Microwave-Assisted Neutral Glycosylation Reactions in the Absence of Reagent Activators
Abstract
1. Introduction
2. Results
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adero, P.O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D. The Experimental Evidence in Support of Glycosylation Mechanisms at the SN1–SN2 Interface. Chem. Rev. 2018, 118, 8242–8284. [Google Scholar] [CrossRef]
- Levi, S.M.; Li, Q.; Rötheli, A.R.; Jacobsen, E.N. Catalytic activation of glycosyl phosphates for stereoselective coupling reactions. Proc. Natl. Acad. Sci. USA 2019, 116, 35. [Google Scholar] [CrossRef]
- Yu, F.; Li, J.; DeMent, P.M.; Tu, Y.-J.; Schlegel, H.B.; Nguyen, H.M. Phenanthroline-Catalyzed Stereoretentive Glycosylations. Angew. Chem. Int. Ed. 2019, 58, 6957–6961. [Google Scholar] [CrossRef]
- Wang, H.Y.; Simmons, C.J.; Blaszczyk, S.A.; Balzer, P.G.; Luo, R.; Duan, X.; Tang, W. Isoquinoline-1-Carboxylate as a Traceless Leaving Group for Chelation-Assisted Glycosylation under Mild and Neutral Reaction Conditions. Angew. Chem. Int. Ed. Engl. 2017, 56, 15698–15702. [Google Scholar] [CrossRef]
- Hadd, M.J.; Gervay, J. Glycosyl iodides are highly efficient donors under neutral conditions. Carbohydr. Res. 1999, 320, 61–69. [Google Scholar] [CrossRef]
- Petersen, L.; Jensen, K.J. A New, Efficient Glycosylation Method for Oligosaccharide Synthesis under Neutral Conditions: Preparation and Use of New DISAL Donors. J. Org. Chem. 2001, 66, 6268–6275. [Google Scholar] [CrossRef]
- Böhm, G.; Waldmann, H. O-Glycoside Synthesis under Neutral Conditions in Concentrated Solutions of LiClO4 in Organic Solvents Employing Benzyl-Protected Glycosyl Donors. Liebigs Ann. 1996, 1996, 613–619. [Google Scholar] [CrossRef]
- Jensen, K.J. O-Glycosylations under neutral or basic conditions. J. Chem. Soc. Perkin Trans. 1 2002, 2219–2233. [Google Scholar] [CrossRef]
- Larsen, K.; Worm-Leonhard, K.; Olsen, P.; Hoel, A.; Jensen, K.J. Reconsidering glycosylations at high temperature: Precise microwave heating. Org. Biomol. Chem. 2005, 3, 3966–3970. [Google Scholar] [CrossRef] [PubMed]
- Grathe, S.; Thygesen, M.B.; Larsen, K.; Petersen, L.; Jensen, K.J. Glucosamine derived DISAL donors for stereoselective glycosylations under neutral conditions. Tetrahedron Asymmetry 2005, 16, 1439–1448. [Google Scholar] [CrossRef]
- Mootoo, D.R.; Konradsson, P.; Udodong, U.; Fraser-Reid, B. Armed and disarmed n-pentenyl glycosides in saccharide couplings leading to oligosaccharides. J. Am. Chem. Soc. 1988, 110, 5583–5584. [Google Scholar] [CrossRef]
- Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. Engl. 2004, 43, 6250–6284. [Google Scholar] [CrossRef]
- Nigudkar, S.S.; Demchenko, A.V. Stereocontrolled 1,2-cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chem. Sci. 2015, 6, 2687–2704. [Google Scholar] [CrossRef]
- Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett. 1986, 27, 279–282. [Google Scholar] [CrossRef]
- Santra, S.; Andreana, P.R. Correction to A Rapid, One-Pot, Microwave-Influenced Synthesis of Spiro-2,5-diketopiperazines via a Cascade Ugi/6-Exo-Trig Aza-Michael Reaction. J. Org. Chem. 2011, 76, 7632. [Google Scholar] [CrossRef]
- Bornaghi, L.F.; Poulsen, S.-A. Microwave-accelerated Fischer glycosylation. Tetrahedron Lett. 2005, 46, 3485–3488. [Google Scholar] [CrossRef]
- Mathew, F.; Jayaprakash, K.N.; Fraser-Reid, B.; Mathew, J.; Scicinski, J. Microwave-assisted saccharide coupling with n-pentenyl glycosyl donors. Tetrahedron Lett. 2003, 44, 9051–9054. [Google Scholar] [CrossRef]
- Hayes, B.L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Corp.: Matthews, NC, USA, 2002. [Google Scholar]
- Andreana, P.R.; Crich, D. Guidelines for O-Glycoside Formation from First Principles. ACS Cent. Sci. 2021, 7, 1454–1462. [Google Scholar] [CrossRef]
- Berven, L.A.; Dolphin, D.; Withers, S.G. The base-catalysed anomerization of dinitrophenyl glycosides: Evidence for a novel reaction mechanism. Can. J. Chem. 1990, 68, 1859–1866. [Google Scholar] [CrossRef]
- Heravi, M.M.; Ghavidel, M.; Mohammadkhani, L. Beyond a solvent: Triple roles of dimethylformamide in organic chemistry. RSC Adv. 2018, 8, 27832–27862. [Google Scholar] [CrossRef]
- Petersen, T.P.; Larsen, A.F.; Ritzén, A.; Ulven, T. Continuous Flow Nucleophilic Aromatic Substitution with Dimethylamine Generated in Situ by Decomposition of DMF. J. Org. Chem. 2013, 78, 4190–4195. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.; Laursen, J.B.; Larsen, K.; Motawia, M.S.; Jensen, K.J. DISAL Glycosyl Donors for the Synthesis of a Linear Hexasaccharide under Mild Conditions. Org. Lett. 2003, 5, 1309–1312. [Google Scholar] [CrossRef]
- Shingu, Y.; Miyachi, A.; Miura, Y.; Kobayashi, K.; Nishida, Y. One-pot α-glycosylation pathway via the generation in situ of α-glycopyranosyl imidates in N,N-dimethylformamide. Carbohydr. Res. 2005, 340, 2236–2244. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.-R.; Lai, Y.-H.; Chen, J.-H.; Liu, C.-Y.; Mong, K.-K.T. Dimethylformamide: An Unusual Glycosylation Modulator. Angew. Chem. Int. Ed. 2011, 50, 7315–7320. [Google Scholar] [CrossRef] [PubMed]
- Boettcher, S.; Matwiejuk, M.; Thiem, J. Acceptor-influenced and donor-tuned base-promoted glycosylation. Beilstein J. Org. Chem. 2012, 8, 413–420. [Google Scholar] [CrossRef]
- Lam, S.N.; Gervay-Hague, J. Solution- and solid-phase oligosaccharide synthesis using glucosyl iodides: A comparative study. Carbohydr. Res. 2002, 337, 1953–1965. [Google Scholar] [CrossRef]
- Kalikanda, J.; Li, Z. Study of the stereoselectivity of 2-azido-2-deoxygalactosyl donors: Relationship to the steric factors of glycosyl acceptors. Carbohydr. Res. 2011, 346, 2380–2383. [Google Scholar] [CrossRef]
- Levecque, P.; Gammon, D.W.; Kinfe, H.H.; Jacobs, P.; De Vos, D.; Sels, B. Tandem Epoxidation-Alcoholysis or Epoxidation-Hydrolysis of Glycals Catalyzed by Titanium(IV) Isopropoxide or Venturello’s. Adv. Synth. Catal. 2008, 350, 1557–1568. [Google Scholar] [CrossRef]
- Nokami, T.; Shibuya, A.; Tsuyama, H.; Suga, S.; Bowers, A.A.; Crich, D.; Yoshida, J.-I. Electrochemical Generation of Glycosyl Triflate Pools. J. Am. Chem. Soc. 2007, 129, 10922–10928. [Google Scholar] [CrossRef]
- Chu, A.-H.A.; Nguyen, S.H.; Sisel, J.A.; Minciunescu, A.; Bennett, C.S. Selective Synthesis of 1,2-cis-α-Glycosides without Directing Groups. Application to Iterative Oligosaccharide Synthesis. Org. Lett. 2013, 15, 2566–2569. [Google Scholar] [CrossRef]
- Sridhar, P.R.; Anjaneyulu, B.; Rao, B.U. Regioselective Anomeric O-Benzyl Deprotection in Carbohydrates. Eur. J. Org. Chem. 2021, 2021, 5665–5668. [Google Scholar] [CrossRef]
- Colombel, S.; Van Hijfte, N.; Poisson, T.; Leclerc, E.; Pannecoucke, X. Addition of Electrophilic Radicals to 2-Benzyloxyglycals: Synthesis and Functionalization of Fluorinated α-C-Glycosides and Derivatives. Chem. Eur. J. 2013, 19, 12778–12787. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, L.R.; Mach, L.; Heinrich, M.R. Nitrogen Oxides and Nitric Acid Enable the Sustainable Hydroxylation and Nitrohydroxylation of Benzenes under Visible Light Irradiation. J. Org. Chem. 2018, 83, 431–436. [Google Scholar] [CrossRef] [PubMed]
Entry | Donor | Solvent | Time (min) | Yield % a,f | α/β b |
1 | 3a | MeOH/DCM c | 30 | 84 | 3:1 |
2 | 3b | MeOH/DCM c | 30 | 87 | α only |
3 | 3a/b d | MeOH/DCM c | 30 | 81 | 1.3:1 |
4 | 3a/b e | MeOH/DCM c | 30 | N.R. | n/a |
Entry | Donor a | Solvent | T °C | Time (h) | α/β e | Yield % b,d |
1 | 3a/b | DCM | 150 | 2 | - | N.R. |
2 | 3a/b | THF | 200 | 2 | - | negligable |
3 | 3a/b | ACN | 200 | 2 | - | N.R. |
4 | 3a | DMF | 100 | 2 | - | N.R. |
5 | 3b | DMF | 100 | 2 | - | N.R. |
6 | 3a | DMF | 150 | 2 | 3:1 | 71 |
7 | 3b | DMF | 150 | 2 | 3:1 | 80 |
8 | 3a | DMF | 200 | 1 | 2.9:1 | 72 |
9 | 3b | DMF | 200 | 1 | 3:1 | 80 |
10 | 3a | DMF | 250 | 1 | 3:1 | 80 |
11 | 3b | DMF | 250 | 1 | 3:1 | 86 |
12 | 3a/b | NMP | 250 | 1 | 2.5:1 | 30 |
13 | 3a | DCM/Dimethylamine c | 150 | 2 | 3:1 | 65 |
14 | 3b | DCM/Dimethylamine c | 150 | 2 | 3:1 | 70 |
15 | 3a/b | DCM/Triethylamine c | 150 | 2 | - | N.R. |
16 | 3a/b | DCM/DMAP c | 150 | 2 | - | N.R. |
Entry | Donor 1.2 eq | Acceptor 1 eq | Temp °C | Time h | Product | Yield b,d % | α/β c |
1 | 3a | 7 | 200 | 1 | 13 | 68 | 3:1 |
2 | 3b | 7 | 200 | 1 | 13 | 60 | 2.1:1 |
3 | 3a | 8 | 200 | 1 | 14 | 65 | α only |
4 | 3b | 8 | 200 | 1 | 14 | 58 | 3:1 |
5 | 3a | 9 | 200 | 1 | 15 | 62 | 3.5:1 |
6 | 3b | 9 | 200 | 1 | 15 | 65 | 2:1 |
7 | 3a | 10 | 200 | 1 | 16 | n.r. | n/a |
8 | 3b | 10 | 200 | 1 | 16 | n.r. | n/a |
9 | 3a | 11 | 200 | 1 | 17 | 65 | α only |
10 | 3b | 11 | 200 | 1 | 17 | 70 | α only |
11 | 3a | 12 | 200 | 1 | 18 | 80 | α only |
12 | 3b | 12 | 200 | 1 | 18 | 75 | α only |
Entry | Donor | Acceptor | Temp (°C) | Time | Product | Yield b,d (%) | α/β c |
1 | 19a | 5 a | 200 | 1.5 | 20 | 40 | α only |
2 | 19b | 5 a | 200 | 1.5 | 20 | 35 | α only |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamage, S.M.P.; Valentin, G.; Ghosh, S.; Eradi, P.; Bagul, R.S.; Crich, D.; Andreana, P.R. Microwave-Assisted Neutral Glycosylation Reactions in the Absence of Reagent Activators. Molecules 2025, 30, 3693. https://doi.org/10.3390/molecules30183693
Gamage SMP, Valentin G, Ghosh S, Eradi P, Bagul RS, Crich D, Andreana PR. Microwave-Assisted Neutral Glycosylation Reactions in the Absence of Reagent Activators. Molecules. 2025; 30(18):3693. https://doi.org/10.3390/molecules30183693
Chicago/Turabian StyleGamage, Shanika M. P., Geraud Valentin, Samir Ghosh, Pradheep Eradi, Rahul S. Bagul, David Crich, and Peter R. Andreana. 2025. "Microwave-Assisted Neutral Glycosylation Reactions in the Absence of Reagent Activators" Molecules 30, no. 18: 3693. https://doi.org/10.3390/molecules30183693
APA StyleGamage, S. M. P., Valentin, G., Ghosh, S., Eradi, P., Bagul, R. S., Crich, D., & Andreana, P. R. (2025). Microwave-Assisted Neutral Glycosylation Reactions in the Absence of Reagent Activators. Molecules, 30(18), 3693. https://doi.org/10.3390/molecules30183693