Synthesis and Comparison of the Flame-Retardant Properties of Phosphorylated-Coumarins and Phosphorylated-Isophosphinolines
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Diarylphosphine Oxide
2.2. Synthesis of 4-Phosphorylated Coumarins COUM-R and 3-Phosphorylated Isophosphinolines ISOP-R
2.3. Characterizations
3. Results
- -
- Diastereomers
- -
- Phosphorus
- -
- Halogens
4. Conclusions
- -
- Substituting groups most often tend to increase the thermal stability of both building blocks, namely, coumarin and isophosphinoline. This effect is more prominent for coumarin. In isophosphinoline, it depends on the location of the substituting group.
- -
- The oxidation level of phosphorus has an impact on char promotion. Phosphonates are highly efficient groups for enhancing charring, while low-oxidation-level phosphorus is unable to promote charring.
- -
- Aromatic rings as pendant groups (and without the presence of heteroatoms) increase the peak of heat release rate and do not promote charring, especially when they are not substituted by halogen atoms. This is not surprising, and previous work has shown that these aromatic rings have a high contribution to the pHRR and THR and a negligible contribution to charring [3,18].
- -
- Fluorine atoms have very little effect on flammability, while chlorine and bromine groups strongly reduce heat release through a decrease in the heat of combustion and char promotion (to a certain extent). Moreover, the combustion efficiency is highly reduced when the combustion temperature is low, and in some cases, even when the temperature is as high as 900 °C. Moreover, the greater the quantity of halogen atoms, the more significant this effect is.
- -
- The influence of halogen atoms as flame inhibitors is strongly dependent on the building block structure. In particular, the combustion is much more disturbed at a low temperature for coumarin than for isophosphinoline, despite the presence of a phosphorus atom in the structure of the latter.
- -
- The location of the substituting group on isophosphinoline (on carbon 3 or 4) completely changes the decomposition pathway. In particular, the grafting of the substituting group on carbon 3 (group 3) leads to decomposition over a wide temperature range, and, consequently, a low pHRR.
- -
- The location of halogen atoms on the aromatic ring has a huge effect on the decomposition pathway. In one case, only one chlorine atom in meta position leads to a strong charring. Such an effect is not observed when the chlorine atom is in para position or when several chlorine atoms are present.
- -
- In some cases, diastereomers exhibit different flammability properties, mainly in terms of their pHRR.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyon, R.E.; Takemori, M.T.; Safronava, N.; Stoliarov, S.I.; Walters, R.N. A molecular basis for polymer flammability. Polymer 2009, 50, 2608–2617. [Google Scholar] [CrossRef]
- Walters, R.N.; Lyon, R.E. Molar Group Contributions to Polymer Flammability. J. Appl. Polym. Sci. 2003, 87, 548–563. [Google Scholar] [CrossRef]
- Sonnier, R.; Otazaghine, B.; Iftene, F.; Negrell, C.; David, G.; Howell, B.A. Predicting the flammability of polymers from their chemical structure: An improved model based on group contributions. Polymer 2016, 86, 42–55. [Google Scholar] [CrossRef]
- Sonnier, R.; Otazaghine, B.; Ferry, L.; Lopez-Cuesta, J.-M. Study of the combustion efficiency of polymers using a pyrolysis–combustion flow calorimeter. Combust. Flame 2013, 160, 2182–2193. [Google Scholar] [CrossRef]
- Lyon, R.E.; Walters, R.N.; Stoliarov, S.I. Screening Flame Retardants for Plastics Using Microscale Combustion Calorimetry. Polym. Eng. Sci. 2007, 47, 1501–1510. [Google Scholar] [CrossRef]
- Yang, C.Q.; He, Q.; Lyon, R.E.; Hu, Y. Investigation of the flammability of different textile fabrics using micro-scale combustion calorimetry. Polym. Degrad. Stab. 2010, 95, 108–115. [Google Scholar] [CrossRef]
- Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int. J. Mol. Sci. 2020, 21, 4618. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A Review on anti-tumor mechanisms of coumarins. Front. Oncol. 2020, 10, 592853. [Google Scholar] [CrossRef]
- Yuan, J.-W.; Li, Y.-Z.; Yang, L.-R.; Mai, W.-P.; Mao, P.; Xiao, Y.-M.; Qu, L.-B. Silver-catalyzed direct Csp2-H radical phosphorylation of coumarins with H-phosphites. Tetrahedron 2015, 71, 8178–8186. [Google Scholar] [CrossRef]
- Budzisz, E.; Brzezinska, E.; Krajewska, U.; Rozalski, M. Cytotoxic effects alkylating properties and molecular modelling of coumarin derivatives and their phosphonic analogues. Eur. J. Med. Chem. 2003, 38, 597–603. [Google Scholar] [CrossRef]
- Singh, R.K.; Rogers, M.D. An efficient synthesis of diethyl coumarin-3-phosphonates. J. Heterocycl. Chem. 1985, 22, 1713–1714. [Google Scholar] [CrossRef]
- Janecki, T.; Albrecht, A.; Koszuk, J.F.; Modranka, J.; Słowak, D. A simple and effective synthesis of activated vinylphosphonates from 3-methoxy-2-diethoxyphosphorylacrylate. Tetrahedron Lett. 2010, 51, 2274–2276. [Google Scholar] [CrossRef]
- Mi, X.; Huang, M.; Zhang, J.; Wang, C.; Wu, Y. Regioselective Palladium-Catalyzed Phosphonation of Coumarins with Dialkyl H Phosphonates via C-H Functionalization. Org. Lett. 2013, 15, 6266–6269. [Google Scholar] [CrossRef]
- Liu, D.; Chen, D.-Q.; Wang, X.-Z.; Xu, P.-F. Metal-Free Visible-Light-Promoted Synthesis of 3-Phosphorylated Coumarins via radical C-P/C-C Bond Formation. Adv. Synth. Catal. 2017, 359, 2773–2777. [Google Scholar] [CrossRef]
- Kim, I.; Min, M.; Kang, D.; Kim, K.; Hong, S. Direct Phosphonation of Quinolinones and Coumarins Driven by the Photochemical Activity of Substrates and Products. Org. Lett. 2017, 19, 1394–1397. [Google Scholar] [CrossRef]
- Lenker, H.K.; Richard, E.M.; Reese, K.P.; Carter, A.F.; Zawisky, J.D.; Winter, E.F.; Bergeron, T.W.; Guydon, K.S.; Stockland, R.A. Phospha-Michael Additions to Activated Internal Alkenes: Steric and Electronic Effects. J. Org. Chem. 2012, 77, 1378–1385. [Google Scholar] [CrossRef]
- Brahmachari, G. Catalyst- and Additive-Free Decarboxylative C-4 Phosphorylation of Coumarin-3-Carboxylic Acids at Ambient Conditions. Adv. Synth. Catal. 2020, 362, 5411–5421. [Google Scholar] [CrossRef]
- Sonnier, R.; Otazaghine, B.; Dumazert, L.; Ménard, R.; Viretto, A.; Dumas, L.; Bonnaud, L.; Dubois, P.; Safronava, N.; Walters, R.; et al. Prediction of thermosets flammability using a model based on group contributions. Polymer 2017, 127, 203–213. [Google Scholar] [CrossRef]
- Mengue Me Ndong, K.P.; Hariri, M.; Mwande-Maguene, G.; Lebibi, J.; Darvish, F.; Safi, C.; Abdelli, K.; Daïch, A.; Negrell, C.; Sonnier, R.; et al. Palladium-Catalyzed C-H functionalization and flame-retardant properties of isophosphinolines. Molecules 2024, 29, 5104. [Google Scholar] [CrossRef] [PubMed]
- Roncucci, D.; Augé, M.-O.; Dul, S.; Chen, J.; Gooneie, A.; Rentsch, D.; Lehner, S.; Jovic, M.; Rippl, A.; Ayala, V.; et al. Coumarin-DPPO a new bio-based phosphorus additive for poly(lactic acid): Processing and flame retardant application. Polym. Degrad. Stab. 2024, 223, 110737. [Google Scholar] [CrossRef]
- Bunlaksananusorn, T.; Knochel, P. t-BuOK-catalyzed addition of phosphines to functionalized alkenes: A convenient synthesis of polyfunctional phosphine derivatives. Tetrahedron Lett. 2002, 43, 5817–5819. [Google Scholar] [CrossRef]
- Zhang, J.S.; Zhang, J.Q.; Chen, T.; Han, L.-B. t-BuOK-mediated reductive addition of P(O)–H compounds to terminal alkynes forming β-arylphosphine oxides. Org. Biomol. Chem. 2017, 15, 5462–5467. [Google Scholar] [CrossRef]
- Bruker. APEX3, XPREP and SAINT; Bruker AXS Inc.: Madison, WI, USA, 2012. [Google Scholar]
- Van der Lee, A. Charge flipping for routine structure solution. J. Appl. Crystallogr. 2013, 46, 1306–1315. [Google Scholar] [CrossRef]
- Palatinus, L.; Chapuis, G. SUPERFLIP—A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. [Google Scholar] [CrossRef]
- Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K.; Watkin, D.J. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003, 36, 1487. [Google Scholar] [CrossRef]
- Tripolszky, A.; Keglevich, G. Synthesis of secondary phosphine oxides by substitution at phosphorus by grignard reagents. Lett. Org. Chem. 2018, 15, 387–393. [Google Scholar] [CrossRef]
- Yuan, Q.; Liu, H.-W.; Cai, Z.-J.; Ji, S.-J. Direct 1,1-bisphosphonation of isocyanides: Atom- and step-economical access to bisphosphinoylaminomethanes. ACS Omega 2021, 6, 8495–8501. [Google Scholar] [CrossRef]
- Lhermet, R.; Moser, E.; Jeanneau, E.; Olivier-Bourbigou, H.; Breuil, P.-A.R. Outer-sphere reactivity shift of secondary phosphine oxide-based nickel complexes: From ethylene hydrophosphinylation to oligomerization. Chem. Eur. J. 2017, 23, 7433–7437. [Google Scholar] [CrossRef]
- Duan, S.; Pan, A.; Du, Y.; Zhu, G.; Tian, X.; Zhang, H.; Walsh, P.J.; Yang, X. Nickel-Catalyzed Enantioselective Hydrophosphinylation of 2-Azadienes to Access Enantioenriched α-Aminophosphine Oxides. ACS Catal. 2023, 13, 10887–10894. [Google Scholar] [CrossRef]
- Zhang, D.P.; Lian, M.M.; Liu, J.; Tang, S.K.; Liu, G.Z.; Ma, C.F.; Meng, Q.W.; Peng, H.S.; Zhu, D.L. Preparation of O-Protected Cyanohydrins by Aerobic Oxidation of α-Substituted Malononitriles in the Presence of Diarylphosphine. Oxides. Org. Lett. 2019, 21, 2597–2601. [Google Scholar] [CrossRef] [PubMed]
- He, Z.K.; Tang, C.L. D-A Type Triarylphosphine Compound and Synthetic Method and Application Thereof. C.N. Patent 1149207774 A, 2 January 2024. [Google Scholar]
- Huggett, C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980, 4, 61–65. [Google Scholar] [CrossRef]
- Sonnier, R. Microscale forced combustion: Pyrolysis-combustion flow calorimetry (PCFC). In Analysis of Flame Retardancy in Polymer Science; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 3; pp. 91–116. [Google Scholar]
- Sonnier, R.; Dorez, G.; Vahabi, H.; Longuet, C.; Ferry, L. FTIR–PCFC coupling: A new method for studying the combustion of polymers. Combust. Flame 2014, 161, 1398–1407. [Google Scholar] [CrossRef]
- Walters, R.N.; Safronava, N.; Lyon, R.E. A microscale combustion calorimeter study of gas phase combustion of polymers. Combust. Flame 2015, 162, 855–863. [Google Scholar] [CrossRef]
- Braun, U.; Balabanovich, A.I.; Schartel, B.; Knoll, U.; Artner, J.; Ciesielski, M.; Döring, M.; Perez, R.; Sandler, J.K.W.; Altstädt, V.; et al. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer 2006, 47, 8495–8508. [Google Scholar] [CrossRef]
- Hergenrother, P.M.; Thompson, C.M.; Smith, J.G., Jr.; Connell, J.W.; Hinkley, J.A.; Lyon, R.E.; Moulton, R. Flame retardant aircraft epoxy resins containing phosphorus. Polymer 2005, 46, 5012–5024. [Google Scholar] [CrossRef]
- Al-Jallo, H.N.; Jalhoom, M.G. Infrared spectra of aromatic acid halides. Spectrochim. Acta Part A Mol. Spectrosc. 1972, 28, 1663–1692. [Google Scholar] [CrossRef]
1a, 95% | 1b, 68% | 1c, 65% | 1d, 76% |
1e, 78% | 1f, 82% | 1g, Sigma-Aldrich | 1h, 96% |
1i, 63% | 1j, 85% | 1k, 65% | 1l, 82% |
1m, 54% | 1n, 66% |
COUM-H, 84% | COUM-2oMe, 65% | COUM-2mMe, 80% | COUM-2pMe, 58% |
COUM-2oOMe, 86% | COUM-2mOMe, 69% | COUM-2pOMe, 77% | |
COUM-2mF, 95% | COUM-2pF, 97% | COUM-2mCl, 81% | COUM-2pCl, 89% |
COUM-2o,mCl, 96% | COUM-2m,m,pCl, 87% | COUM-2pBr, 72% | |
ISOP-Ha,a′: 84% | ISOP-Ha (cis) | ISOP-Ha′ (trans) | ISOP-oMea,a′, 86%, |
ISOP-oMea (cis) | ISOP-pMea,a′, 80% | ISOP-oOMea,a′, 85% | ISOP-mMea,a′, 88% |
ISOP-mFa,a′, 80% | ISOP-pFa,a′, 84% | ISOP-pCla,a′, 70% | ISOP-o,mCla,a′, 79% |
Acronym | Structure | PCFC | TGA | ||||||
---|---|---|---|---|---|---|---|---|---|
PHRR (W/g) | TpHRR * (°C) | THR (kJ/g) | Residue Fraction at 750 °C (-) | Δh (kJ/g) | pMLR (%/°C) | Tdmax ** (°C) | Residue Fraction at 750 °C (-) | ||
Coumarin | 711 | 222 | 33.9 | 0 | 33.9 | 2.58 | 179 | 0 | |
Isophosphinoline | 422 | 343 | 31.7 | 0 | 31.7 | 1.57 | 302 | 0 | |
Group 1 | |||||||||
COUM-H | 580 | 300 | 28.9 | 0.01 | 29.2 | 3.51 | 288 | 0.03 | |
COUM-2oMe | 453 | 295 | 30.2 | 0.01 | 30.4 | 1.61 | 262 | 0.01 | |
COUM-2pMe | 485 | 311 | 29.1 | 0 | 29.2 | 1.48 | 274 | 0.02 | |
COUM-2oOMe | 434 | 324 | 25.0 | 0.01 | 25.3 | 1.98 | 283 | 0.04 | |
COUM-2mOMe | 417 | 316 | 25.8 | 0.01 | 26.1 | 1.93 | 288 | 0.06 | |
COUM-2mF | 454 | 299 | 25.9 | 0 | 25.9 | 2.64 | 286 | 0.01 | |
COUM-2pF | 421 | 298 | 26.5 | 0 | 26.5 | 2.24 | 290 | 0.02 | |
COUM-2mCl | 390 | 306 | 9.9 | 0.33 | 14.9 | 2.39 | 297 | 0.28 | |
COUM-2pCl | 588 | 318 | 23.1 | 0.01 | 23.3 | 3.8 | 305 | 0.03 | |
COUM-2o,m,Cl | 367 | 299 | 18.6 | 0.04 | 19.5 | 2.79 | 286 | 0.03 | |
COUM-2m,mpCl | 313 | 302 | 12.7 | 0.04 | 13.2 | 2.46 | 291 | 0.03 | |
COUM-2pBr | 363 | 305 | 11.6 | 0.18 | 14.2 | 3.32 | 300 | 0.12 | |
Group 2 | |||||||||
ISOP-Ha (cis) | 1033 | 400 | 30.6 | 0 | 30.6 | 3.34 | 376 | 0.02 | |
ISOP-Ha′ (trans) | 684 | 397 | 32.2 | 0 | 32.2 | 2.66 | 375 | 0.02 | |
ISOP-oMea (cis) | 707 | 384 | 29.1 | 0.01 | 29.4 | 3.39 | 362 | 0.01 | |
ISOP-oMea′ (trans) | 651 | 379 | 31.9 | 0.01 | 32.1 | 2.38 | 356 | 0.01 | |
ISOP-pMea,a′ | 800 | 402 | 30.5 | 0.01 | 30.8 | 3.44 | 381 | 0.01 | |
ISOP-oOMea | 726 | 374 | 29.4 | 0.01 | 29.6 | 2.92 | 356 | 0.01 | |
ISOP-oOMea′ | 531 | 367 | 27.1 | 0.01 | 27.4 | 1.85 | 343 | 0.02 | |
ISOP-mOMea | 585 | 397 | 26.6 | 0.06 | 28.4 | 2.77 | 372 | 0.04 | |
ISOP-mOMea′ | 535 | 393 | 26.9 | 0.06 | 28.4 | 2.49 | 372 | 0.06 | |
Mixture ISOP-mFa + ISOP-mFa′ | 697 | 387 | 27.7 | 0.02 | 28.2 | ||||
ISOP-mFa′ | 681 | 392 | 27.3 | 0 | 27.3 | 3.0 | 396 | 0.03 | |
Mixture ISOP-pFa + ISOP-pFa′ | 749 | 398 | 26.5 | 0.02 | 27.0 | ||||
ISOP-pCla | 660 | 391 | 25.3 | 0.02 | 25.8 | 3.98 | 373 | 0.04 | |
Mixture ISOP-pCla + ISOP-pCla′ | 431 | 391 | 21.8 | 0.11 | 24.6 | 1.81 | 390 | 0.14 | |
ISOP-o,mCla | 384 | 380 | 19.2 | 0.17 | 23.1 | 0.82 | 377 | 0.23 | |
ISOP-o,mCla′ | 378 | 379 | 15.8 | 0.15 | 18.6 | 1.76 | 363 | 0.12 | |
Group 3 | |||||||||
ISOB-3b | 230 | 400 | 23.8 | 0.04 | 24.7 | 1.22 | 334 | 0.04 | |
ISOB-3f | 188 | 472 | 20.7 | 0.26 | 27.9 | 0.54 | 451 | 0.22 | |
ISOB-3ja | 118 | 317 | 14.5 | 0.24 | 19.1 | 0.53 | 299 | 0.23 | |
ISOB-3h | 177 | 452 | 22.5 | 0.20 | 28.1 | 0.59 | 420 | 0.14 | |
ISOB-3g | 195 | 462 | 22.0 | 0.21 | 27.7 | 0.53 | 358 | 0.21 | |
ISOB-P3e | 175 | 329 | 19.1 | 0.32 | 28.3 | 0.37 | 407 | 0.28 | |
ISOB-P3d | 178 | 445 | 16.2 | 0.32 | 24.0 | 0.56 | 410 | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim Abdou Rachid, I.; Mengue Me Ndong, K.-P.; Halidou Dougourikoye, A.R.; Hariri, M.; Mwande-Maguene, G.; Lebibi, J.; Darvish, F.; Tidjani, I.A.; Virieux, D.; Pirat, J.-L.; et al. Synthesis and Comparison of the Flame-Retardant Properties of Phosphorylated-Coumarins and Phosphorylated-Isophosphinolines. Molecules 2025, 30, 3717. https://doi.org/10.3390/molecules30183717
Ibrahim Abdou Rachid I, Mengue Me Ndong K-P, Halidou Dougourikoye AR, Hariri M, Mwande-Maguene G, Lebibi J, Darvish F, Tidjani IA, Virieux D, Pirat J-L, et al. Synthesis and Comparison of the Flame-Retardant Properties of Phosphorylated-Coumarins and Phosphorylated-Isophosphinolines. Molecules. 2025; 30(18):3717. https://doi.org/10.3390/molecules30183717
Chicago/Turabian StyleIbrahim Abdou Rachid, Issaka, Karen-Pacelye Mengue Me Ndong, Abdoul Razak Halidou Dougourikoye, Mina Hariri, Gabin Mwande-Maguene, Jacques Lebibi, Fatemeh Darvish, Ilagouma Amadou Tidjani, David Virieux, Jean-Luc Pirat, and et al. 2025. "Synthesis and Comparison of the Flame-Retardant Properties of Phosphorylated-Coumarins and Phosphorylated-Isophosphinolines" Molecules 30, no. 18: 3717. https://doi.org/10.3390/molecules30183717
APA StyleIbrahim Abdou Rachid, I., Mengue Me Ndong, K.-P., Halidou Dougourikoye, A. R., Hariri, M., Mwande-Maguene, G., Lebibi, J., Darvish, F., Tidjani, I. A., Virieux, D., Pirat, J.-L., Ayad, T., Dumazert, L., van der Lee, A., Negrell, C., & Sonnier, R. (2025). Synthesis and Comparison of the Flame-Retardant Properties of Phosphorylated-Coumarins and Phosphorylated-Isophosphinolines. Molecules, 30(18), 3717. https://doi.org/10.3390/molecules30183717