Food Minor Bioactive Compounds of Polyphenolic and Polyprenolic Nature Are Promising Agents for the Prevention and Therapy of Non-Alcoholic Fatty Liver Disease
Abstract
1. Introduction
2. Pathogenesis of NAFLD
3. Polyphenolic Compounds
- –
- Downregulation of de novo lipogenesis via suppression of sterol regulatory element-binding protein 1c (SREBP-1c);
- –
- Upregulation of β-oxidation through activation of PPARα;
- –
- Improvement of insulin sensitivity;
- –
- Reduction of oxidative stress via enhancement of endogenous antioxidant defenses through Nrf2-mediated signaling;
- –
- And modulation of proinflammatory pathways.
3.1. Resveratrol
3.2. Chlorogenic Acid
3.3. Curcumin
3.4. Quercetin
3.5. Naringenin
3.6. Kaempferol
3.7. Epigallocatechin Gallate
3.8. Mangiferin
3.9. Luteolin
3.10. Chrysin
4. Summary of the Effects of Polyphenolic Compounds as Promising Agents for the Prevention of NAFLD
- –
- Resveratrol and quercetin reduce hepatic steatosis and fibrosis by activating SIRT1/AMPK and FXR/TGR5 signaling pathways.
- –
- Curcumin and EGCG modulate the gut microbiome and suppress oxidative stress.
- –
- Chlorogenic acid and mangiferin improve intestinal barrier function and glucose metabolism.
5. Polyprenol Compounds as Promising Agents for the Prevention of NAFLD
6. Materials and Methods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACO | acyl-coenzyme A oxidase |
ALP | alkaline phosphatase |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
AMPK | AMP activated protein kinase |
b.w. | body weight |
CPT | carnitine palmitoyltransferase |
FAS | fatty acid synthase |
FFAs | free fatty acids |
FXR | farnesoid X receptor |
GPx | glutathione peroxidase |
p-GSK3β | phospho-glycogen synthase kinase 3β |
GST | glutathione-S-transferase |
HDL | high-density lipoprotein |
HIF-1α | hypoxia-inducible factor 1-alpha |
HMG-CoA | 3-hydroxy-3-methylglutaryl-coenzyme A |
IL | interleukin |
JNK | c-Jun N-terminal kinase |
LDL | low-density lipoprotein |
LXR | liver X receptor |
MDA | malondialdehyde |
mTOR | mammalian target of rapamycin |
NAMPT | nicotinamide phosphoribosyltransferase |
NF-κB | nuclear factor kappa B |
NLRP3 | NOD-like receptor protein 3 |
NOS | nitric oxide synthase |
PI3K | phosphoinositide 3-kinases |
PPARα | peroxisome proliferator-activated receptor alpha |
SDH | succinate dehydrogenase |
SIRT1 | sirtuin 1 |
SOD | superoxide dismutase |
SPHK1 | sphingosine kinase 1 |
S1P | sphingosine-1-phosphate |
SREBP-1 | sterol regulatory element-binding protein 1 |
SRB1 | scavenger receptor class B type 1 |
STAT-3 | signal transducer and activator of transcription 3 |
TLR | Toll-like receptor |
TNF-α | tumor necrosis factor-alpha |
VEGF | vascular endothelial growth factor |
VLDL | very low-density lipoprotein |
References
- Apryatin, S.A.; Mzhelskaya, K.V.; Trusov, N.V.; Balakina, A.S.; Kulakova, S.N.; Soto, K.S.; Makarenko, M.A.; Riger, N.A.; Tutelyan, V.A. Comparative characteristics of in vivo models of hyperlipidemia in Wistar rats and C57BL/6 mice. Vopr. Pitan. 2016, 85, 14–23. [Google Scholar]
- Mzhelskaya, K.V.; Shipelin, V.A.; Apryatin, S.A.; Soto, K.S.; Shumakova, A.A.; Evstratova, V.S.; Kirbaeva, N.V.; Trusov, N.V.; Gmoshinskiy, I.V. Effect of a diet high in fats and carbohydrates on neuromotor function, cognitive, integral, and biochemical parameters in rats and mice of different lines. Ross. Fiziol. Zhurnal Im. IM Sechenova 2018, 104, 452–465. [Google Scholar]
- Apryatin, S.A.; Shipelin, V.A.; Trusov, N.V.; Mzhelskaya, K.V.; Evstratova, V.S.; Kirbaeva, N.V.; Soto, J.S.; Fesenko, Z.S.; Gainetdinov, R.R.; Gmoshinski, I.V. Comparative analysis of the influence of a high-fat/high-carbohydrate diet on the level of anxiety and neuromotor and cognitive functions in Wistar and DAT-KO rats. Physiol. Rep. 2019, 7, e13987. [Google Scholar] [CrossRef]
- Gmoshinsky, I.V.; Shipelin, V.A.; Apryatin, S.A.; Trusov, N.V.; Riger, N.A.; Shumakova, A.A. Effector Links of Metabolism. In Biologically Active Food Substances in the Treatment of Obesity: From Theory and Model to Practice; Eksmo: Moscow, Russia, 2022; 496p, ISBN 978-5-04-160832-3. [Google Scholar]
- Kravchenko, L.V.; Aksenov, I.V.; Nikitin, N.S.; Guseva, G.V.; Avrenyeva, L.I.; Trusov, N.V.; Balakina, A.S.; Tutelyan, V.A. Lipoic acid exacerbates oxidative stress and lipid accumulation in the liver of Wistar rats fed a hypercaloric choline-deficient diet. Nutrients 2021, 13, 1999. [Google Scholar] [CrossRef]
- Trusov, N.V.; Balakina, A.S.; Mzhelskaya, K.V.; Nikitin, N.S.; Aksenov, I.V.; Guseva, G.V.; Tutelyan, V.A. Effect of resveratrol on the development of non-alcoholic fatty liver disease in rats fed a high-fat high-fructose diet. Biomeditsina 2024, 20, 221–228. [Google Scholar] [CrossRef]
- Balakina, A.; Trusov, N.; Tutelyan, V. Effect of lipoic acid on the expression of nonalcoholic fatty liver disease-associated genes in t he liver of rats fed a hypercaloric choline-deficient diet. J. Adv. Biotechnol. Exp. Ther. 2024, 7, 612–619. [Google Scholar] [CrossRef]
- Apryatin, S.A.; Trusov, N.V.; Gorbachev, A.Y.; Naumov, V.A.; Balakina, A.S.; Mzhelskaya, K.V.; Gmoshinsky, I.V. Comparative analysis of the full transcriptome profile of the liver of Wistar rats fed diets with different fat, fructose, and cholesterol content. Biochemistry 2019, 84, 1344–1358. [Google Scholar] [CrossRef]
- Apryatin, S.A.; Trusov, N.V.; Gorbachev, A.Y.; Naumov, V.A.; Mzhelskaya, K.V.; Balakina, A.S.; Gmoshinsky, I.V. Full transcriptome profiling of the liver of C57Black/6J mice fed diets high in fat, fructose, and cholesterol. Genetika 2019, 55, 369–382. [Google Scholar] [CrossRef]
- Trusov, N.V.; Apryatin, S.A.; Shipelin, V.A.; Gmoshinsky, I.V. Full transcriptome analysis of gene expression in the liver of mice in a comparative study of the effectiveness of quercetin in two models of obesity. Probl. Endokrinol. 2020, 66, 31–47. [Google Scholar] [CrossRef]
- Trusov, N.V.; Apryatin, S.A.; Shipelin, V.A.; Shumakova, A.A.; Gmoshinsky, I.V.; Nikityuk, D.B.; Tutelyan, V.A. Effect of carnitine, resveratrol, and aromatic amino acid supplements to a high-fat and fructose diet on gene expression in the liver of rats: A full transcriptome study. Genetika 2021, 57, 1141–1157. [Google Scholar] [CrossRef]
- Trusov, N.V.; Apryatin, S.A.; Timonin, A.N.; Shipelin, V.A.; Gmoshinsky, I.V.; Nikityuk, D.B. Comparative assessment of the effects of resveratrol and carnitine on the full transcriptome profile of liver tissue in mice with different predispositions to the development of alimentary obesity. Vestn. Tomsk Gos. Univ. Biol. 2021, 54, 83–115. [Google Scholar] [CrossRef]
- Apryatin, S.A.; Trusov, N.V.; Gmoshinsky, I.V.; Tutelyan, V.A. Effector links of metabolism in diet-induced and genetically determined obesity: A full transcriptome study of liver tissue in experimental models in rodents. Acta Biomed. Sci. 2023, 8, 25–41. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef]
- Sasunova, A.N.; Goncharov, A.A.; Morozov, S.V.; Isakov, V.A. Modification of nutritional patterns in patients with non-alcoholic steatohepatitis. Ter. Arkh. 2022, 94, 973–978. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Zhuravleva, M.V.; Kukushkin, G.V.; Luchinina, E.V.; Shelekhova, T.V.; Kameneva, T.R.; Kuznetsova, E.V.; Luchinin, E.A. Cost analysis of ademetionine treatment in patients with intrahepatic cholestasis and non-alcoholic fatty liver disease. Klin. Prakt. 2022, 1, 41–52. [Google Scholar] [CrossRef]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef]
- Li, H.Y.; Gan, R.Y.; Shang, A.; Mao, Q.Q.; Sun, Q.C.; Wu, D.T.; Geng, F.; He, X.-Q.; Li, H.-B. Plant-based foods and their bioactive compounds on fatty liver disease: Effects, mechanisms, and clinical application. Oxid. Med. Cell Longev. 2021, 2021, 6621644. [Google Scholar] [CrossRef]
- Tsoi, E.I.; Vyshlov, E.V.; Trusov, V.B. Use of a polyprenol-containing drug in patients with acute coronary syndrome. Sib. Med. J. 2018, 33, 21–22. [Google Scholar]
- Sultanov, V.S. New hepatological and neurological clinical effects of long-chain plant polyprenols acting on the mammalian isoprenoid pathway. Eksp. Klin. Gastroenterol. 2016, 11, 104–113. [Google Scholar]
- Golovanova, E.V.; Vinnitskaya, E.V.; Shaposhnikova, N.A.; Petrakov, A.V.; Melkina, E.S. Efficiency of the new herbal hepatoprotector Ropren in the treatment of patients with non-alcoholic steatohepatitis. Eksp. Klin. Gastroenterol. 2010, 7, 97–102. [Google Scholar]
- Yang, K.; Chen, J.; Zhang, T.; Yuan, X.; Ge, A.; Wang, S.; Xu, H.; Zeng, L.; Ge, J. Efficacy and Safety of Dietary Polyphenol Supplementation in the Treatment of Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Front. Immunol. 2022, 13, 949746. [Google Scholar] [CrossRef]
- Benavoli, L.; Larussa, T.; Corea, A.; Procopio, A.C.; Boccuto, L.; Dallio, M.; Federico, A.; Luzza, F. Dietary polyphenols and non-alcoholic fatty liver disease. Nutrients 2021, 13, 494. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, D.; Wu, J.; Liu, J.; Zhou, Y.; Tan, Y.; Feng, W.; Peng, C. Interactions between Gut Microbiota and Polyphenols: A Mechanistic and Metabolomic Review. Phytomedicine 2023, 119, 154979. [Google Scholar] [CrossRef] [PubMed]
- Mithul Aravind, S.; Wichienchot, S.; Tsao, R.; Ramakrishnan, S.; Chakkaravarthi, S. Role of Dietary Polyphenols on Gut Microbiota, Their Metabolites and Health Benefits. Food Res. Int. 2021, 142, 110189. [Google Scholar] [CrossRef]
- Rodríguez-Daza, M.C.; Pulido-Mateos, E.C.; Lupien-Meilleur, J.; Guyonnet, D.; Desjardins, Y.; Roy, D. Polyphenol-mediated gut microbiota modulation: Toward prebiotics and further. Front. Nutr. 2021, 8, 689456. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zheng, H. Dietary polyphenol, gut microbiota, and health benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef]
- Lazebnik, L.B.; Radchenko, V.G.; Dzhadhav, S.N.; Sitkin, S.I.; Seliverstov, P.V. Systemic inflammation and non-alcoholic fatty liver disease. Eksp. Klin. Gastroenterol. 2019, 5, 29–41. [Google Scholar] [CrossRef]
- Guo, X.; Yin, X.; Liu, Z.; Wang, J. Non-Alcoholic Fatty Liver Disease (NAFLD) Pathogenesis and Natural Products for Prevention and Treatment. Int. J. Mol. Sci. 2022, 23, 15489. [Google Scholar] [CrossRef]
- Ametov, A.S.; Amikishieva, K.A.; Gurieva, I.V. Management of patients with metabolic-associated fatty liver disease: An endocrinologist’s view. Endocrinol. News Opin. Train. 2024, 13, 35–46. [Google Scholar] [CrossRef]
- Jennison, E.; Byrne, C.D. The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease. Clin. Mol. Hepatol. 2021, 27, 22–43. [Google Scholar] [CrossRef]
- Kim, T.H.; Hong, D.G.; Yang, Y.M. Hepatokines and non-alcoholic fatty liver disease: Linking liver pathophysiology to metabolism. Biomedicines 2021, 9, 1903. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Schick, F.; Birkenfeld, A.L.; Häring, H.-U.; White, M.F. The Role of Hepatokines in NAFLD. Cell Metab. 2023, 35, 236–252. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Li, J.; Feng, J.; Ji, J.; Yu, Q.; Li, Y.; Zheng, Y.; Dai, W.; Wu, J.; Guo, C. Crosstalk between PPARs and gut microbiota in NAFLD. Biomed. Pharmacother. 2021, 136, 111255. [Google Scholar] [CrossRef] [PubMed]
- Safari, Z.; Gérard, P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol. Life Sci. 2019, 76, 1541–1558. [Google Scholar] [CrossRef]
- Feng, J.; Dai, W.; Mao, Y.; Wu, L.; Li, J.; Chen, K.; Yu, Q.; Kong, R.; Li, S.; Zhang, J.; et al. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J. Exp. Clin. Cancer Res. 2020, 39, 24. [Google Scholar] [CrossRef]
- Xiang, S.; Chen, K.; Xu, L.; Wang, T.; Guo, C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. Drug Des. Devel. Ther. 2020, 14, 129–143. [Google Scholar] [CrossRef]
- Luo, W.; Xu, Q.; Wang, Q.; Wu, H.; Hua, J. Effect of Modulation of PPAR-γ Activity on Kupffer Cells M1/M2 Polarization in the Development of Non-Alcoholic Fatty Liver Disease. Sci. Rep. 2017, 7, 44612. [Google Scholar] [CrossRef]
- Li, F.; Ye, J.; Shao, C.; Zhong, B. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: A systematic review and meta-analysis. Lipids Health Dis. 2021, 20, 22. [Google Scholar] [CrossRef]
- Forlano, R.; Sivakumar, M.; Mullish, B.H.; Manousou, P. Gut microbiota—A future therapeutic target for people with non-alcoholic fatty liver disease: A systematic review. Int. J. Mol. Sci. 2022, 23, 8307. [Google Scholar] [CrossRef]
- Ranneh, Y.; Bedir, A.S.; Abu-Elsaoud, A.M.; Al Raish, S. Polyphenol intervention ameliorates non-alcoholic fatty liver disease: An updated comprehensive systematic review. Nutrients 2024, 16, 4150. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, Z.; Cao, X.; Chen, X.; Zou, T.; You, J. Plant-Derived Polyphenols as Nrf2 Activators to Counteract Oxidative Stress and Intestinal Toxicity Induced by Deoxynivalenol in Swine: An Emerging Research Direction. Antioxidants 2022, 11, 2379. [Google Scholar] [CrossRef]
- Ciupei, D.; Colişar, A.; Leopold, L.; Stănilă, A.; Diaconeasa, Z.M. Polyphenols: From Classification to Therapeutic Potential and Bioavailability. Foods 2024, 13, 4131. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Luo, M.; Huang, S.-Y.; Saimaiti, A.; Shang, A.; Gan, R.-Y.; Li, H.-B. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxid. Med. Cell. Longev. 2021, 2021, 9932218. [Google Scholar] [CrossRef]
- Bujanda, L.; Hijona, E.; Larzabal, M.; Beraza, M.; Aldazabal, P.; García-Urkia, N.; Sarasqueta, C.; Cosme, A.; Irastorza, B.; González, A.; et al. Resveratrol inhibits nonalcoholic fatty liver disease in rats. BMC Gastroenterol. 2008, 8, 40. [Google Scholar] [CrossRef]
- Gómez-Zorita, S.; Fernández-Quintela, A.; Macarulla, M.T.; Aguirre, L.; Hijona, E.; Bujanda, L.; Milagro, F.; Martínez, J.A.; Portillo, M.P. Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br. J. Nutr. 2012, 107, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.X.; Xu, Y.Y.; Wu, R.; Chen, Z.; Fang, K.; Han, Y.X.; Yu, Y.; Huang, L.-L.; Peng, L.; Ge, J.-F. Resveratrol reduces glucolipid metabolic dysfunction and learning and memory impairment in a NAFLD rat model: Involvement in regulating the imbalance of nesfatin-1 abundance and copine 6 expression. Front. Endocrinol. 2019, 10, 434. [Google Scholar] [CrossRef]
- Ali, M.H.; Messiha, B.A.; Abdel-Latif, H.A. Protective effect of ursodeoxycholic acid, resveratrol, and N-acetylcysteine on nonalcoholic fatty liver disease in rats. Pharm. Biol. 2016, 54, 1198–1208. [Google Scholar] [CrossRef]
- Hajighasem, A.; Farzanegi, P.; Mazaheri, Z. Effects of combined therapy with resveratrol, continuous and interval exercises on apoptosis, oxidative stress, and inflammatory biomarkers in the liver of old rats with non-alcoholic fatty liver disease. Arch. Physiol. Biochem. 2019, 125, 142–149. [Google Scholar] [CrossRef]
- Hajighasem, A.; Farzanegi, P.; Mazaheri, Z.; Naghizadeh, M.; Salehi, G. Effects of resveratrol, exercises and their combination on Farnesoid X receptor, Liver X receptor and Sirtuin 1 gene expression and apoptosis in the liver of elderly rats with nonalcoholic fatty liver. PeerJ 2018, 6, e5522. [Google Scholar] [CrossRef] [PubMed]
- Xin, P.; Han, H.; Gao, D.; Cui, W.; Yang, X.; Ying, C.; Sun, X.; Hao, L. Alleviative effects of resveratrol on nonalcoholic fatty liver disease are associated with up regulation of hepatic low density lipoprotein receptor and scavenger receptor class B type I gene expressions in rats. Food Chem. Toxicol. 2013, 52, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.; Taine, E.G.; Meng, D.; Cui, T.; Tan, W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024, 16, 924. [Google Scholar] [CrossRef] [PubMed]
- Shi, A.; Li, T.; Zheng, Y.; Song, Y.; Wang, H.; Wang, N.; Dong, L.; Shi, H. Chlorogenic acid improves NAFLD by regulating gut microbiota and GLP-1. Front. Pharmacol. 2021, 12, 693048. [Google Scholar] [CrossRef]
- Bacil, G.P.; Romualdo, G.R.; Rodrigues, J.; Barbisan, L.F. Indole-3-carbinol and chlorogenic acid combination modulates gut microbiome and attenuates nonalcoholic steatohepatitis in a murine model. Food Res. Int. 2023, 174, 113513. [Google Scholar] [CrossRef]
- Peng, J.H.; Leng, J.; Tian, H.J.; Yang, T.; Fang, Y.; Feng, Q.; Zhao, Y.; Hu, Y.-Y. Geniposide and chlorogenic acid combination ameliorates non-alcoholic steatohepatitis involving the protection on the gut barrier function in mouse induced by high-fat diet. Front. Pharmacol. 2018, 9, 1399. [Google Scholar] [CrossRef]
- Alqarni, I.; Bassiouni, Y.A.; Badr, A.M.; Ali, R.A. Telmisartan and/or chlorogenic acid attenuates fructose-induced non-alcoholic fatty liver disease in rats: Implications of cross-talk between angiotensin, the sphingosine kinase/sphingoine-1-phosphate pathway, and TLR4 receptors. Biochem. Pharmacol. 2019, 164, 252–262. [Google Scholar] [CrossRef]
- Liu, S.; Liu, J.; He, L.; Liu, L.; Cheng, B.; Zhou, F.; Cao, D.; He, Y. A Comprehensive Review on the Benefits and Problems of Curcumin with Respect to Human Health. Molecules 2022, 27, 4400. [Google Scholar] [CrossRef]
- Li, R.; Yao, Y.; Gao, P.; Bu, S. The therapeutic efficacy of curcumin vs. metformin in modulating the gut microbiota in NAFLD rats: A comparative study. Front. Microbiol. 2021, 11, 555293. [Google Scholar] [CrossRef]
- He, Y.; Wang, H.; Lin, S.; Chen, T.; Chang, D.; Sun, Y.; Wang, C.; Liu, Y.; Lu, Y.; Song, J. Advanced effect of curcumin and resveratrol on mitigating hepatic steatosis in metabolic associated fatty liver disease via the PI3K/AKT/mTOR and HIF-1/VEGF cascade. Biomed. Pharmacother. 2023, 165, 115279. [Google Scholar] [CrossRef]
- Abdulvapova, Z.N.; Artemova, E.V.; Gorbacheva, A.M.; Galstyan, G.R.; Tokmakova, A.Y.; Gavrilova, S.A. Phenotyping animal models of diabetic peripheral neuropathy in rats: Advantages and limitations. Probl. Endokrinol. 2018, 64, 188–193. [Google Scholar] [CrossRef]
- Amato, A.; Caldara, G.F.; Nuzzo, D.; Baldassano, S.; Picone, P.; Rizzo, M.; Mulè, F.; Di Carlo, M. NAFLD and atherosclerosis are prevented by a natural dietary supplement containing curcumin, silymarin, guggul, chlorogenic acid and inulin in mice fed a high-fat diet. Nutrients 2017, 9, 492. [Google Scholar] [CrossRef]
- Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and Metabolic Syndrome: A Review. Phyther. Res. 2021, 35, 5352–5364. [Google Scholar] [CrossRef]
- Yang, H.; Yang, T.; Heng, C.; Zhou, Y.; Jiang, Z.; Qian, X.; Du, L.; Mao, S.; Yin, X.; Lu, Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother. Res. 2019, 33, 3140–3152. [Google Scholar] [CrossRef]
- Pathak, P.; Xie, C.; Nichols, R.G.; Ferrell, J.M.; Boehme, S.; Krausz, K.W.; Patterson, A.D.; Gonzalez, F.J.; Chiang, J.Y.L. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 2018, 68, 1574–1588. [Google Scholar] [CrossRef]
- Porras, D.; Nistal, E.; Martínez-Flórez, S.; Pisonero-Vaquero, S.; Olcoz, J.L.; Jover, R.; González-Gallego, J.; García-Mediavilla, M.V.; Sánchez-Campos, S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic. Biol. Med. 2017, 102, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Uçar, K.; Göktaş, Z. Biological Activities of Naringenin: A Narrative Review Based on in Vitro and in Vivo Studies. Nutr. Res. 2023, 119, 43–55. [Google Scholar] [CrossRef]
- Wang, Q.; Ou, Y.; Hu, G.; Wen, C.; Yue, S.; Chen, C.; Xu, L.; Xie, J.; Dai, H.; Xiao, H.; et al. Naringenin attenuates non-alcoholic fatty liver disease by down-regulating the NLRP3/NF-κB pathway in mice. Br. J. Pharmacol. 2020, 177, 1806–1821. [Google Scholar] [CrossRef] [PubMed]
- Pipitone, R.M.; Zito, R.; Gambino, G.; Di Maria, G.; Javed, A.; Lupo, G.; Giglia, G.; Sardo, P.; Ferraro, G.; Rappa, F.; et al. Red and golden tomato administration improves fat diet-induced hepatic steatosis in rats by modulating HNF4α, Lepr, and GK expression. Front. Nutr. 2023, 10, 1221013. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Y.; Zou, J.; Wang, Y.H.; Xu, M.X.; Huang, W.; Yu, D.-J.; Zhang, L.; Zhang, Y.-Y.; Sun, X.-D. Naringenin attenuates non-alcoholic fatty liver disease by enhancing energy expenditure and regulating autophagy via AMPK. Front. Pharmacol. 2021, 12, 687095. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, S.; Zhang, L.; Ka, Y.; Zhou, M.; Wang, Y.; Tang, Z.; Zhang, J.; Wang, W.; Liu, W. Research Progress on Pharmacokinetics, Anti-Inflammatory and Immunomodulatory Effects of Kaempferol. Int. Immunopharmacol. 2025, 152, 114387. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Li, Y.; Li, R.; Wang, J.; Wu, C.; Chen, H.; Shi, Y.; Wang, S.; Gao, C. Kaempferol Inhibits Oxidative Stress and Reduces Macrophage Pyroptosis by Activating the NRF2 Signaling Pathway. PLoS ONE 2025, 20, e0325189. [Google Scholar] [CrossRef]
- Yang, H.; Li, D.; Gao, G. Kaempferol alleviates hepatic injury in nonalcoholic steatohepatitis (NASH) by suppressing neutrophil-mediated NLRP3-ASC/TMS1-caspase 3 signaling. Molecules 2024, 29, 2630. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yin, L.; Shang, J.; Liang, M.; Liu, Z.; Yang, H.; Qiang, G.; Du, G.; Yang, X. Kaempferol attenuates nonalcoholic fatty liver disease in type 2 diabetic mice via the Sirt1/AMPK signaling pathway. Biomed. Pharmacother. 2023, 165, 115113. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Liu, Z.; Wang, Y.; Zhang, Q.; Li, J.; Zhong, P.; Xie, Z.; Ji, A.; Li, Y. Epigallocatechin-3-gallate alleviates high-fat diet-induced nonalcoholic fatty liver disease via inhibition of apoptosis and promotion of autophagy through the ROS/MAPK signaling pathway. Oxid. Med. Cell Longev. 2021, 2021, 5599997. [Google Scholar] [CrossRef]
- Du, Y.; Paglicawan, L.; Soomro, S.; Abunofal, O.; Baig, S.; Vanarsa, K.; Hicks, J.; Mohan, C. Epigallocatechin-3-gallate dampens non-alcoholic fatty liver by modulating liver function, lipid profile and macrophage polarization. Nutrients 2021, 13, 599. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, Q.; Jin, T.; Wang, M.; Ying, H.; Lu, J.; Wang, M.; Zhang, W.; Qiu, F.; Jin, C.; et al. Theaflavin 3,3′-digallate Reverses the Downregulation of Connexin 43 and Autophagy Induced by High Glucose via AMPK Activation in Cardiomyocytes. J. Cell. Physiol. 2019, 234, 17999–18016. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, W.; Lin, H.; Zhang, L.; Wu, F.; Wang, Y.; Yu, S.; Peng, X.; Cheng, W.; Li, M.; et al. Effect of theaflavin-3,3′-digallate on leptin-deficient induced nonalcoholic fatty liver disease might be related to lipid metabolism regulated by the Fads1/PPARδ/Fabp4 axis and gut microbiota. Front. Pharmacol. 2022, 13, 925264. [Google Scholar] [CrossRef]
- Wang, M.; Liang, Y.; Chen, K.; Wang, M.; Long, X.; Liu, H.; Sun, Y.; He, B. The Management of Diabetes Mellitus by Mangiferin: Advances and Prospects. Nanoscale 2022, 14, 2119–2135. [Google Scholar] [CrossRef]
- Yong, Z.; Ruiqi, W.; Hongji, Y.; Ning, M.; Chenzuo, J.; Yu, Z.; Zhixuan, X.; Qiang, L.; Qibing, L.; Weiying, L.; et al. Mangiferin ameliorates HFD-induced NAFLD through regulation of the AMPK and NLRP3 inflammasome signal pathways. J. Immunol. Res. 2021, 2021, 4084566. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.Y.; Wang, L.; Teng, T.; Zhou, M.; Wang, S.G.; Tian, Y.-Z.; Du, L.; Yin, X.-X.; Sun, Y. Mangiferin ameliorates fatty liver via modulation of autophagy and inflammation in high-fat-diet induced mice. Biomed. Pharmacother. 2017, 96, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, M.; Yu, H.; Wang, W.; Han, L.; Chen, Q.; Ruan, J.; Wen, S.; Zhang, Y.; Wang, T. Mangiferin improves hepatic lipid metabolism mainly through its metabolite-norathyriol by modulating SIRT-1/AMPK/SREBP-1c signaling. Front. Pharmacol. 2018, 9, 201. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Teng, H.; Wu, W.; Li, Y.; Lv, G.; Huang, X.; Yan, W.; Lin, Z. Pharmacokinetic and metabolomic analyses of mangiferin calcium salt in rat models of type 2 diabetes and non-alcoholic fatty liver disease. BMC Pharmacol. Toxicol. 2020, 21, 59. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Sun, Y.; Su, Y.; Guan, W.; Wang, Y.; Han, J.; Wang, S.; Yang, B.; Wang, Q.; Kuang, H. Luteolin: A Promising Multifunctional Natural Flavonoid for Human Diseases. Phyther. Res. 2024, 38, 3417–3443. [Google Scholar] [CrossRef]
- Yang, S.; Wei, Z.; Luo, J.; Wang, X.; Chen, G.; Guan, X.; She, Z.; Liu, W.; Tong, Y.; Liu, H.; et al. Integrated bioinformatics and multiomics reveal Liupao tea extract alleviating NAFLD via regulating hepatic lipid metabolism and gut microbiota. Phytomedicine 2024, 132, 155834. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, R.; Shen, Z.; Cai, G. Combination of luteolin and lycopene effectively protect against the “two-hit” in NAFLD through Sirt1/AMPK signal pathway. Life Sci. 2020, 256, 117990. [Google Scholar] [CrossRef]
- Wang, T.; Xu, Q.; Cao, Y.; Zhang, C.; Chen, S.; Zhang, Y.; Liang, T. Luteolin ameliorates hepatic steatosis and enhances mitochondrial biogenesis via AMPK/PGC-1α pathway in Western diet-fed mice. J. Nutr. Sci. Vitaminol. 2023, 69, 259–267. [Google Scholar] [CrossRef]
- Yin, Y.; Gao, L.; Lin, H.; Wu, Y.; Han, X.; Zhu, Y.; Li, J. Luteolin improves non-alcoholic fatty liver disease in db/db mice by inhibition of liver X receptor activation to down-regulate expression of sterol regulatory element binding protein 1c. Biochem. Biophys. Res. Commun. 2017, 482, 720–726. [Google Scholar] [CrossRef]
- Sá, C.; Oliveira, A.R.; Machado, C.; Azevedo, M.; Pereira-Wilson, C. Effects on liver lipid metabolism of the naturally occurring dietary flavone luteolin-7-glucoside. Evid. Based. Complement. Alternat. Med. 2015, 2015, 647832. [Google Scholar] [CrossRef]
- Oriquat, G.; Masoud, I.M.; Kamel, M.A.; Aboudeya, H.M.; Bakir, M.B.; Shaker, S.A. The Anti-Obesity and Anti-Steatotic Effects of Chrysin in a Rat Model of Obesity Mediated through Modulating the Hepatic AMPK/MTOR/Lipogenesis Pathways. Molecules 2023, 28, 1734. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Landa, J.F.; German-Ponciano, L.J.; Puga-Olguín, A.; Olmos-Vázquez, O.J. Pharmacological, Neurochemical, and Behavioral Mechanisms Underlying the Anxiolytic- and Antidepressant-like Effects of Flavonoid Chrysin. Molecules 2022, 27, 3551. [Google Scholar] [CrossRef] [PubMed]
- Campanher, G.; Andrade, N.; Lopes, J.; Silva, C.; Pena, M.J.; Rodrigues, I.; Martel, F. The counteracting effect of chrysin on dietary fructose-induced metabolic-associated fatty liver disease (MAFLD) in rats with a focus on glucose and lipid metabolism. Molecules 2025, 30, 380. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhang, H.; Nie, L.; He, K.; Li, P.; Wang, X.; Zhang, Z.; Xie, Y.; Li, S.; Liu, G.; et al. Chrysin prevents inflammation-coinciding liver steatosis via AMPK signalling. J. Pharm. Pharmacol. 2023, 75, 1086–1099. [Google Scholar] [CrossRef] [PubMed]
- Pai, S.A.; Munshi, R.P.; Panchal, F.H.; Gaur, I.S.; Juvekar, A.R. Chrysin ameliorates nonalcoholic fatty liver disease in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 1617–1628. [Google Scholar] [CrossRef]
- Attia, H.; Albekairi, N.; Albdeirat, L.; Soliman, A.; Rajab, R.; Alotaibi, H.; Ali, R.; Badr, A. Chrysin attenuates fructose-induced nonalcoholic fatty liver in rats via antioxidant and anti-inflammatory effects: The role of angiotensin-converting enzyme 2/angiotensin (1–7)/Mas receptor axis. Oxid. Med. Cell Longev. 2022, 2022, 9479456. [Google Scholar] [CrossRef] [PubMed]
- Vanaga, I.; Gubernator, J.; Nakurte, I.; Kletnieks, U.; Muceniece, R.; Jansone, B. Identification of Abies sibirica L. polyprenols and characterisation of polyprenol-containing liposomes. Molecules 2020, 25, 1801. [Google Scholar] [CrossRef]
- Khodanovich, M.Y.; Pishchelko, A.O.; Glazacheva, V.Y.; Pan, E.S.; Krutenkova, E.P.; Trusov, V.B.; Yarnykh, V.L. Plant polyprenols reduce demyelination and recover impaired oligodendrogenesis and neurogenesis in the cuprizone murine model of multiple sclerosis. Phytother. Res. 2019, 33, 1363–1373. [Google Scholar] [CrossRef]
- Muceniece, R.; Namniece, J.; Nakurte, I.; Jekabsons, K.; Riekstina, U.; Jansone, B. Pharmacological research on natural substances in Latvia: Focus on lunasin, betulin, polyprenol and phlorizin. Pharmacol. Res. 2016, 113, 760–770. [Google Scholar] [CrossRef]
- Tao, R.; Wang, C.; Ye, J.; Zhou, H.; Chen, H. Polyprenols of Ginkgo biloba enhance antibacterial activity of five classes of antibiotics. Biomed. Res. Int. 2016, 2016, 4191938. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, L.; Zhang, C.; Xie, P.; Zhang, Y.; Ding, S.; Xu, F. Synthesis and biological activity of polyprenols. Fitoterapia 2015, 106, 184–193. [Google Scholar] [CrossRef]
- Golovanova, E.V.; Shaposhnikova, N.A.; Melkina, E.S.; Soultanov, V.S. The hepatoprotector Ropren for the treatment of patients with nonalcoholic steatohepatitis: A prospective observational study. Eksp. Klin. Gastroenterol. 2016, 9, 71–76. [Google Scholar]
- Fedotova, J.; Soultanov, V.; Nikitina, T.; Roschin, V.; Ordyan, N.; Hritcu, L. Cognitive-enhancing activities of the polyprenol preparation Ropren® in gonadectomized β-amyloid (25–35) rat model of Alzheimer’s disease. Physiol. Behav. 2016, 157, 55–62. [Google Scholar] [CrossRef]
- Pronin, A.V.; Narovlyansky, A.N.; Shulzhenko, A.E.; Sanin, A.V.; Sedov, A.M. New polyprenyl phosphate-based preparation Fortepren® as promising cytokine regulating antiviral remedy. Cytokine. Growth. Factor. Rev. 2016, 30, 119–126. [Google Scholar] [CrossRef]
- Vyshlov, E.V.; Tsoy, E.I.; Sultanov, V.S.; Trusov, V.B.; Ryabov, V.V. Hypolipidemic and hepatoprotective effects of a polyprenol-containing drug in patients with acute coronary syndrome. Bull. Exp. Biol. Med. 2018, 165, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, C.Z.; Ye, J.Z.; Li, H.T. Hepatoprotective effects of polyprenols from Ginkgo biloba L. leaves on CCl4-induced hepatotoxicity in rats. Fitoterapia 2011, 82, 834–840. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Y.; Qian, H.; Zhao, Y.; Liu, B.; Fu, C. Polyprenols from Taxus chinensis var. mairei prevent the development of CCl4-induced liver fibrosis in rats. J. Ethnopharmacol. 2012, 142, 151–160. [Google Scholar] [CrossRef]
- Pronin, A.V.; Cheknev, S.B.; Nikolaeva, T.N.; Kozlov, V.V.; Kozhevnikova, T.N.; Vostrova, E.I.; Grigorieva, E.A.; Sosnovskaya, O.Y.; Sarycheva, M.A.; Vostrov, A.V.; et al. Immunobiological efficacy of a new drug based on sodium polyprenyl phosphate for the treatment and prevention of metabolic syndrome in an experiment. Med. Immunol. 2024, 26, 1061–1070. [Google Scholar] [CrossRef]
- Pronin, A.V.; Danilov, L.L.; Narovlyansky, A.N.; Sanin, A.V. Plant polyisoprenoids and control of cholesterol level. Arch. Immunol. Ther. Exp. 2014, 62, 31–39. [Google Scholar] [CrossRef]
- Narovlyansky, A.N.; Pronin, A.V.; Sanin, A.V.; Veselovsky, V.V.; Danilov, L.L.; Sedov, A.M.; Veselovsky, V.V. Isoprenoids: Polyprenols and Polyprenyl Phosphates as Physiologically Important Metabolic Regulators; Nova Science Publishers: New York, NY, USA, 2018; 177p. [Google Scholar]
- Lunder, M.; Roškar, I.; Hošek, J.; Štrukelj, B. Silver fir (Abies alba) extracts inhibit enzymes involved in blood glucose management and protect against oxidative stress in high glucose environment. Plant Foods Hum. Nutr. 2019, 74, 47–53. [Google Scholar] [CrossRef]
- Benković, E.T.; Grohar, T.; Žigon, D.; Švajger, U.; Janeš, D.; Kreft, S.; Štrukelj, B. Chemical composition of the silver fir (Abies alba) bark extract Abigenol® and its antioxidant activity. Ind. Crop. Prod. 2014, 52, 23–28. [Google Scholar] [CrossRef]
- Leone, K.; Micheletto, M.; Di Maira, G.; Tedesco, E.; Benetti, F.; Zaloker, U. Role of a novel silver fir (Abies alba) extract, Abigenol®/AlbiPhenol®, in modulating cardiovascular disorders: Key factors. Antioxidants 2022, 11, 618. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.B.; Van Hoeven, N.; Granger, B.; Lin, S.; Guderian, J.A.; Hartwig, A.; Marlenee, N.; Bowen, R.A.; Soultanov, V.; Carter, D. Vaccine adjuvant activity of emulsified oils from species of the Pinaceae family. Phytomedicine 2019, 64, 152927. [Google Scholar] [CrossRef] [PubMed]
- Sari, D.P.; Basyuni, M.; Hasibuan, P.A.; Sumardi, S.; Nuryawan, A.; Wati, R. Cytotoxic and antiproliferative activity of polyisoprenoids in seventeen mangroves species against widr colon cancer cells. Asian Pac. J. Cancer Prev. 2018, 19, 3393–3400. [Google Scholar] [CrossRef] [PubMed]
- Safatov, A.S.; Boldyrev, A.N.; Bulychev, L.E.; Buryak, G.A.; Kukina, T.P.; Poryvaev, V.D.; P’yankov, O.V.; Raldugin, V.A.; Ryzhikov, A.B.; Sergeev, A.N.; et al. A prototype prophylactic anti-influenza preparation in aerosol form on the basis of Abies sibirica polyprenols. J. Aerosol Med. 2005, 18, 55–62. [Google Scholar] [CrossRef] [PubMed]
Polyphenol (Food Sources) | Animal Model, Dose | Effects | Ref. |
---|---|---|---|
Resveratrol (grape skins, berries such as blueberries, cranberries, and raspberries, cocoa beans, and peanuts) | Male Wistar rats, 10–100 mg/kg b.w. | ↓ Adipose tissue, relative liver weight, TNF-α, MDA, NOS, ALT, glucose, albumin, glutathione, GST, total cholesterol, LDL, leptin; ↑ SOD, GPx, catalase, IL-10, mRNA expression of FAS, LDLr, and SRB1 | [46,49,50,52] |
Zucker fa/fa rats, 15 and 45 mg/kg b.w. | ↓ Liver weight, triglycerides, FFAs, ALP, AST; ↑ Activity of CPT1a and ACO | [47] | |
Sprague-Dawley rats, 15 mg/kg b.w. | ↓ ALT, AST, total and direct bilirubin, indirect bilirubin, total cholesterol, LDL, hepatocyte steatosis; ↑ HDL, expression of copine 6, p-catenin, and p-GSK3β | [48] | |
Aged rats, 25 mg/kg b.w. | ↓ AST, ALT, ALP; ↑ Expression of Sirt1, Lxr, and Fxr genes | [51] | |
Chlorogenic Acid (coffee, sunflower seeds, blueberries, chicory, Eucommia, and honeysuckle) | Male C57Bl/6 mice, 1.34–125 mg/kg b.w. | ↓ Steatosis, lobular inflammation, ballooning degeneration of hepatocytes, hepatic lipid accumulation, stellate cell activation, ALT, AST, glucose, blood lipids, TLR4, IL-1β, TNF-α, IL-6, E. coli in feces; ↑ Insulin sensitivity, Bifidobacterium spp. | [54,55,56] |
Male Wistar rats, 40 mg/kg b.w. | ↓ SPHK1, S1P, and TLR gene synthesis, NF-κB, TNF-α levels; ↑ SOD, GPx | [57] | |
Curcumin (turmeric root) | Male Sprague-Dawley rats, 200 mg/kg b.w. | ↓ Fat accumulation, inflammatory activity | [59] |
Male Goto-Kakizaki rats, 150 mg/kg b.w. | ↓ Hepatosteatosis, LDL, triglycerides, cholesterol, ALP, ALT, AST, PI3K, mTOR, STAT-3, HIF-1α, VEGF activity | [60] | |
Male C57Bl/6 mice, commercial turmeric extract, 0.9 g/mouse | ↓ Expression of Fabp5, Socs3 genes; ↑ Expression of Cpt2, Ifng genes | [62] | |
Quercetin (capers, onions, apples, bell peppers, garlic, red grapes, citrus fruits, broccoli, cauliflower, and white cabbage) | C57BLKS/J db/db mice, 100 mg/kg b.w. | ↓ IL-1β, IL-6, TNF-α synthesis, bile acids, ALT, AST; ↑ SOD, catalase, glutathione | [64] |
C57BL/6J mice, 0.05% in diet | ↓ Insulin resistance, fat accumulation, TLR signaling pathway activity | [66] | |
Naringenin (citrus fruits, particularly grapefruits, and tomatoes) | Male C57Bl/6 mice, 50 and 100 mg/kg b.w. | ↓ Fat accumulation, ALT, AST, expression of TNF-α, NF-κB, NLRP3, IL-1β, IL-18 | [68] |
Male Sprague-Dawley rats, 10, 30, and 90 mg/kg b.w. | ↓ Cholesterol, triglycerides, ALT, AST, hepatic fat accumulation | [70] | |
Kaempferol (cabbage, onions, spinach, and broccoli, citrus and apples) | Female C57BL/6 mice, 20 mg/kg b.w. | ↓ Body weight, liver weight, cholesterol, triglycerides, LDL, ALT, AST; ↑ HDL | [73] |
Male db/db mice, 50 mg/kg b.w. | ↓ Hepatic lipid accumulation, tissue fibrosis; ↑ SIRT1, AMPK, SREBP-1 activity | [74] | |
Epigallocatechin Gallate (green tea) | Male C57BL/6J mice, 25–50 mg/kg b.w. | ↓ Body weight, liver weight, cholesterol, triglycerides, AST, ALT | [75,76] |
Theaflavin-3,3′-Digallate (black tea) | Male ob/ob mice, 5, 10, and 20 mg/kg b.w. | ↓ Body weight, ALT, AST, cholesterol, triglycerides | [78] |
Mangiferin (mango leaves) | Male C57BL/6J mice, 100 mg/kg b.w. | ↓ Insulin resistance, glucose tolerance, fat accumulation, liver tissue inflammation | [80] |
Male Kunming mice, 15, 30, and 60 mg/kg b.w. | ↓ Body weight, cholesterol, triglycerides, NF-κB, JNK activity | [81] | |
Male KK-Ay mice, 100 and 200 mg/kg b.w. | ↓ Triglycerides, FFAs, lipogenesis; ↑ Lipolysis | [82] | |
Male and female Sprague-Dawley rats, 120, 240, and 480 mg/kg b.w. | ↓ Glucose, insulin, triglycerides, cholesterol, ALT, AST | [83] | |
Luteolin (bell peppers, celery, pumpkin, red lettuce, artichokes, and kohlrabi) | Male C57Bl/6J mice, 20 mg/kg b.w. | ↓ Body weight, hepatocyte steatosis, cholesterol, triglycerides, LDL, AST, ALT, IL-6, IL-1β, TNF-α; ↑ NAMPT expression, mitochondrial SDH activity | [86,87] |
db/db mice, 20 and 100 mg/kg b.w. | ↓ LXR, SREBP-1c signaling pathway activity | [88] | |
Male Wistar rats, 2 mg/kg b.w. | ↓ SREBP-1, HMG-CoA reductase expression; ↑ PPARα, CPT-1 expression | [89] | |
Chrysin (bee propolis and honey) | Male Sprague-Dawley rats, 100 mg/kg b.w. | ↓ FAS expression, lipid peroxidation, glycogen; ↑ Reduced glutathione | [93] |
Male Wistar rats, 25, 50, and 100 mg/kg b.w. | ↓ Glucose, triglycerides, cholesterol, LDL, VLDL, AST, ALT, MDA, TNF-α, IL-6, NF-κB, SREBP-1c, liver weight; ↑ PPARα, reduced glutathione | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balakina, A.; Sidorova, Y.; Petrov, N.; Shipelin, V. Food Minor Bioactive Compounds of Polyphenolic and Polyprenolic Nature Are Promising Agents for the Prevention and Therapy of Non-Alcoholic Fatty Liver Disease. Molecules 2025, 30, 3791. https://doi.org/10.3390/molecules30183791
Balakina A, Sidorova Y, Petrov N, Shipelin V. Food Minor Bioactive Compounds of Polyphenolic and Polyprenolic Nature Are Promising Agents for the Prevention and Therapy of Non-Alcoholic Fatty Liver Disease. Molecules. 2025; 30(18):3791. https://doi.org/10.3390/molecules30183791
Chicago/Turabian StyleBalakina, Anastasiya, Yuliya Sidorova, Nikita Petrov, and Vladimir Shipelin. 2025. "Food Minor Bioactive Compounds of Polyphenolic and Polyprenolic Nature Are Promising Agents for the Prevention and Therapy of Non-Alcoholic Fatty Liver Disease" Molecules 30, no. 18: 3791. https://doi.org/10.3390/molecules30183791
APA StyleBalakina, A., Sidorova, Y., Petrov, N., & Shipelin, V. (2025). Food Minor Bioactive Compounds of Polyphenolic and Polyprenolic Nature Are Promising Agents for the Prevention and Therapy of Non-Alcoholic Fatty Liver Disease. Molecules, 30(18), 3791. https://doi.org/10.3390/molecules30183791