Dried Matrix Spots for the Determination of Opiates and Opioids: Methodological Advances and Applications
Abstract
1. Introduction
2. Biological Matrices in DMS Applications
3. Dried Matrix Spot Techniques
4. Analytical Methods and Applications
4.1. Overview of Methods Based on Dried Blood Spots
4.2. Applications of DMS Using Alternative Matrices
4.3. Comparative Reflections Across DMS Matrices
5. Challenges, Limitations, and Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Draghmeh, K.; Gold, M.S.; Fuehrlein, B. Epidemiology of Opioid Use, Misuse, and Overdoses. Curr. Addict. Rep. 2025, 12, 36. [Google Scholar] [CrossRef]
- Hoffman, K.A.; Ponce Terashima, J.; McCarty, D. Opioid Use Disorder and Treatment: Challenges and Opportunities. BMC Health Serv. Res. 2019, 19, 884. [Google Scholar] [CrossRef]
- Rosendo, L.M.; Rosado, T.; Zandonai, T.; Rincon, K.; Peiró, A.M.; Barroso, M.; Gallardo, E. Opioid Monitoring in Clinical Settings: Strategies and Implications of Tailored Approaches for Therapy. Int. J. Mol. Sci. 2024, 25, 5925. [Google Scholar] [CrossRef]
- Alahyari, E.; Setareh, M.; Shekari, A.; Roozbehani, G.; Soltaninejad, K. Analysis of Opioids in Postmortem Urine Samples by Dispersive Liquid-Liquid Microextraction and High Performance Liquid Chromatography with Photo Diode Array Detection. Egypt. J. Forensic Sci. 2018, 8, 13. [Google Scholar] [CrossRef]
- Palmquist, K.B.; Truver, M.T.; Shoff, E.N.; Krotulski, A.J.; Swortwood, M.J. Review of Analytical Methods for Screening and Quantification of Fentanyl Analogs and Novel Synthetic Opioids in Biological Specimens. J. Forensic Sci. 2023, 68, 1643–1661. [Google Scholar] [CrossRef]
- Jurado, C. Blood. In Encyclopedia of Forensic Sciences; Elsevier: Amsterdam, The Netherlands, 2013; pp. 336–342. [Google Scholar]
- Capiau, S.; Veenhof, H.; Koster, R.A.; Bergqvist, Y.; Boettcher, M.; Halmingh, O.; Keevil, B.G.; Koch, B.C.P.; Linden, R.; Pistos, C.; et al. Official International Association for Therapeutic Drug Monitoring and Clinical Toxicology Guideline: Development and Validation of Dried Blood Spot-Based Methods for Therapeutic Drug Monitoring. Ther. Drug Monit. 2019, 41, 409–430. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, A.J.; den Burger, J.C.G.; Swart, E.L. Therapeutic Drug Monitoring by Dried Blood Spot: Progress to Date and Future Directions. Clin. Pharmacokinet. 2014, 53, 961–973. [Google Scholar] [CrossRef]
- Protti, M.; Catapano, M.C.; Samolsky Dekel, B.G.; Rudge, J.; Gerra, G.; Somaini, L.; Mandrioli, R.; Mercolini, L. Determination of Oxycodone and Its Major Metabolites in Haematic and Urinary Matrices: Comparison of Traditional and Miniaturised Sampling Approaches. J. Pharm. Biomed. Anal. 2018, 152, 204–214. [Google Scholar] [CrossRef]
- Jacques, A.L.B.; Santos, M.K.; Gorziza, R.P.; Limberger, R.P. Dried Matrix Spots: An Evolving Trend in the Toxicological Field. Forensic Sci. Med. Pathol. 2022, 18, 86–102. [Google Scholar] [CrossRef]
- Needham, S.R. Beyond Dried Blood Spots-Application of Dried Matrix Spots. In Dried Blood Spots: Applications and Techniques; Wiley Blackwell: Chichester, UK, 2014; pp. 235–241. ISBN 9781118890837. [Google Scholar]
- Han, Y.; Li, X.-L.; Zhang, M.; Wang, J.; Zeng, S.; Min, J.Z. Potential Use of a Dried Saliva Spot (DSS) in Therapeutic Drug Monitoring and Disease Diagnosis. J. Pharm. Anal. 2022, 12, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Vitrano, A.; Di Giorgi, A.; Abbate, V.; Basile, G.; La Maida, N.; Pichini, S.; Di Trana, A. Evaluation of Short-Term Stability of Different Nitazenes Psychoactive Opioids in Dried Blood Spots by Liquid Chromatography-High-Resolution Mass Spectrometry. Int. J. Mol. Sci. 2024, 25, 12332. [Google Scholar] [CrossRef] [PubMed]
- Massano, M.; Incardona, C.; Gerace, E.; Negri, P.; Alladio, E.; Salomone, A.; Vincenti, M. Development and Validation of a UHPLC-HRMS-QTOF Method for the Detection of 132 New Psychoactive Substances and Synthetic Opioids, Including Fentanyl, in Dried Blood Spots. Talanta 2022, 241, 123265. [Google Scholar] [CrossRef]
- Ververi, C.; Vincenti, M.; Salomone, A. Recent Advances in the Detection of Drugs of Abuse by Dried Blood Spots. Biomed. Chromatogr. 2023, 37, e5555. [Google Scholar] [CrossRef] [PubMed]
- Aydoğdu, M.; Ertaş, H.; Ertaş, F.N.; Akgür, S.A. Liquid–Liquid Extraction Solvent Selection for Comparing Illegal Drugs in Whole Blood and Dried Blood Spot with LC–MS–MS. J. Anal. Toxicol. 2025, 49, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Verplaetse, R.; Henion, J. Quantitative Determination of Opioids in Whole Blood Using Fully Automated Dried Blood Spot Desorption Coupled to On-Line SPE-LC-MS/MS. Drug Test. Anal. 2016, 8, 30–38. [Google Scholar] [CrossRef]
- Mueller, F.; Losacco, G.L.; Nicoli, R.; Guillarme, D.; Thomas, A.; Grata, E. Enantiomeric Methadone Quantitation on Real Post-Mortem Dried Matrix Spots Samples: Comparison of Liquid Chromatography and Supercritical Fluid Chromatography Coupled to Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1177, 122755. [Google Scholar] [CrossRef]
- Chaurasia, N.; Jain, A.; Dubey, N. Dried Saliva Spot as an Effective Tool in the Diagnosis and Management of Chronic Disease. Thai J. Pharm. Sci. 2024, 48, e6. [Google Scholar] [CrossRef]
- Alsous, M.M.; Hawwa, A.F.; McElnay, J.C. Hematocrit, Blood Volume, and Surface Area of Dried Blood Spots—A Quantitative Model. Drug Test. Anal. 2020, 12, 555–560. [Google Scholar] [CrossRef]
- Cheng, C.N.; Peng, Y.F.; Chen, J.Y.; Chen, G.Y.; Weng, T.I.; Kuo, C.H. Development of the Dried Blood Spot Preparation Protocol for Comprehensive Evaluation of the Hematocrit Effect. Anal. Chim. Acta 2023, 1239, 340650. [Google Scholar] [CrossRef]
- Zimmer, J.S.D.; Christianson, C.D.; Johnson, C.J.L.; Needham, S.R. Recent Advances in The Bioanalytical Applications of Dried Matrix Spotting for The Analysis of Drugs and Their Metabolites. Bioanalysis 2013, 5, 2581–2588. [Google Scholar] [CrossRef]
- Grignani, P.; Manfredi, A.; Monti, M.C.; Moretti, M.; Morini, L.; Visonà, S.D.; Fattorini, P.; Previderè, C. Genetic Individual Identification from Dried Urine Spots: A Complementary Tool to Drug Monitoring and Anti-Doping Testing. Drug Test. Anal. 2022, 14, 1234–1243. [Google Scholar] [CrossRef]
- Resano, M.; Belarra, M.A.; García-Ruiz, E.; Aramendía, M.; Rello, L. Dried Matrix Spots and Clinical Elemental Analysis. Current Status, Difficulties, and Opportunities. TrAC-Trends Anal. Chem. 2018, 99, 75–87. [Google Scholar] [CrossRef]
- Zailani, N.N.B.; Ho, P.C.L. Dried Blood Spots—A Platform for Therapeutic Drug Monitoring (TDM) and Drug/Disease Response Monitoring (DRM). Eur. J. Drug Metab. Pharmacokinet. 2023, 48, 467–494. [Google Scholar] [CrossRef] [PubMed]
- Fabris, A.L.; Yonamine, M. Dried Matrix Spots in Forensic Toxicology. Bioanalysis 2021, 13, 1441–1458. [Google Scholar] [CrossRef]
- Dvořák, M.; Maršala, R.; Kubáň, P. In-Vial Dried Urine Spot Collection and Processing for Quantitative Analyses. Anal. Chim. Acta 2023, 1254, 341071. [Google Scholar] [CrossRef] [PubMed]
- Almeida, E.; Soares, S.; Gonçalves, J.; Rosado, T.; Fernández, N.; Rodilla, J.M.; Passarinha, L.A.; Barroso, M.; Gallardo, E. Stability of Cocaine, Opiates, and Metabolites in Dried Saliva Spots. Molecules 2022, 27, 641. [Google Scholar] [CrossRef]
- Ribeiro, A.; Prata, M.; Vaz, C.; Rosado, T.; Restolho, J.; Barroso, M.; Araújo, A.R.T.S.; Gallardo, E. Determination of Methadone and EDDP in Oral Fluid Using the Dried Saliva Spots Sampling Approach and Gas Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2019, 411, 2177–2187. [Google Scholar] [CrossRef] [PubMed]
- Tey, H.Y.; See, H.H. A Review of Recent Advances in Microsampling Techniques of Biological Fluids for Therapeutic Drug Monitoring. J. Chromatogr. A 2021, 1635, 461731. [Google Scholar] [CrossRef]
- Pires, B.; Catarro, G.; Soares, S.; Gonçalves, J.; Rosado, T.; Barroso, M.; Araujo, A.R.T.S.; Gallardo, E. Volumetric Absorptive Microsampling in Toxicology. Toxics 2024, 13, 25. [Google Scholar] [CrossRef]
- Davari, B.; Kotecha, N.; Clavijo, C.F.; Thomas, J.J.; Rzasa-Lynn, R.; Galinkin, J.L.; Christians, U.; Sempio, C. A Sensitive LC-MS/MS Assay for the Quantification of Methadone and Its Metabolites in Dried Blood Spots: Comparison with Plasma. Ther. Drug Monit. 2020, 42, 118–128. [Google Scholar] [CrossRef]
- Truver, M.T.; Swortwood-Gates, M.J. Long-Term Stability of Novel Synthetic Opioids in Blood. Forensic Sci. Int. 2020, 308, 110175. [Google Scholar] [CrossRef]
- Palmquist, K.B.; Swortwood, M.J. Long-Term Stability of 13 Fentanyl Analogs in Blood. J. Anal. Toxicol. 2021, 45, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Zinsli, K.A.; Krotulski, A.J.; Fogarty, M.F.; Kress, D.; Logan, B.K.; Morgan, A.; Beckford, J.; Guthrie, B.L.; Tsui, J.I.; Des Jarlais, D.C.; et al. Substance Use Monitoring Among People Who Use Drugs Using a Novel Assay to Test Dried Blood Spot Specimens. Subst. Use Misuse 2025, 60, 1382–1390. [Google Scholar] [CrossRef] [PubMed]
- Fariha, R.; Murphy, J.; Walters, N.; Rothkopf, E.; Okoh, O.D.; Lawandy, N.M.; Tripathi, A. Precision through Electric-Field Assisted Automatable High Throughput Sample Preparation of Dried Blood Spots for Neonatal Abstinence Syndrome Detection. SLAS Technol. 2025, 32, 100282. [Google Scholar] [CrossRef]
- Trontelj, J.; Rozman, A.; Mrhar, A. Determination of Remifentanil in Neonatal Dried Blood Spots by Liquid Chromatography-Tandem Mass Spectrometry. Acta Pharm. 2024, 74, 343–354. [Google Scholar] [CrossRef]
- Guterstam, J.; Tavic, C.; Barosso, M.; Beck, O. A Multicomponent LC-MS/MS Method for Drugs of Abuse Testing Using Volumetric DBS and a Clinical Evaluation by Comparison with Urine. J. Pharm. Biomed. Anal. 2024, 243, 116075. [Google Scholar] [CrossRef]
- Ververi, C.; Gentile, C.; Massano, M.; Salomone, A.; Vincenti, M. Quantitative Determination by UHPLC-MS/MS of 18 Common Drugs of Abuse and Metabolites, Including THC and OH-THC, in Volumetric Dried Blood Spots: A Sustainable Method with Minimally Invasive Sampling. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2024, 1247, 124337. [Google Scholar] [CrossRef]
- Abarca, R.; Gerona, R. Development and Validation of an LC-MS/MS Assay for the Quantitative Analysis of Alprazolam, α-Hydroxyalprazolam and Hydrocodone in Dried Blood Spots. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023, 1220, 123639. [Google Scholar] [CrossRef]
- Mainero Rocca, L.; L’Episcopo, N.; Gordiani, A.; Staderini, A. Direct Multiclass Desorption Electrospray Ionization–Tandem Mass Spectrometry Method for the Analysis of Sleep Inducers and Ototoxic Drugs in Dried Blood Spots. Rapid Commun. Mass Spectrom. 2022, 36, e9265. [Google Scholar] [CrossRef] [PubMed]
- Rocca, L.M.; L’episcopo, N.; Gordiani, A.; Vitali, M.; Staderini, A. A ‘Dilute and Shoot’ Liquid Chromatography-Mass Spectrometry Method for Multiclass Drug Analysis in Pre-Cut Dried Blood Spots. Int. J. Environ. Res. Public Health 2021, 18, 3068. [Google Scholar] [CrossRef]
- Metzger, I.F.; Thomas, A.E.; Evrard, C.A.; Jones, D.R.; Masters, A.R.; Haas, D.M.; Haneline, L.S.; Quinney, S.K. Stereoselective Analysis of Methadone and EDDP in Laboring Women and Neonates in Plasma and Dried Blood Spots and Association with Neonatal Abstinence Syndrome. Am. J. Perinatol. 2021, 38, 968–975. [Google Scholar] [CrossRef] [PubMed]
- Luginbühl, M.; Angelova, S.; Gaugler, S.; Längin, A.; Weinmann, W. Automated High-Throughput Analysis of Tramadol and O-Desmethyltramadol in Dried Blood Spots. Drug Test. Anal. 2020, 12, 1126–1134. [Google Scholar] [CrossRef]
- Salamin, O.; Garcia, A.; González-Ruiz, V.; Rossi, F.; Bigard, X.; Déglon, J.; Daali, Y.; Faiss, R.; Saugy, M.; Rudaz, S. Is Pain Temporary and Glory Forever? Detection of Tramadol Using Dried Blood Spot in Cycling Competitions. Drug Test. Anal. 2020, 12, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.; Shaner, R.L.; Feyereisen, M.C.; Wharton, R.E.; Kaplan, P.; Hamelin, E.I.; Johnson, R.C. Determination of Fentanyl Analog Exposure Using Dried Blood Spots with LC-MS-MS. J. Anal. Toxicol. 2019, 43, 266–276. [Google Scholar] [CrossRef]
- Shaner, R.L.; Schulze, N.D.; Seymour, C.; Hamelin, E.I.; Thomas, J.D.; Johnson, R.C. Quantitation of Fentanyl Analogs in Dried Blood Spots by Flow-through Desorption Coupled to Online Solid Phase Extraction Tandem Mass Spectrometry. Anal. Methods 2017, 9, 3876–3883. [Google Scholar] [CrossRef]
- Chepyala, D.; Tsai, I.L.; Liao, H.W.; Chen, G.Y.; Chao, H.C.; Kuo, C.H. Sensitive Screening of Abused Drugs in Dried Blood Samples Using Ultra-High-Performance Liquid Chromatography-Ion Booster-Quadrupole Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2017, 1491, 57–66. [Google Scholar] [CrossRef]
- Kyriakou, C.; Marchei, E.; Scaravelli, G.; García-Algar, O.; Supervía, A.; Graziano, S. Identification and Quantification of Psychoactive Drugs in Whole Blood Using Dried Blood Spot (DBS) by Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2016, 128, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Ververi, C.; Galletto, M.; Massano, M.; Alladio, E.; Vincenti, M.; Salomone, A. Method Development for the Quantification of Nine Nitazene Analogs and Brorphine in Dried Blood Spots Utilizing Liquid Chromatography—Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2024, 241, 115975. [Google Scholar] [CrossRef]
- Michely, J.A.; Meyer, M.R.; Maurer, H.H. Dried Urine Spots—A Novel Sampling Technique for Comprehensive LC-MSn Drug Screening. Anal. Chim. Acta 2017, 982, 112–121. [Google Scholar] [CrossRef]
- Jain, R.; Quraishi, R.; Verma, A.; Ambekar, A. Development and Clinical Evaluation of a Dried Urine Spot Method for Detection of Morphine among Opioid Users. Indian J. Pharmacol. 2019, 51, 40–44. [Google Scholar] [CrossRef]
- Pablo, A.; Breaud, A.R.; Clarke, W. Automated Analysis of Dried Urine Spot (DUS) Samples for Toxicology Screening. Clin. Biochem. 2020, 75, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Ryona, I.; Henion, J. A Book-Type Dried Plasma Spot Card for Automated Flow-through Elution Coupled with Online SPE-LC-MS/MS Bioanalysis of Opioids and Stimulants in Blood. Anal. Chem. 2016, 88, 11229–11237. [Google Scholar] [CrossRef] [PubMed]
Compounds | Sample Volume/Type of Paper | Sample Preparation | Instrumentation | LOD (ng/mL) | LOQ (ng/mL) | Recoveries (%) | Reference |
---|---|---|---|---|---|---|---|
Morphine | 50 μL Whatman 903 filter paper | Dried 2 h at room temperature. Added 1 mL of solvent mixture and vortexed for 10 s. Sonicated 30 min. Centrifuged at 4100 rpm for 10 min. Dried under nitrogen at room temperature. Reconstituted with 150 μL of mobile phase and centrifuged at 14,000 rpm for 5 min. | LC–MS/MS (ESI+) | 5.40 | 20.00 | 84.9–113.2 | [16] (2025) |
Fentanyl Morphine 6-MAM | 75 µL Whatman 903 protein saver DBS cards | Added 1 mL of methanol/acetonitrile (1:1, v/v). Centrifuged at 10,000 rpm for 5 min. Evaporated using a TurboVap set to 35 °C. Reconstituted with 100 µL of 5 mM ammonium formate in deionised water (pH 3): 0.1% formic acid in methanol (90:10, v/v). | LC-MS (n.a) | n.a. | 1.00 | n.a | [35] (2025) |
Codeine Hydrocodone Morphine Methadone Oxycodone | 50 μL Whatman-903 protein saver DBS cards | Preparation DBS: Dried overnight at room temperature. Added 80 μL DWS-1 and 167 μL of DWS-2. Shaken at 45 °C for 10 min at 700 rpm. Centrifuged at 25 °C for 20 min. Preparation S-DBS: Added 80 μL DWS-1 and 167 μL of DWS-2, and vortexed for 30 s. Sonicated at 25 °C for 10 min. Preparation E-DBS: Added 80 μL DWS-1 and 167 μL of DWS-2. An electric field was applied for 3 min. | LC-MS/MS (ESI+) | n.a | 1.00 | n.a | [36] (2025) |
Etazene Flunitazene Isotonitazene Protonitazene | 30 µL QIAGEN QIAcard FTA DMPK DBS cards | Added 500 μL methanol. Sonicated 30 min, centrifuged (4000 rpm, 5 min). Dried and reconstituted in 30 μL of aqueous 0.1% formic acid: 0.1% formic acid in acetonitrile (80:20, v/v). Vortexed and centrifuged. | UHPLC-HRMS/MS (HESI) | 0.25–0.35 | 0.50 | 84.00–117.00 | [13] (2024) |
Remifentanil | 20 µL Whatman 903 DBS cards | Dried for 2 h at room temperature. Extracted with 0.5 mL of methanol/water (1:1, v/v) with 1% formic acid (v/v). SPE: elution: 1 mL methanol. | LC-MS/MS (ESI+) | n.a | 0.30 | 82.00–83.00 | [37] (2024) |
Tramadol Morphine Hydromorphone Methadone Oxycodone 6-MAM Codeine Buprenorphine | 10 µL Capitainer qDBS cards | Dried. Added 10 µL of pure water, waited 5 min, added 300 µL of acetonitrile and 3.3% ethylene glycol. Shaken for 15 min and centrifugation (2000× g) for 5 min. Added 300 µL of methanol and acetonitrile with 1% formic acid for extraction (1:1, v/v). Shaken for 15 min and centrifugation (2000× g) for 5 min. Dried and reconstituted in 70 µL of 25% methanol. | LC-MS/MS (n.a) | 0.10–0.30 | n.a | n.a | [38] (2024) |
6-MAM Buprenorphine Codeine EDDP Methadone Morphine Norbuprenorphine | 10 μL Capitainer®B cards | Dried ≥ 3 h at room temperature in the dark. Added 500 μL methanol. Stirred and sonicated for 30 min at room temperature. Dried under nitrogen. Reconstituted with 30 μL of 5 mM formic acid in water: 5 mM formic acid in acetonitrile (1:1, v/v). Centrifuged for 5 min at 4000 rpm. | UHPLC-MS/MS (ESI+) | 0.50–1.00 | 1.00 | 34.00–103.00 | [39] (2024) |
Hydrocodone | 30 μL Thick cellulose cardstock | Dried overnight. Added 200 μL of methanol. Incubated for 2 h at 37 °C. Reconstituted in 150 μL of a water: acetonitrile (90:10, v/v). Centrifuged for 10 min at 14,000 rpm. | HPLC-MS/MS (ESI+) | 0.05 ng/mL | LLOQ: 0.10 ng/mL | 2.00% | [40] (2023) |
4-Fluorobutyrfentanyl 4-Methylfentanyl Acetylfentanil AH-7921 Alfentanil Acrylfentanyl β-Phenylfentanyl Butyrfentanyl Butyrylfentanyl (carboxy metabolite) Butyrylnorfentanyl Carfentanil Cyclopropylfentanyl Despropionyl p-Fluorofentanyl Fentanyl Furanylfentanil Furanylnorfentanyl Hydrocodone Hydroxyfentanyl Hydroxythiofentanyl MT-45 Norfentanyl OcFentanyl Phenylacetylfentanil Remifentanil Sufentanil Tramadol U-47700 Valerylfentanyl (carboxy metabolite) | 30 μL FTA™ DMPK C cards | Dried ≥ 3 h. Added 500 μL methanol/acetonitrile (3:1, v/v). Ultrasonication for 30 min at room temperature. Centrifuged for 5 min at 13,000× g and left to dry. Reconstituted with 50 μL methanol, centrifuged for 5 min at 13,000× g. | UHPLC-MS/MS-QTOF (ESI+) | 2.00–5.00 | 5.00 | 30.00–50.00 | [14] (2022) |
Fentanyl Tramadol | 2 μL pre-cut cellulose filter paper | Dried. Added 50 μL of water and 50 μL of acetonitrile shaking (5 min) and centrifugation (8 min, 6797 rpm, 20 °C) | DESI-MS/MS UHPLC-MS/MS (n.a) | 50.00–80.00 pg/mm2 | 150.00–240.00 pg/mm2 | n.a | [41] (2022) |
Tramadol Fentanyl | 2 µL pre-cut cellulose filter paper | Dried for 10 min. Added 50 µL of distilled water and sonicated for 5 min. Added 50 µL of acetonitrile, sonicated for 5 min. Centrifuged for 8 min at 8000 rpm and 20 °C. | UPLC-MS/MS (ESI+) | 0.10–0.50 | 0.30–1.50 | 89.00–97.00 | [42] (2021) |
R-methadone S-methadone R-/S-EDDP | 10 µL Whatman 903 Paper Saver Snap Apart cards | Dried for at least 3 h at room temperature. Added 100 µL methanol, vortexed for 30 s and incubated for 30 min. | LC-MS/MS SFC-MS/MS | LC-MS/MS 1.50–2.50 SFC-MS/MS 0.50 | LC-MS/MS 5.00–10.00 SFC-MS/MS 1.00–20.00 | 85.00–100.00 | [18] (2021) |
S-Methadone R-Methadone S-EDDP R-EDDP | n.a Whatman DMPK-90 cards | Microcentrifuged. Extracted with ethyl acetate. Dried, and reconstituted with 50 μL of 10% acetonitrile in 0.1% formic acid (pH 6.5). | HPLC MS/MS (n.a) | n.a | 0.50–1.00 | n.a | [43] (2021) |
Methadone EDDP EMDP | 50 μL Whatman 903 filter paper cards | Added 420 µL of methanol/0.2 M of zinc sulfate (7:3, v/v). Vortexed for 2.5 min. Centrifuged at 13,000× g at 4 °C for 8 min. | LC-MS/MS (ESI+) | n.a | LLOQ: 0.10 | 41.00–54.60 | [32] (2020) |
Tramadol O-desmethyltramadol | 240 μL BioSample TFN filter paper, AutoCollect™ DBS cards | Dried ≥ 3 h at 21 °C. Extracted with water: methanol mixture (90/10, v/v). | LC-MS/MS (ESI+) | 2.00–5.00 | 20.00–25.00 | 16.00–62.00 | [44] (2020) |
Tramadol O-desmethyltramadol N-desmethyltramadol | 10 μL Whatman® protein saver card 903 | Dried ≥ 1 h at room temperature. Added 100 μL of methanol. Incubated for 15 min (vortex for 5 s every 5 min). Diluted 50 μL supernatant with 50 μL water. | UHPLC-HRMS (ESI+) UPLC-MS/MS (ESI+) | 5.00 | n.a | 48.90–68.90 | [45] (2020) |
3-Methylfentanyl Alfentanil α-Methylfentanyl Carfentanil Fentanyl Lofentanyl Sufentanil Norcarfentanil Norfentanyl Norlofentanyl Norsufentanil Cyclopropylfentanyl 2-Furanylfentanyl Acryloyfentanyl Isobutyrylfentanyl Octylfentanyl Methoxyacetylfentanyl | 5 μL Whatman 903 protein saver cards | Added 1.0 mL of methanol/acetonitrile (1:1, v/v). Mixed at 1000 rpm for 10 min. Dried under a stream of 60 °C nitrogen. Reconstitution with 100 μL of a water: acetonitrile solution containing 0.1% formic acid (90:10, v/v). Mixed at 1000 rpm for 5 min | LC-MS/MS (ESI+) | 0.10–0.30 | 1.00 | 63.00–91.00 | [46] (2019) |
Oxycodone Noroxycodone Oxymorphone | n.a. Whatman 903 card | Dried 1.5 min (MAD, 700 W). Added 500 μL methanol. Sonicated 1 min, centrifuged (1400× g, 1 min). Dried and reconstituted in 50 μL of 0.1% formic acid in acetonitrile and 0.1% formic acid in water (5:95, v/v) | LC-MS/MS (ESI+) | 0.15 | 0.50 | 80.00–89.00 | [9] (2018) |
Fentanyl Sufentanil Carfentanil Alfentanil Lofentanyl α-Methylfentanyl 3-Methylfentanyl | 5 μL FTA DMPK-C blood spot cards | Dried for ≥2 h. Desorbed with 1.2 mL methanol/aqueous 1% formic acid (15:85, v/v) at 100 °C. Trapped on SPE cartridge (preconditioned). | HPLC-MS/MS (ESI+) | 0.15–0.66 | n.a | n.a | [47] (2017) |
Morphine Codeine Methadone Fentanyl Nalorphine Dihydrocodeine Tramadol Butorphanol | 25 μL Whatman 903 card | Dried for 2 h at room temperature. Added 200 μL of 80% acetonitrile for 5 min. Centrifuged at 15,000× g for 5 min. 170 μL of the supernatant was dried, reconstituted with 150 μL of deionised water. | UHPLC-IB-QTOF-MS (ESI±) | 0.20–2.90 | n.a | 71.38–113.13 | [48] (2017) |
Morphine Codeine 6-MAM Methadone EDDP | 30 μL Whatman 903 Protein Saver cards | Added 990 μL methyl alcohol. Sonicated for 15 min Centrifuged at 3500× g for 5 min. Dried under vacuum. Reconstituted with 100 μL mobile phase. | UHPLC-MS/MS (ESI+) | 1.50 | 5.00 | 79.50–89.20 | [49] (2016) |
Compounds | Matrix | Sample Volume/Type of Paper | Sample Preparation | Instrumentation | LOD (ng/mL) | LOQ (ng/mL) | Recoveries | Reference |
---|---|---|---|---|---|---|---|---|
R-methadone S-methadone R-/S-EDDP | Humour vitreous | 10 µL Whatman 903 Paper Saver Snap Apart cards | Dried for ≥3 h at room temperature. Added 100 µL methanol. Vortexed for 30 s and incubated for 30 min. | LC-MS/MS SFC-MS/MS | LC-MS/MS 1.50–2.50 SFC-MS/MS 0.50 | LC-MS/MS 5.00–10.00 SFC-MS/MS 1.00–20.00 | 85.00–100.00 | [18] (2021) |
R-methadone S-methadone R-/S-EDDP | Pericardial fluid | 10 µL Whatman 903 Paper Saver Snap Apart cards | Dried for ≥3 h at room temperature. Added 100 µL methanol. Vortexed for 30 s and incubated for 30 min. | LC-MS/MS SFC-MS/MS | LC-MS/MS 1.50–2.50 SFC-MS/MS 0.50 | LC-MS/MS 5.00–10.00 SFC-MS/MS 1.00–20.00 | 85.00–100.00 | [18] (2021) |
Morphine Codeine 6-MAM | Oral Fluid | 50 µL Whatman™ 903 protein saver card | Samples were dried for 12 h, after which 3 mL of methanol was added. They were mixed for 5 min on a roller at room temperature and then centrifuged for 15 min at 3500 rpm. The supernatant was dried under nitrogen and derivatised with 50 µL of MSTFA containing 5% TMCS for 2 min in a microwave oven at 800 W. | GC-MS/MS (EI+) | n.a | n.a | n.a | [28] (2022) |
Methadone EDDP | Oral Fluid | 50 µL Whatman™ 903 protein saver cards | Dried overnight. Added 1 mL of isopropanol. Mixed 1 min at 70 rpm on a roller-mixer shaker. Centrifuged at 3500 rpm at 4 °C for 15 min. Dried under nitrogen. Reconstituted in 50 μL of methanol. | GC-MS/MS (EI+) | 5.00 | 10.00 | 54.20–74.20 | [29] (2019) |
Oxycodone Noroxycodone Oxymorphone | Urine | 20 µL Whatman FTA™ DMPK-B IND card | Samples were subjected to MAD treatment at 700 W for 1.5 min, followed by the addition of 500 μL of methanol. UAE was performed for 1 min, and the samples were then centrifuged at 1400× g for 1 min. The supernatant was dried and reconstituted in 50 μL of 0.1% formic acid in acetonitrile and 0.1% formic acid in water (5:95, v/v) | LC-MS/MS (ESI+) | 0.20 | 0.50 | 76.00–85.00 | [9] (2018) |
Codeine Morphine Buprenorphine | Urine | 20 µL Whatman 903 protein saver cards | Dried overnight. Added 500 μL of a glucuronidase/arylsulfatase solution in 100 mM aqueous ammonium acetate (1:20, v/v). Extracted with dichloromethane-methanol (1:1) containing 3% 1 M aqueous ammonium carbonate at pH 9. Evaporated to dryness under a nitrogen stream at 70 °C and reconstituted in 100 µL methanol. | LC-MSn (ESI) | 200.00 (LOI) | n.a | 56.00–95.00 | [51] (2017) |
Morphine | Urine | 20 µL Whatman Filter paper 903 | Dried overnight. Added 500 µL of deionised water. Incubated 24 h at 37 °C (water bath shaker). | ELISA | 100.00 | n.a | 99.40% | [52] (2019) |
6-MAM Buprenorphine Tramadol Codeine EDDP Fentanyl Hydrocodone Hydromorphone Methadone Morphine Norbuprenorphine Fentanyl Norfentanyl Noroxycodone Oxycodone Tapentadol | Urine | 10 µL PerkinElmer 226 Bioanalysis RUOCards | Dried before analysis. | LC-HRMS/MS (HESI+) | 10.00–100.00 | n.a | n.a | [53] (2020) |
Oxycodone Noroxycodone Oxymorphone | Plasma | 10 µL Whatman FTA™ DMPK-B IND card | Samples were subjected to MAD treatment at 700 W for 1.5 min, followed by the addition of 500 μL of methanol. UAE was performed for 1 min, after which the samples were centrifuged at 1400× g for 1 min. The supernatant was dried and reconstituted in 50 μL of 0.1% formic acid in acetonitrile and 0.1% formic acid in water (5:95, v/v). | LC–MS/MS (ESI+) | 0.08 | 0.25 | 75.00–85.00 | [9] (2018) |
Morphine Codeine Oxycodone Hydrocodone | Plasma | 50 µL Perkin Elmer 226 cards | All 500 μL of blood contained disodium ethylenediaminetetraacetate. Incubated at 37 °C with 200 rpm agitation for 30 min. Rested 30 min before DPS preparation. | LC-MS/MS (ESI+) | n.a | 5.00 ng/mL | 93.20–97.80 | [54] (2016) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosendo, L.M.; Gonçalves, R.; Martins, R.; Castro, V.; Rosado, T.; Barroso, M.; Gallardo, E. Dried Matrix Spots for the Determination of Opiates and Opioids: Methodological Advances and Applications. Molecules 2025, 30, 3695. https://doi.org/10.3390/molecules30183695
Rosendo LM, Gonçalves R, Martins R, Castro V, Rosado T, Barroso M, Gallardo E. Dried Matrix Spots for the Determination of Opiates and Opioids: Methodological Advances and Applications. Molecules. 2025; 30(18):3695. https://doi.org/10.3390/molecules30183695
Chicago/Turabian StyleRosendo, Luana M., Rita Gonçalves, Rodrigo Martins, Vitória Castro, Tiago Rosado, Mário Barroso, and Eugenia Gallardo. 2025. "Dried Matrix Spots for the Determination of Opiates and Opioids: Methodological Advances and Applications" Molecules 30, no. 18: 3695. https://doi.org/10.3390/molecules30183695
APA StyleRosendo, L. M., Gonçalves, R., Martins, R., Castro, V., Rosado, T., Barroso, M., & Gallardo, E. (2025). Dried Matrix Spots for the Determination of Opiates and Opioids: Methodological Advances and Applications. Molecules, 30(18), 3695. https://doi.org/10.3390/molecules30183695