Antihypertensive Effect of a Self-Microemulsifying System Obtained from an Ethanolic Extract of Heliopsis longipes Root in Spontaneously and L-NAME-Induced Hypertensive Rats
Abstract
1. Introduction
2. Results
2.1. GC-MS Analysis of the Ethanolic Extract from H. Longipes Root (EEH)
2.2. Obtaining the Self-Microemulsifying System Loaded with the Quantified EEH
2.3. Determination of the Antihypertensive Effect of HL-SMDS in L-NAME-Induced Hypertensive Rats
2.4. Effect of Oral Administration of HL-SMDS on the Vascular Reactivity: Ex Vivo Experiments
2.5. Determination of the Antihypertensive Effect in Spontaneously Hypertensive Rats (SHRs)
2.6. Effect of Long-Term Oral Administration of HL-SMDS on the Vascular Reactivity: Ex Vivo Experiments
2.7. SHR Heart Analysis
2.8. Quantification of Nitric Oxide Production in Serum
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Plant Material
4.3. Preparation of the Ethanolic Extract from H. Longipes Root (EEH) and Affinin Quantification
4.4. GC-MS Analysis of EEH
4.5. Preparation of the Self-Microemulsifying System
4.6. Evaluation of the Antihypertensive Effect of HL-SMDS in L-NAME-Induced Hypertensive Rats
4.6.1. Blood Pressure Measurement
4.7. Effect of the Oral Administration of HL-SMDS on the Vascular Reactivity: Ex Vivo Experiments
4.8. Determination of the Antihypertensive Effect in Spontaneously Hypertensive Rats (SHRs)
4.9. Effect of the Oral Administration of HL-SMDS on the Vascular Reactivity: Ex Vivo Experiments
4.10. SHR Heart Analysis
4.11. Quantification of Nitric Oxide in Serum
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
CAP | Captopril |
CB1 | Cannabinoid receptor 1 |
CCh | Carbachol |
CMC | Carboxymethyl cellulose |
CTR | Control |
EEH | Ethanolic extract from H. longipes root |
HI | Heart index |
HL-SMDS | SMEDDS containing the ethanolic extract of H. longipes root |
HPLC | High-performance liquid chromatography |
L-NAME | L-NG-nitroarginine methyl ester |
NO | Nitric oxide |
PE | Phenylephrine |
SBP | Systolic blood pressure |
SHR | Spontaneously hypertensive rat |
SEM | Standard error of the mean |
SMEDDS | Self-microemulsifying drug delivery systems |
TRPA1 | Transient receptor potential cation channel, subfamily A, member 1 |
TRPV1 | Transient receptor potential cation channel, subfamily V, member 1 |
UV/VIS | Ultraviolet–visible |
References
- Abiri, B.; Koohi, F.; Ebadinejad, A.; Valizadeh, M.; Hosseinpanah, F. Transition from metabolically healthy to unhealthy overweight/obesity and risk of cardiovascular disease incidence: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2041–2051. [Google Scholar] [CrossRef]
- Hamrahian, S.M.; Maarouf, O.H.; Fülöp, T. A Critical Review of Medication Adherence in Hypertension: Barriers and Facilitators Clinicians Should Consider. Patient Prefer. Adherence 2022, 16, 2749–2757. [Google Scholar] [CrossRef]
- Rossier, B.C.; Bochud, M.; Devuyst, O. The hypertension pandemic: An evolutionary perspective. Physiology 2017, 32, 112–125. [Google Scholar] [CrossRef]
- Shalaeva, E.V.; Messerli, F.H. What is resistant arterial hypertension? Blood Press 2023, 32, 1–9. [Google Scholar] [CrossRef]
- Burnier, M.; Egan, B.M. Adherence in Hypertension: A Review of Prevalence, Risk Factors, Impact, and Man-agement. Circ. Res. 2019, 124, 1124–1140. [Google Scholar] [CrossRef]
- Gao, Q.; Xu, L.; Cai, J. New drug targets for hypertension: A literature review. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2021, 1867, 1–11. [Google Scholar] [CrossRef]
- Laurent, S. Antihypertensive drugs. Pharmacol. Res. 2017, 124, 116–125. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T.; the International Natural Product Sciences Taskforce. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Chukwuma, C.I.; Matsabisa, M.G.; Ibrahim, M.A.; Erukainure, O.L.; Chabalala, M.H.; Islam, S. Medicinal plants with concomitant anti-diabetic and anti-hypertensive effects as potential sources of dual acting therapies against diabetes and hypertension: A review. J. Ethnopharmacol. 2019, 235, 329–360. [Google Scholar] [CrossRef]
- Cilia-López, V.G.; Juárez-Flores, B.I.; Aguirre-Rivera, J.R.; Reyes-Agüero, J.A. Analgesic activity of Heliopsis longipes and its effect on the nervous system. Pharm. Biol. 2009, 48, 195–200. [Google Scholar] [CrossRef]
- Castro-Ruiz, J.E.; Rojas-Molina, A.; Luna-Vázquez, F.J.; Rivero-Cruz, F.; García-Gasca, T.; Ibarra-Alvarado, C. Af-finin (Spilanthol), isolated from Heliopsis longipes, induces vasodilation via activation of gasotransmitters and prostacyclin signaling pathways. Int. J. Mol. Sci. 2017, 18, 1–15. [Google Scholar] [CrossRef]
- Martínez, C.C.; Gómez, M.D.; Oh, M.S. Use of traditional herbal medicine as an alternative in dental treatment in mexican dentistry: A review. Pharm. Biol. 2017, 55, 1992–1998. [Google Scholar] [CrossRef]
- Molina-Torres, J.; Salazar-Cabrera, C.J.; Armenta-Salinas, C.; Ramírez-Chávez, E. Fungistatic and Bacteriostatic Activities of Alkamides from Heliopsis longipes Roots: Affinin and Reduced Amides. J. Agric. Food Chem. 2004, 52, 4700–4704. [Google Scholar] [CrossRef]
- Barbosa, A.F.; De Carvalho, M.G.; Smith, R.E.; Sabaa-Srur, A.U.O. Spilanthol: Occurrence, extraction, chemistry and biological activities. Rev. Bras. Farm. 2016, 26, 128–133. [Google Scholar] [CrossRef]
- Escobedo-Martínez, C.; Guzmán-Gutiérrez, S.L.; Hernández-Méndez, M.d.L.M.; Cassani, J.; Trujillo-Valdivia, A.; Orozco-Castellanos, L.M.; Enríquez, R.G. Heliopsis longipes: Anti-arthritic activity evaluated in a Freund’s adjuvant-induced model in rodents. Rev. Bras. Farm. 2017, 27, 214–219. [Google Scholar] [CrossRef]
- Valencia-Guzmán, C.J.; Castro-Ruiz, J.E.; García-Gasca, T.; Rojas-Molina, A.; Romo-Mancillas, A.; Luna-Vázquez, F.J.; Rojas-Molina, J.I.; Ibarra-Alvarado, C. Endothelial TRP channels and cannabinoid receptors are involved in affinin-induced vasodilation. Fitoterapia 2021, 153, 1–14. [Google Scholar] [CrossRef]
- Luz-Martínez, B.A.; Marrero-Morfa, D.; Luna-Vázquez, F.J.; Rojas-Molina, A.; Ibarra-Alvarado, C. Affinin, Isolated from Heliopsis longipes, Induces an Antihypertensive Effect That Involves CB1 Cannabinoid Receptors and TRPA1 and TRPV1 Channel Activation. Planta Medica 2024, 90, 380–387. [Google Scholar] [CrossRef]
- Marrero-Morfa, D.; Ibarra-Alvarado, C.; Luna-Vázquez, F.J.; Estévez, M.; Ledesma, E.M.; Rojas-Molina, A.; Quirino-Barreda, C.T. Self-microemulsifying system of an ethanolic extract of Heliopsis longipes root for enhanced solubility and release of affinin. Aaps Open 2023, 9, 1–12. [Google Scholar] [CrossRef]
- Jama, H.A.; Muralitharan, R.R.; Xu, C.; O’DOnnell, J.A.; Bertagnolli, M.; Broughton, B.R.S.; Head, G.A.; Marques, F.Z. Rodent models of hypertension. Br. J. Pharmacol. 2021, 179, 918–937. [Google Scholar] [CrossRef]
- Lerman, L.O.; Kurtz, T.W.; Touyz, R.M.; Ellison, D.H.; Chade, A.R.; Crowley, S.D.; Mattson, D.L.; Mullins, J.J.; Osborn, J.; Eirin, A.; et al. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019, 73, 87–120. [Google Scholar] [CrossRef]
- Hypertension. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 23 July 2025).
- Kumari, L.; Choudhari, Y.; Patel, P.; Gupta, G.D.; Singh, D.; Rosenholm, J.M.; Bansal, K.K.; Kurmi, B.D. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life 2023, 13, 1099. [Google Scholar] [CrossRef]
- Estrada-Soto, S.; González-Trujano, M.E.; Rendón-Vallejo, P.; Arias-Durán, L.; Ávila-Villarreal, G.; Villalobos-Molina, R. Antihypertensive and vasorelaxant mode of action of the ethanol-soluble extract from Tagetes lucida Cav. aerial parts and its main bioactive metabolites. J. Ethnopharmacol. 2021, 266, 113399. [Google Scholar] [CrossRef]
- Hawlitschek, C.; Brendel, J.; Gabriel, P.; Schierle, K.; Salameh, A.; Zimmer, H.-G.; Rassler, B. Antihypertensive and cardioprotective effects of different monotherapies and combination therapies in young spontaneously hypertensive rats—A pilot study: Antihypertensive and cardioprotective effects of different monotherapies and combination therapies. Saudi J. Biol. Sci. 2021, 29, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Chen, J.; Cui, Y.; Zhao, R.; Wang, H.; Yu, R.; Jin, T.; Guo, J.; Cong, Y. Antihypertensive activity of different components of Veratrum alkaloids through metabonomic data analysis. Phytomedicine 2023, 120, 155033. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, N.; Hussain, A.I.; Fatima, T.; Alsuwayt, B.; Althaiban, A.K. Bioactivity-Guided Isolation and Antihypertensive Activity of Citrullus colocynthis Polyphenols in Rats with Genetic Model of Hypertension. Med. Lith Uania 2023, 59, 1–19. [Google Scholar] [CrossRef]
- Visetvichaporn, V.; Kim, K.-H.; Jung, K.; Cho, Y.-S.; Kim, D.-D. Formulation of self-microemulsifying drug delivery system (SMEDDS) by D-optimal mixture design to enhance the oral bioavailability of a new cathepsin K inhibitor (HL235). Int. J. Pharm. 2020, 573, 118772. [Google Scholar] [CrossRef]
- Wang, L.; Yan, W.; Tian, Y.; Xue, H.; Tang, J.; Zhang, L. Self-Microemulsifying Drug Delivery System of Phillygenin: Formulation Development, Characterization and Pharmacokinetic Evaluation. Pharmaceutics Feb. 2020, 12, 130. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, J.; Yang, Y.; Adu-Frimpong, M.; Ji, H.; Toreniyazov, E.; Wang, Q.; Yu, J.; Xu, X. SMEDDS for improved oral bioavailability and anti-hyperuricemic activity of licochalcone A. J. Microencapsul. 2021, 38, 459–471. [Google Scholar] [CrossRef]
- Veryser, L.; Taevernier, L.; Joshi, T.; Tatke, P.; Wynendaele, E.; Bracke, N.; Stalmans, S.; Peremans, K.; Burvenich, C.; Risseeuw, M.; et al. Mucosal and blood-brain barrier transport kinetics of the plant N-alkylamide spilanthol using in vitro and in vivo models. BMC Complement. Altern. Med. 2016, 13, 1–12. [Google Scholar] [CrossRef]
- Hernández, I.; Lemus, Y.; Prieto, S.; Molina-Torres, J.; Garrido, G. Anti-inflammatory effect of an ethanolic root extract of Heliopsis longipes in vitro. Boletin Latinoam. Y Caribe Plantas Med. Y Aromat. 2009, 8, 160–164. [Google Scholar]
- Chen, J.-Y.; Ye, Z.-X.; Wang, X.-F.; Chang, J.; Yang, M.-W.; Zhong, H.-H.; Hong, F.-F.; Yang, S.-L. Nitric oxide bioavailability dysfunction involves in atherosclerosis. Biomed. Pharmacother. 2018, 97, 423–428. [Google Scholar] [CrossRef]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef]
- Fernandes, D.; Khambata, R.S.; Massimo, G.; Ruivo, E.; Gee, L.C.; Foster, J.; Goddard, A.; Curtis, M.; Barnes, M.R.; Wade, W.G.; et al. Local delivery of nitric oxide prevents endothelial dysfunction in periodontitis. Pharmacol. Res. 2023, 188, 106616. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-J.; Wu, Z.-Y.; Nie, X.-W.; Bian, J.-S. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front. Pharmacol. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Da Silva, F.C.; De Araújo, B.J.; Santos Cordeiro, C.; Arruda, V.M.; Faria, B.Q.; Guerra, J.F.D.C.; De Araújo, T.G.; Fürstenau, C.R. Endothelial dysfunction due to the inhibition of the synthesis of nitric oxide: Proposal and characterization of an in vitro cellular model. Front. Physiol. 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Baghai, T.C.; Varallo-Bedarida, G.; Born, C.; Häfner, S.; Schüle, C.; Eser, D.; Zill, P.; Manook, A.; Weigl, J.; Jooyandeh, S.; et al. Classical Risk Factors and Inflammatory Biomarkers: One of the Missing Biological Links between Cardiovascular Disease and Major Depressive Disorder. Int. J. Mol. Sci. 2018, 19, 1740. [Google Scholar] [CrossRef] [PubMed]
- Bernatova, I.; Conde, M.V.; Kopincova, J.; González, M.C.; Puzserova, A.; Arribas, S.M. Endothelial dysfunction in spontaneously hypertensive rats: Focus on methodological aspects. J. Hypertens. 2009, 27, 27–31. [Google Scholar] [CrossRef]
- Hale, T.M.; Robertson, S.J.; Burns, K.D.; Deblois, D. Short-term ACE inhibition confers long-term protection against target organ damage. Hypertens. Res. 2012, 35, 604–610. [Google Scholar] [CrossRef]
- García-Aguilar, L.; Rojas-Molina, A.; Ibarra-Alvarado, C.; Rojas-Molina, J.I.; Vázquez-Landaverde, P.A.; Luna-Vázquez, F.J.; Zavala-Sánchez, M.A. Nutritional Value and Volatile Compounds of Black Cherry (Prunus serotina) Seeds. Molecules 2015, 20, 3479–3495. [Google Scholar] [CrossRef] [PubMed]
- Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Rojas-Molina, J.I.; Yahia, E.M.; Rivera-Pastrana, D.M.; Rojas-Molina, A.; Zavala-Sánchez, N.M. Nutraceutical Value of Black Cherry Prunus serotina Ehrh. Fruits: Antioxidant and Antihypertensive Properties. Molecules 2013, 18, 14597–14612. [Google Scholar] [CrossRef]
RT | NAME | NO. CAS | MATCH | % AREA | TYPE |
---|---|---|---|---|---|
23.23 | 3-Methyl crotonic acid | 000541-47-9 | 94 | 0.11 | Fatty acid |
28.64 | α-Phellandrene | 000099-83-2 | 87 | 0.02 | Terpene (mono) |
29.896 | p-Cymenene | 000099-87-6 | 97 | 0.02 | Terpene (mono) |
33.59 | o-Cymene | 007399-49-7 | 96 | 0.02 | Terpene (mono) |
39.07 | α-Terpineol | 010482-56-1 | 91 | 0.02 | Terpene (mono) |
41.06 | Thymol methyl ether | 001076-56-8 | 95 | 0.03 | Terpene (mono) |
45.15 | p-vinylguaiacol | 007786-61-0 | 80 | 0.04 | Phenol |
50.40 | δ-Selinene | 028624-23-9 | 86 | 0.06 | Terpene (sesqui) |
53.988 | Isoeugenol | 005932-68-3 | 95 | 0.07 | Phenol |
55.82 | n-Nonyl-cyclopropane | 074663-85-7 | 93 | 0.02 | Alkane |
75.71 | Cyclododecane | 000294-62-2 | 90 | 0.06 | Cycloalkane |
85.22 | N-isobutyl-(6Z,8E)-decadienamide | 094450-20-1 | 91 | 0.03 | Alkamide |
92.14 | N-isobutyl-2(E),6(Z),8(E)-decatrienamide (affinin) | 1000106-17-5 | 90 | 45.08 | Alkamide |
94.11 | cis-9-Hexadecenoic acid | 1000333-19-5 | 99 | 0.14 | Fatty acid |
97.51 | N-(2-methylbutyl)-(2E,6Z,8E)-decatrienamide | 100106-16-0 | 64 | 0.41 | Alkamide |
103.17 | Linoleic acid | 000060-33-3 | 90 | 0.09 | Fatty acid |
103.40 | trans-13-Octadecenoic acid | 000693-71-0 | 84 | 0.1 | Fatty acid |
124.65 | Lup-20(29)-en-3-one | 001617-70-5 | 91 | 0.23 | Terpene (tri) |
128.36 | Taraxasterol | 001059-14-9 | 95 | 0.21 | Terpene (tri) |
132.95 | (Z)-13-Docosenamide | 000112-84-5 | 91 | 0.04 | Alkamide |
135.10 | Squalene | 000111-02-4 | 98 | 0.11 | Terpene (tri) |
136.96 | Eicosane | 000112-95-8 | 89 | 0.02 | Alkane |
140.58 | β-Tocopherol | 000148-03-8 | 93 | 0.19 | Phenol |
140.91 | γ-tocopherol | 007616-22-0 | 93 | 0.09 | Phenol |
145.28 | Dilauryl β,β-thiodipropionate | 000123-28-4 | 90 | 0.19 | Fatty acid |
146.04 | Campesterol | 000474-62-4 | 81 | 0.05 | Phytosterol |
147.05 | Stigmasterol | 000083-48-7 | 99 | 0.37 | Phytosterol |
Groups | Heart Size (Height/Width) (mm) | Heart Volume (mL) | Thickness of the Walls of the Heart (mm) | Heart Weight (g) | Heart Index (HW/RW) (%) |
---|---|---|---|---|---|
SMEDDS | 18.00/14.60 ± 0.57 | 2.00 ± 0.16 | 5.20 ± 0.37 | 1.57 ± 0.05 | 0.55 ± 0.04 |
CAP | 18.75/13.75 ± 0.63 | 1.17 ± 0.17 a | 2.92 ± 0.49 a | 1.37 ± 0.05 | 0.49 ± 0.02 |
EEH 100 | 17.58/13.83 ± 0.33 | 1.67 ± 0.17 | 3.75 ± 0.48 | 1.42 ± 0.09 | 0.54 ± 0.03 |
HL-SMDS 100 | 17.00/13.00 ± 0.56 | 1.13 ± 0.14 a | 3.00 ± 0.41 a | 1.24 ± 0.10 a | 0.47 ± 0.03 |
HL-SMDS 10 | 19.33/13.67 ± 0.67 | 1.83 ± 0.17 | 3.33 ± 0.33 | 1.50 ± 0.00 | 0.51 ± 0.01 |
HL-SMDS 1 | 19.75/14.25 ± 0.55 | 2.00 ± 0.20 | 3.25 ± 0.48 | 1.50 ± 0.12 | 0.56 ± 0.04 |
Groups | Dose |
---|---|
Control (CTR, normotensive rats) | - |
L-NAME (hypertensive control) | Vehicle (CMC 1%) |
Captopril (CAP, positive control) | Captopril (100 mg/kg/day) |
EEH 150 | EEH (150 mg/kg/day) |
HL-SMDS 150 | HL-SMDS (150 mg/kg/day) |
Groups | Dose |
---|---|
SMEDDS (hypertensive control) | SMEDDS (Transcutol® HP: 0.55 g, Labrasol®: 0.35 g, (1:1) -Tween 80®/PG®: 0.1 g) |
Captopril (CAP, positive control) | Captopril (50 mg/kg/day) |
EEH 100 | EEH (100 mg/kg/day) |
HL-SMDS 100 | HL-SMDS (100 mg/kg/day) |
HL-SMDS 10 | HL-SMDS (10 mg/kg/day) |
HL-SMDS 1 | HL-SMDS (1 mg/kg/day) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrero-Morfa, D.; Luz-Martínez, B.A.; Luna-Vázquez, F.J.; Quirino-Barreda, C.T.; Rojas-Molina, I.; García-Servín, M.; Vázquez-Landaverde, P.A.; Ruiz-Castillo, V.; Ibarra-Alvarado, C.; Rojas-Molina, A. Antihypertensive Effect of a Self-Microemulsifying System Obtained from an Ethanolic Extract of Heliopsis longipes Root in Spontaneously and L-NAME-Induced Hypertensive Rats. Molecules 2025, 30, 3711. https://doi.org/10.3390/molecules30183711
Marrero-Morfa D, Luz-Martínez BA, Luna-Vázquez FJ, Quirino-Barreda CT, Rojas-Molina I, García-Servín M, Vázquez-Landaverde PA, Ruiz-Castillo V, Ibarra-Alvarado C, Rojas-Molina A. Antihypertensive Effect of a Self-Microemulsifying System Obtained from an Ethanolic Extract of Heliopsis longipes Root in Spontaneously and L-NAME-Induced Hypertensive Rats. Molecules. 2025; 30(18):3711. https://doi.org/10.3390/molecules30183711
Chicago/Turabian StyleMarrero-Morfa, Dailenys, Beatriz A. Luz-Martínez, Francisco J. Luna-Vázquez, Carlos T. Quirino-Barreda, Isela Rojas-Molina, Martín García-Servín, Pedro A. Vázquez-Landaverde, Victoria Ruiz-Castillo, César Ibarra-Alvarado, and Alejandra Rojas-Molina. 2025. "Antihypertensive Effect of a Self-Microemulsifying System Obtained from an Ethanolic Extract of Heliopsis longipes Root in Spontaneously and L-NAME-Induced Hypertensive Rats" Molecules 30, no. 18: 3711. https://doi.org/10.3390/molecules30183711
APA StyleMarrero-Morfa, D., Luz-Martínez, B. A., Luna-Vázquez, F. J., Quirino-Barreda, C. T., Rojas-Molina, I., García-Servín, M., Vázquez-Landaverde, P. A., Ruiz-Castillo, V., Ibarra-Alvarado, C., & Rojas-Molina, A. (2025). Antihypertensive Effect of a Self-Microemulsifying System Obtained from an Ethanolic Extract of Heliopsis longipes Root in Spontaneously and L-NAME-Induced Hypertensive Rats. Molecules, 30(18), 3711. https://doi.org/10.3390/molecules30183711