Carbohydrate Chemistry II
Funding
Conflicts of Interest
References
- Demeter, F.; Bereczki, I.; Borbás, A.; Herczeg, M. Synthesis of Four Orthogonally Protected Rare l-Hexose Thioglycosides from d-Mannose by C-5 and C-4 Epimerization. Molecules 2022, 27, 3422. [Google Scholar] [CrossRef]
- Burrini, N.; Pâris, A.; Collet, G.; Lafite, P.; Daniellou, R. Biocatalytic Synthesis of Coumarin S-Glycosides: Towards Non-Cytotoxic Probes for Biomedical Imaging and Sensing. Molecules 2024, 29, 1322. [Google Scholar] [CrossRef]
- Pooladian, F.; Escopy, S.; Demchenko, A.V. Activation of Thioglycosides with Copper(II) Bromide. Molecules 2022, 27, 7354. [Google Scholar] [CrossRef] [PubMed]
- Hamajima, S.; Komura, N.; Tanaka, H.-N.; Imamura, A.; Ishida, H.; Ichiyanagi, T.; Ando, H. Investigation of the Protection of the C4 Hydroxyl Group in Macrobicyclic Kdo Donors. Molecules 2023, 28, 102. [Google Scholar] [CrossRef] [PubMed]
- Garegg, P.J. Thioglycosides as Glycosyl Donors in Oligosaccharide Synthesis. Adv. Carbohydr. Chem. Biochem. 1997, 52, 179–205. [Google Scholar] [CrossRef]
- Oscarson, S. Thioglycosides. In Carbohydrates in Chemistry and Biology; Ernst, B., Hart, G.W., Sinaÿ, P., Eds.; Wiley-VCH: Weinheim, Germany; New York, NY, USA, 2000; Volume 1, pp. 93–116. [Google Scholar] [CrossRef]
- Codee, J.D.C.; Litjens, R.E.J.N.; van den Bos, L.J.; Overkleeft, H.S.; van der Marel, G.A. Thioglycosides in sequential glycosylation strategies. Chem. Soc. Rev. 2005, 34, 769–782. [Google Scholar] [CrossRef]
- Zhong, W.; Boons, G.-J. Glycoside synthesis from 1-sulfur/selenium-substituted derivatives: Thioglycosides in oligosaccharide synthesis. In Handbook of Chemical Glycosylation; Demchenko, A.V., Ed.; Wiley-VCH: Weinheim, Germany, 2008; pp. 261–303. [Google Scholar] [CrossRef]
- Lian, G.; Zhang, X.; Yu, B. Thioglycosides in Carbohydrate research. Carbohydr. Res. 2015, 403, 13–22. [Google Scholar] [CrossRef]
- Escopy, S.; Demchenko, A.V. Transition-Metal-Mediated Glycosylation with Thioglycosides. Chem. Eur. J. 2022, 28, e202103747. [Google Scholar] [CrossRef]
- Verma, N.; Cloutier, M.; Gauthier, C. Thioglycoside-based glycosylations in oligosaccharide synthesis. In Synthetic Strategies in Carbohydrate Chemistry; Tiwari, V.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 95–138. [Google Scholar] [CrossRef]
- Gupta, S.; Gauthier, C. 1-Thiosugars: From Synthesis to Applications. Curr. Org. Chem. 2025, 29, 359–401. [Google Scholar] [CrossRef]
- Pachamuthu, K.; Schmidt, R.R. Synthetic Routes to Thiooligosaccharides and Thioglycopeptides. Chem. Rev. 2006, 106, 160–187. [Google Scholar] [CrossRef]
- Qiao, M.; Zhang, L.; Jiao, R.; Zhang, S.; Li, B.; Zhang, X. Chemical and enzymatic synthesis of S-linked sugars and glycoconjugates. Tetrahedron 2021, 81, 131920. [Google Scholar] [CrossRef]
- Xiong, T.; Xie, R.; Huang, C.; Lan, X.; Huang, N.; Yao, H. Recent advances in the synthesis of thiosugars using glycal donors. J. Carbohydr. Chem. 2021, 40, 401–439. [Google Scholar] [CrossRef]
- Zhang, Z.; Ollmann, I.R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. Programmable One-Pot Oligosaccharide Synthesis. J. Am. Chem. Soc. 1999, 121, 734–753. [Google Scholar] [CrossRef]
- Pradhan, T.K.; Mong, K.K.T. Glycosylation chemistry of 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) donors. Isr. J. Chem. 2015, 55, 285–296. [Google Scholar] [CrossRef]
- Kosma, P. Progress in Kdo-glycoside chemistry. Tetrahedron Lett. 2016, 57, 2133–2142. [Google Scholar] [CrossRef]
- El-Sawy, E.R.; Abdelwahab, A.B.; Kirsch, G. Insight on Mercapto-Coumarins: Synthesis and Reactivity. Molecules 2022, 27, 2150. [Google Scholar] [CrossRef]
- Mazzotta, S.; Antonini, G.; Vasile, F.; Gillon, E.; Lundstrøm, J.; Varrot, A.; Belvisi, L.; Bernardi, A. Identification of New l-Fucosyl and l-Galactosyl Amides as Glycomimetic Ligands of TNF Lectin Domain of BC2L-C from Burkholderia cenocepacia. Molecules 2023, 28, 1494. [Google Scholar] [CrossRef]
- Cozens, D.; Read, R.C. Anti-Adhesion Methods as Novel Therapeutics for Bacterial Infections. Expert Rev. Anti. Infect. Ther. 2012, 10, 1457–1468. [Google Scholar] [CrossRef]
- Krachler, A.M.; Orth, K. Targeting the Bacteria-Host Interface Strategies in Anti-Adhesion Therapy. Virulence 2013, 4, 284–294. [Google Scholar] [CrossRef]
- Damalanka, V.C.; Reddy Maddirala, A.; Janetka, J.W. Novel Approaches to Glycomimetic Design: Development of Small Molecular Weight Lectin Antagonists. Expert Opin. Drug Discov. 2021, 16, 513–536. [Google Scholar] [CrossRef]
- Sano, K.; Ishiwata, A.; Takamori, H.; Kikuma, T.; Tanaka, K.; Ito, Y.; Takeda, Y. Synthesis of Sucrose-Mimicking Disaccharide by Intramolecular Aglycone Delivery. Molecules 2024, 29, 1771. [Google Scholar] [CrossRef] [PubMed]
- Ishiwata, A.; Lee, Y.J.; Ito, Y. Recent Advances in Stereoselective Glycosylation through Intramolecular Aglycon Delivery. Org. Biomol. Chem. 2010, 8, 3596. [Google Scholar] [CrossRef]
- Jia, X.G.; Demchenko, A.V. Intramolecular Glycosylation. Beilstein. J. Org. Chem. 2017, 13, 2028–2048. [Google Scholar] [CrossRef]
- Cumpstey, I. Intramolecular Aglycon Delivery. Carbohydr. Res. 2008, 343, 1553–1573. [Google Scholar] [CrossRef]
- Kamneva, A.A.; Yashunsky, D.V.; Khatuntseva, E.A.; Nifantiev, N.E. Synthesis of Pseudooligosaccharides Related to the Capsular Phosphoglycan of Haemophilus influenzae Type a. Molecules 2023, 28, 5688. [Google Scholar] [CrossRef]
- Sobkowski, M.; Kraszewski, A.; Stawinski, J. Recent advances in H-phosphonate chemistry. Part 1. H-phosphonate esters: Synthesis and basic reactions. Top. Curr. Chem. 2015, 361, 137–177. [Google Scholar] [CrossRef]
- Stefanetti, G.; MacLennan, C.A.; Micoli, F. Impact and Control of Sugar Size in Glycoconjugate Vaccines. Molecules 2022, 27, 6432. [Google Scholar] [CrossRef]
- Ravenscroft, N.; Jones, C. Glycoconjugate vaccines. Curr. Opin. Drug Discov. Dev. 2000, 3, 222–231. [Google Scholar]
- Khatun, F.; Stephenson, R.J.; Toth, I. An overview of structural features of antibacterial glycoconjugate vaccines that influence their immunogenicity. Chem. Eur. J. 2017, 23, 4233–4254, Erratum in Chem. Eur. J. 2017, 23, 6458. https://doi.org/10.1002/chem.201701478. [Google Scholar] [CrossRef]
- Rappuoli, R.; De Gregorio, E.; Costantino, P. On the mechanisms of conjugate vaccines. Proc. Natl. Acad. Sci. USA 2019, 116, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Del Bino, L.; Østerlid, K.E.; Wu, D.Y.; Nonne, F.; Romano, M.R.; Codée, J.; Adamo, R. Synthetic glycans to improve current glycoconjugate vaccines and fight antimicrobial resistance. Chem. Rev. 2022, 122, 15672–15716. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marra, A. Carbohydrate Chemistry II. Molecules 2025, 30, 3701. https://doi.org/10.3390/molecules30183701
Marra A. Carbohydrate Chemistry II. Molecules. 2025; 30(18):3701. https://doi.org/10.3390/molecules30183701
Chicago/Turabian StyleMarra, Alberto. 2025. "Carbohydrate Chemistry II" Molecules 30, no. 18: 3701. https://doi.org/10.3390/molecules30183701
APA StyleMarra, A. (2025). Carbohydrate Chemistry II. Molecules, 30(18), 3701. https://doi.org/10.3390/molecules30183701