma, Q.; Tang, B.; Lu, Z.; Zhang, J.; Mo, G.; Ye, J.; Ye, J. A sensitive electrochemical sensor for simultaneous voltammetric sensing of cadmium and lead based on Fe3O4/multiwalled carbon nanotube/laser scribed graphene composites functionalized with chitosan modified electrode. Mater. Chem. Phys. 2019, 238. [Google Scholar] [CrossRef]
- Wu, W.; Jia, M.; Zhang, Z.; Chen, X.; Zhang, Q.; Zhang, W.; Li, P.; Chen, L. Sensitive, selective and simultaneous electrochemical detection of multiple heavy metals in environment and food using a lowcost Fe3O4 nanoparticles/fluorinated multi-walled carbon nanotubes sensor. Ecotoxicol. Environ. Saf. 2019, 175, 243–250. [Google Scholar] [CrossRef]
- Glasgow, W.; Fellows, B.; Qi, B.; Darroudi, T.; Kitchens, C.; Ye, L.; Crawford, T.M.; Mefford, O.T. Continuous synthesis of iron oxide (Fe3O4) nanoparticles via thermal decomposition. Particuology 2016, 26, 47–53. [Google Scholar] [CrossRef]
- Fato, T.P.; Li, D.-W.; Zhao, L.-J.; Qiu, K.; Long, Y.-T. Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega 2019, 4, 7543–7549. [Google Scholar] [CrossRef]
- Pawlaczyk, M.; Schroeder, G. Hybrydowe Nanomateriały Magnetyczne; Cursiva: Kostrzyn, Poland, 2017; ISBN 978-83-62108-39-8. [Google Scholar]
- Fatmawati, T.; Shiddiq, M.; Armynah, B.; Tahir, D. Synthesis Methods of Fe3O4 Nanoparticles for Biomedical Applications. Chem. Eng. Technol. 2023, 46, 2356–2366. [Google Scholar] [CrossRef]
- Mbuyazi, T.B.; Ajibade, P.A. Magnetic iron oxides nanocomposites: Synthetic techniques and environmental applications for wastewater treatment. Nanoscale Res. Lett. 2024, 19, 1–38. [Google Scholar] [CrossRef]
- Pu, Y.; Wu, Y.; Yu, Z.; Lu, L.; Wang, X. Simultaneous determination of Cd2+ and Pb2+ by an electrochemical sensor based on Fe3O4/Bi2O3/C3N4 nanocomposites. Talanta Open 2021, 3. [Google Scholar] [CrossRef]
- Tajabadi, M.; Khosroshahi, M.E. Effect of Alkaline Media Concentration and Modification of Temperature on Magnetite Synthesis Method Using FeSO4/NH4OH. Int. J. Chem. Eng. Appl. 2012, 206–210. [Google Scholar] [CrossRef]
- You, J.; Wang, L.; Zhao, Y.; Bao, W. A review of amino-functionalized magnetic nanoparticles for water treatment: Features and prospects. J. Clean. Prod. 2021, 281. [Google Scholar] [CrossRef]
- Wu, W.; Jia, M.; Wang, Z.; Zhang, W.; Zhang, Q.; Liu, G.; Zhang, Z.; Li, P. Simultaneous voltammetric determination of cadmium(II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode modified with magnetite (Fe3O4) nanoparticles and fluorinated multiwalled carbon nanotubes. Microchim. Acta 2019, 186, 97. [Google Scholar] [CrossRef]
- Ghanei-Motlagh, M.; Taher, M.A. Magnetic silver(I) ion-imprinted polymeric nanoparticles on a carbon paste electrode for voltammetric determination of silver(I). Microchim. Acta 2017, 184, 1691–1699. [Google Scholar] [CrossRef]
- Zhou, S.-F.; Han, X.-J.; Liu, Y.-Q. SWASV performance toward heavy metal ions based on a high-activity and simple magnetic chitosan sensing nanomaterials. J. Alloys Compd. 2016, 684, 1–7. [Google Scholar] [CrossRef]
- Sawan, S.; Hamze, K.; Youssef, A.; Bouhadir, K.; Errachid, A.; Maalouf, R.; Jaffrezic-Renault, N. The Use of Voltammetry for Sorption Studies of Arsenic (III) Ions by Magnetic Beads Functionalized with Nucleobase Hydrazide Derivatives. Electroanalysis 2021, 33, 1789–1799. [Google Scholar] [CrossRef]
- Maleki, B.; Baghayeri, M.; Ghanei-Motlagh, M.; Zonoz, F.M.; Amiri, A.; Hajizadeh, F.; Hosseinifar, A.; Esmaeilnezhad, E. Polyamidoamine dendrimer functionalized iron oxide nanoparticles for simultaneous electrochemical detection of Pb2+ and Cd2+ ions in environmental waters. Measurement 2019, 140, 81–88. [Google Scholar] [CrossRef]
- Baghayeri, M.; Alinezhad, H.; Fayazi, M.; Tarahomi, M.; Ghanei-Motlagh, R.; Maleki, B. A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II) and Cd(II). Electrochim. Acta 2019, 312, 80–88. [Google Scholar] [CrossRef]
- Nodehi, M.; Baghayeri, M.; Veisi, H. Preparation of GO/Fe3O4@PMDA/AuNPs nanocomposite for simultaneous determination of As3+ and Cu2+ by stripping voltammetry. Talanta 2021, 230, 122288. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lei, T.; Ren, Z.; Jiang, X.; Yang, X.; Bai, H.; Wang, S. Fe3O4@PDA@MnO2 core-shell nanocomposites for sensitive electrochemical detection of trace Pb(II) in water. J. Electroanal. Chem. 2020, 864. [Google Scholar] [CrossRef]
- Wei, P.; Li, Z.; Zhao, X.; Song, R.; Zhu, Z. Fe3O4/SiO2/CS surface ion-imprinted polymer modified glassy carbon electrode for highly sensitivity and selectivity detection of toxic metal ions. J. Taiwan Inst. Chem. Eng. 2020, 113, 107–113. [Google Scholar] [CrossRef]
- Miao, P.; Tang, Y.; Wang, L. DNA Modified Fe3O4@Au Magnetic Nanoparticles as Selective Probes for Simultaneous Detection of Heavy Metal Ions. ACS Appl. Mater. Interfaces 2017, 9, 3940–3947. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Li, B.; Qiao, Y. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials 2018, 11, 324. [Google Scholar] [CrossRef]
- Wu, S.; Sun, A.; Zhai, F.; Wang, J.; Xu, W.; Zhang, Q.; Volinsky, A.A. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater. Lett. 2011, 65, 1882–1884. [Google Scholar] [CrossRef]
- Lu, A.-H.; Salabas, E.L.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. Engl. 2007, 46, 1222–1244. [Google Scholar] [CrossRef]
- Park, J.-N.; Zhang, P.; Hu, Y.-S.; McFarland, E.W. Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4magnetic nanoparticles active for oxidation and chemical looping combustion. Nanotechnology 2010, 21, 225708. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, J.; Qiu, Y.; Li, C.; Wang, W.; Yang, Y. Polyethylene glycol modified magnetic nanoparticles for removal of heavy metal ions from aqueous solutions. J. Dispers. Sci. Technol. 2018, 40, 1338–1344. [Google Scholar] [CrossRef]
- Li, T.; Lü, S.; Wang, Z.; Huang, M.; Yan, J.; Liu, M. Lignin-based nanoparticles for recovery and separation of phosphate and reused as renewable magnetic fertilizers. Sci. Total Environ. 2021, 765, 142745. [Google Scholar] [CrossRef]
- Gorylewski, D.; Tyszczuk-Rotko, K.; Sowa, I.; Wójciak, M. Nanomolar simultaneous determination of Cd(II) and Pb(II) using composite carbon material based on PEG-functionalized magnetic nanoparticles (PEG-Fe3O4). Food Chem. 2025, 493, 145647. [Google Scholar] [CrossRef]
- Liu, H.; Baghayeri, M.; Amiri, A.; Karimabadi, F.; Nodehi, M.; Fayazi, M.; Maleki, B.; Zare, E.N.; Kaffash, A. A strategy for As(III) determination based on ultrafine gold nanoparticles decorated on magnetic graphene oxide. Environ. Res. 2023, 231, 116177. [Google Scholar] [CrossRef]
- López, J.G.; Muñoz, M.; Arias, V.; García, V.; Calvo, P.C.; Ondo-Méndez, A.O.; Rodríguez-Burbano, D.C.; Fonthal, F. Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection. Micromachines 2025, 16, 139. [Google Scholar] [CrossRef]
- Sun, S.; Chen, L.; Shi, H.; Li, Y.; He, X. Magnetic glass carbon electrode, modified with magnetic ferriferrous oxide nanoparticles coated with molecularly imprinted polymer films for electrochemical determination of bovine hemoglobin. J. Electroanal. Chem. 2014, 734, 18–24. [Google Scholar] [CrossRef]
- Sanou, A.; Coulibaly, M.; N’dri, S.R.; Tămaș, T.L.; Bizo, L.; Frentiu, T.; Covaci, E.; Abro, K.D.M.; Dablé, P.J.-M.R.; Yao, K.B.; et al. Raw Clay Material-Based Modified Carbon Paste Electrodes for Sensitive Heavy Metal Detection in Drinking Water. J. Mater. Sci. 2024, 59, 13961–13977. [Google Scholar] [CrossRef]
- Bai, F.; Zhang, X.; Hou, X.; Liu, H.; Chen, J.; Yang, T. Individual and Simultaneous Voltammetric Determination of Cd(II), Cu(II) and Pb(II) Applying Amino Functionalized Fe3O4@Carbon Microspheres Modified Electrode. Electroanalysis 2019, 31, 1448–1457. [Google Scholar] [CrossRef]
- Kozak, J.; Tyszczuk-Rotko, K.; Rotko, M. Voltammetric Screen-Printed Carbon Sensor Modified with Multi-walled Carbon Nanotubes and Bismuth Film for Trace Analysis of Thallium(I). Physicochem. Probl. Miner. Process. 2019, 55, 1422–1428. [Google Scholar] [CrossRef]
- Kaliyaraj Selva Kumar, A.; Zhang, Y.; Li, D.; Compton, R.G. A Mini-Review: How Reliable Is the Drop Casting Technique? Electrochem. Commun. 2020, 121, 106867. [Google Scholar] [CrossRef]
- Butmee, P.; Mala, J.; Damphathik, C.; Kunpatee, K.; Tumcharern, G.; Kerr, M.; Mehmeti, E.; Raber, G.; Kalcher, K.; Samphao, A. A portable selective electrochemical sensor amplified with Fe3O4@Au-cysteamine-thymine acetic acid as conductive mediator for determination of mercuric ion. Talanta 2021, 221, 121669. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, G.; Yin, Y.; Wang, Z.; Liu, G. Screen-Printed Electrode Modified by Bismuth /Fe3O4 Nanoparticle/Ionic Liquid Composite Using Internal Standard Normalization for Accurate Determination of Cd(II) in Soil. Sensors 2017, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Mahdavi, B.; Baghayeri, M. Label-free and sensitive determination of toxic Cd(II) in environmental waters using a Fe3O4-PEI-Au based electrochemical aptasensor. Alex. Eng. J. 2023, 83, 251–256. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, W. A facile electrochemical sensor based on amino-functionalized magnetic nanoparticles for simultaneous detection of lead and mercuric ions. J. Food Compos. Anal. 2023, 119. [Google Scholar] [CrossRef]
- Fan, H.-L.; Zhou, S.-F.; Gao, J.; Liu, Y.-Z. Continuous preparation of Fe3O4 nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions. J. Alloys Compd. 2016, 671, 354–359. [Google Scholar] [CrossRef]
- Yang, H.; Liu, X.; Fei, R.; Hu, Y. Sensitive and selective detection of Ag+ in aqueous solutions using Fe3O4@Au nanoparticles as smart electrochemical nanosensors. Talanta 2013, 116, 548–553. [Google Scholar] [CrossRef]
- Fayazi, M.; Taher, M.A.; Afzali, D.; Mostafavi, A. Fe3O4 and MnO2 assembled on halloysite nanotubes: A highly efficient solid-phase extractant for electrochemical detection of mercury(II) ions. Sen. Actuators B Chem. 2016, 228, 1–9. [Google Scholar] [CrossRef]
- Song, Q.; Li, M.; Huang, L.; Wu, Q.; Zhou, Y.; Wang, Y. Bifunctional polydopamine@Fe3O4 core–shell nanoparticles for electrochemical determination of lead(II) and cadmium(II). Anal. Chim. Acta 2013, 787, 64–70. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, W. Simultaneous electrochemical detection of multiple heavy metal ions in milk based on silica-modified magnetic nanoparticles. Food Chem. 2022, 406, 135034. [Google Scholar] [CrossRef]
- Zhao, G.; Tran, T.-T.; Modha, S.; Sedki, M.; Myung, N.V.; Jassby, D.; Mulchandani, A. Multiplexed Anodic Stripping Voltammetry Detection of Heavy Metals in Water Using Nanocomposites Modified Screen-Printed Electrodes Integrated With a 3D-Printed Flow Cell. Front. Chem. 2022, 10, 815805. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Xiong, Y.; Ge, Y.; Wen, Y.; Zeng, X.; Zhang, J.; Wang, P.; Wang, Z.; Chen, S. Magnetic Fe3O4 nanoparticles decorated phosphorus-doped biochar-attapulgite/bismuth film electrode for smartphone-operated wireless portable sensing of ultra-trace multiple heavy metal ions. Microchim. Acta 2023, 190, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, S.; Kandasamy, G.; Upadhyay, R.K.; Bhattacharya, G.; Banerjee, D.; Maity, D.; Deshusses, M.A.; Roy, S.S. Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. J. Electroanal. Chem. 2017, 788, 91–98. [Google Scholar] [CrossRef]
- Borrill, A.J.; Reily, N.E.; Macpherson, J.V. Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: A tutorial review. Anal. 2019, 144, 6834–6849. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorylewski, D.; Tyszczuk-Rotko, K. From Synthesis to Sensing: The Insight into the Properties of Fe3O4 Magnetic Nanoparticles and Their Surface Modification Strategies in Voltammetric Trace Determination of Heavy Metal Ions. Molecules 2025, 30, 3796. https://doi.org/10.3390/molecules30183796
Gorylewski D, Tyszczuk-Rotko K. From Synthesis to Sensing: The Insight into the Properties of Fe3O4 Magnetic Nanoparticles and Their Surface Modification Strategies in Voltammetric Trace Determination of Heavy Metal Ions. Molecules. 2025; 30(18):3796. https://doi.org/10.3390/molecules30183796
Chicago/Turabian StyleGorylewski, Damian, and Katarzyna Tyszczuk-Rotko. 2025. "From Synthesis to Sensing: The Insight into the Properties of Fe3O4 Magnetic Nanoparticles and Their Surface Modification Strategies in Voltammetric Trace Determination of Heavy Metal Ions" Molecules 30, no. 18: 3796. https://doi.org/10.3390/molecules30183796
APA StyleGorylewski, D., & Tyszczuk-Rotko, K. (2025). From Synthesis to Sensing: The Insight into the Properties of Fe3O4 Magnetic Nanoparticles and Their Surface Modification Strategies in Voltammetric Trace Determination of Heavy Metal Ions. Molecules, 30(18), 3796. https://doi.org/10.3390/molecules30183796