Bioactive Plant Peptides: Physicochemical Features, Structure-Function Insights and Mechanism of Action
Abstract
1. Introduction
2. Structure-Function Relationship of Bioactive Plant Peptides
2.1. Relation Between Plant Peptide Structure and Its Antioxidant Activity
2.2. Relation Between Plant Peptides Structure and Its Antiproliferative Activity
2.3. Relation Between Plant Peptides Structure and Its Angiotensin-Converting Enzyme Inhibitory Activity
2.4. Relation Between Plant Peptides Structure and Its Hypolipidemic Activity
2.5. Relation Between Plant Peptides Structure and Its Hypoglycemic Activity
2.6. Relation Between Plant Peptide Structure and Its Antimicrobial Activity
2.7. Relation Between Plant Peptides Structure and Its Antiviral Activity
3. New Plant Sources for Bioactive Peptides
4. Current Scenario and Future Perspectives of Peptide-Based Drugs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González, S. Dietary Bioactive Compounds and Human Health and Disease. Nutrients 2020, 12, 348. [Google Scholar] [CrossRef] [PubMed]
- Cooper, B.M.; Iegre, J.; O’Donovan, D.H.; Halvarsson, M.Ö.; Spring, D.R. Peptides as a platform for targeted therapeutics for cancer: Peptide-drug conjugates (PDCs). Chem. Soc. Rev. 2021, 50, 1480–1494. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, D.C.; Lebrun, I. Cryptides: Buried secrets in proteins. Peptides 2007, 28, 2403–2410. [Google Scholar] [CrossRef]
- Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci. 2017, 24, 21. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef]
- Escamilla Rosales, M.F.; Olvera Rosales, L.; Jara Gutiérrez, C.E.; Jaimez Ordaz, J.; Santana Sepúlveda, P.A.; González Olivares, L.G. Proteins of milk, egg, and fish as a source of antioxidant peptides: Production, mechanism of action, and health benefits. Food Rev. Int. 2023, 40, 1600–1620. [Google Scholar] [CrossRef]
- Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Hernández-Jiménez, M.; Loa, J.; Rojas-Avelizapa, N. Agroindustrial plant wastes: Novel source of antimicrobial peptides. Circ. Econ. Sustain. 2025, 5, 2431–2465. [Google Scholar] [CrossRef]
- Sun, L.; Liu, J.; He, Z.; Du, R. Plant-derived as alternatives to animal-derived bioactive peptides: A review of the preparation, bioactivities, structure–activity relationships, and applications in chronic diseases. Nutrients 2024, 16, 3277. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Z.; Li, Y.; Fan, Y.; Zhou, Y.; Song, K.; Meng, L. Antioxidant function and application of plant-derived peptides. Antioxidants 2024, 13, 1203. [Google Scholar] [CrossRef]
- Nirmal, N.; Khanashyam, A.C.; Shah, K.; Awasti, N.; Babu, K.S.; Ucak, I.; Afreen, M.; Hassoun, A.; Tuanthong, A. Plant protein-derived peptides: Frontiers in sustainable food systems and applications. Front. Sustain. Food Syst. 2024, 8, 1292297. [Google Scholar] [CrossRef]
- Cruz-Casas, D.E.; Aguilar, C.N.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R.; Chávez-González, M.L.; Flores-Gallegos, A.C. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem. Mol. Sci. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Heng, X.; Chen, H.; Lu, C.; Fen, T.; Li, K.; Gao, E. Study on synergistic fermentation of bean dregs and soybean meal by multiple strains and proteases. LWT 2022, 154, 112626. [Google Scholar] [CrossRef]
- Farid, M.S.; Anjum, R.; Yang, Y.; Tu, M.; Zhang, T.; Pan, D.; Sun, Y.; Wu, Z. Recent trends in fermented plant-based analogues and products, bioactive peptides, and novel technologies-assisted fermentation. Trends Food Sci. Technol. 2024, 149, 104529. [Google Scholar] [CrossRef]
- de Souza, T.S.P.; de Andrade, C.J.; Koblitz, M.G.B.; Fai, A.E.C. Microbial peptidase in food processing: Current state of the art and future trends. Catal. Lett. 2023, 153, 114–137. [Google Scholar] [CrossRef]
- Kullman, W. Enzymatic Peptide Synthesis; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Li, W.; Huang, J.; Zheng, L.; Liu, W.; Fan, L.; Sun, B.; Su, G.; Xu, J.; Zhao, M. A fast stop-flow two-dimensional liquid chromatography tandem mass spectrometry and its application in food-derived protein hydrolysates. Food Chem. 2023, 406, 135000. [Google Scholar] [CrossRef]
- Léonil, J.; Gagnaire, V.; Mollé, D.; Pezennec, S.; Bouhallab, S. Application of chromatography and mass spectrometry to the characterization of food proteins and derived peptides. J. Chromatogr. A 2000, 881, 1–21. [Google Scholar] [CrossRef]
- Noor, Z.; Ahn, S.B.; Baker, M.S.; Ranganathan, S.; Mohamedali, A. Mass spectrometry–based protein identification in proteomics—A review. Brief. Bioinform. 2021, 22, 1620–1638. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: Concept and some practical aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef]
- Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci. 2015, 16, 193–217. [Google Scholar] [CrossRef]
- Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors 2022, 48, 611–633. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Predoi, G. Antioxidant capacity determination in plants and plant-derived products: A review. Oxidative Med. Cell. Longev. 2016, 2016, 9130976. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Ju, X.; Yuan, J.; Wang, L.; Girgih, A.T.; Aluko, R.E. Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Res. Int. 2012, 49, 432–438. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; del Mar Contreras, M.; Recio, I.; Alaiz, M.; Vioque, J. Identification and characterization of antioxidant peptides from chickpea protein hydrolysates. Food Chem. 2015, 180, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-P.; Lai, S.-J.; Chang, C.-R.; Yu, R.C.; Hsieh, J.-F.; Chen, H.-M. Peptidomic analysis of low molecular weight antioxidative peptides prepared by lotus (Nelumbo nucifera Gaertn.) seed protein hydrolysates. LWT 2021, 144, 111138. [Google Scholar] [CrossRef]
- Huang, C.; Tang, X.; Liu, Z.; Huang, W.; Ye, Y. Enzymes-dependent antioxidant activity of sweet apricot kernel protein hydrolysates. LWT 2022, 154, 112825. [Google Scholar] [CrossRef]
- Montone, C.M.; Zenezini Chiozzi, R.; Marchetti, N.; Capriotti, A.L.; Cerrato, A.; Laganà, A.; Fai, P.B.S.; Cavaliere, C. Peptidomic approach for the identification of peptides with potential antioxidant and anti-hyperthensive effects derived from asparagus by-products. Molecules 2019, 24, 3627. [Google Scholar] [CrossRef]
- Intiquilla, A.; Jiménez-Aliaga, K.; Guzmán, F.; Pérez-Rea, D.; Cárdenas, M.; Zavaleta, A.I. Novel antioxidant peptides obtained by alcalase hydrolysis of Erythrina edulis (pajuro) protein. J. Sci. Food Agric. 2019, 99, 2420–2427. [Google Scholar] [CrossRef]
- Siow, H.-L.; Gan, C.-Y. Extraction of antioxidative and antihypertensive bioactive peptides from Parkia speciosa seeds. Food Chem. 2013, 141, 3435–3442. [Google Scholar] [CrossRef]
- Zhu, S.; Du, C.; Yu, T.; Wu, T.; Zhu, H.; Li, S. Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. J. Food Sci. 2019, 84, 3504–3511. [Google Scholar] [CrossRef]
- García, M.C.; Endermann, J.; Gonzalez-Garcia, E.; Marina, M.L. HPLC-Q-TOF-MS identification of antioxidant and antihypertensive peptides recovered from cherry (Prunus cerasus L.) subproducts. J. Agric. Food Chem. 2015, 63, 1514–1520. [Google Scholar] [CrossRef]
- Wali, A.; Mijiti, Y.; Yanhua, G.; Maimaitituersun, W.; Abudureheman, B. Isolation and Identification of a Novel Antioxidant Peptide from Chickpea (Cicer arietinum L.) Sprout Protein Hydrolysates. Int. J. Pept. Res. Ther. 2020, 27, 219–227. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Miao, M.; Jiang, B. Purification and characterisation of a new antioxidant peptide from chickpea (Cicer arietium L.) protein hydrolysates. Food Chem. 2011, 128, 28–33. [Google Scholar] [CrossRef]
- Ghribi, A.M.; Sila, A.; Przybylski, R.; Ghorbel, R.; Bougatef, A.; Cheba, B.A.; Nedjar-Arroume, N. Purification and identification of novel antioxidant peptides from enzymatic hydrolysate of chickpea (Cicer arietinum L.) protein concentrate. J. Funct. Foods 2015, 12, 516–525. [Google Scholar] [CrossRef]
- Kou, X.; Gao, J.; Xue, Z.; Zhang, H.; Wang, H. Purification and identification of antioxidant peptides from chickpea (Cicer arietinum L.) albumin hydrolysates. LWT-Food Sci. Technol. 2013, 50, 591–598. [Google Scholar] [CrossRef]
- Jin, D.-X.; Liu, X.-L.; Zheng, X.-Q.; Wang, X.-J.; He, J.-F. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chem. 2016, 204, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, M.; Yang, R.; Zhang, S.; Lin, S. Preparation, identification, and activity evaluation of antioxidant peptides from protein hydrolysate of corn germ meal. J. Food Process Preserv. 2019, 43, e14160. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Wang, X.; Wang, J.; Liu, H.; Li, H.; Zhang, Z. Isolation and identification of a novel peptide from zein with antioxidant and antihypertensive activities. Food Funct. 2015, 6, 3799–3806. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, M.; Lin, S.; Cheng, S. Contribution of specific amino acid and secondary structure to the antioxidant property of corn gluten proteins. Food Res. Int. 2018, 105, 836–844. [Google Scholar] [CrossRef]
- Zhuang, H.; Tang, N.; Yuan, Y. Purification and identification of antioxidant peptides from corn gluten meal. J. Funct. Foods 2013, 5, 1810–1821. [Google Scholar] [CrossRef]
- Tang, X.; He, Z.; Dai, Y.; Zheng, F.; Tan, M.; Li, L. Peptide fractionation and free radical scavenging activity of zein hydrolysate. J. Agric. Food Chem. 2010, 58, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, M.; Yu, Z.; Du, S.-K. Preparation and identification of antioxidant peptides from cottonseed proteins. Food Chem. 2021, 352, 129399. [Google Scholar] [CrossRef] [PubMed]
- Girgih, A.T.; He, R.; Malomo, S.A.; Offengenden, M.; Wu, J.; Aluko, R.E. Structural and functional characterization of hemp seed (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. J. Funct. Foods 2014, 6, 384–394. [Google Scholar] [CrossRef]
- Lu, R.-R.; Qian, P.; Sun, Z.; Zheng, X.Q.; Qi, G.J. Hempseed protein derived antioxidative peptides: Purification, identification and protection from hydrogen peroxide-induced apoptosis in PC12 cells. Food Chem. 2010, 123, 1210–1218. [Google Scholar] [CrossRef]
- Gao, J.; Li, T.; Chen, D.; Gu, H.; Mao, X. Identification and molecular docking of antioxidant peptides from hemp seed protein hydrolysates. LWT 2021, 147, 111453. [Google Scholar] [CrossRef]
- Samaei, S.P.; Martini, S.; Tagliazucchi, D.; Gianotti, A.; Babini, E. Antioxidant and angiotensin I-converting enzyme (ACE) inhibitory peptides obtained from alcalase protein hydrolysate fractions of hemp (Cannabis sativa L.) bran. J. Agric. Food Chem. 2021, 69, 9220–9228. [Google Scholar] [CrossRef]
- Peng, L.; Kong, X.; Wang, Z.; Ai-lati, A.; Ji, Z.; Mao, J. Baijiu vinasse as a new source of bioactive peptides with antioxidant and anti-inflammatory activity. Food Chem. 2021, 339, 128159. [Google Scholar] [CrossRef]
- Memarpoor-Yazdi, M.; Mahaki, H.; Zare-Zardini, H. Antioxidant activity of protein hydrolysates and purified peptides from Zizyphus jujuba fruits. J. Funct. Foods 2013, 5, 62–70. [Google Scholar] [CrossRef]
- Yang, R.; Li, X.; Lin, S.; Zhang, Z.; Chen, F. Identification of novel peptides from 3 to 10 kDa pine nut (Pinus koraiensis) meal protein, with an exploration of the relationship between their antioxidant activities and secondary structure. Food Chem. 2017, 219, 311–320. [Google Scholar] [CrossRef]
- García-Mora, P.; Martín-Martínez, M.; Bonache, M.A.; González-Miret, M.L.; Peñas, E.; Frias, J.; Martínez-Villaluenga, C. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chem. 2017, 221, 464–472. [Google Scholar] [CrossRef]
- Avilés-Gaxiola, S.; León-Félix, J.; Jiménez-Nevárez, Y.B.; Gutiérrez-Grijalva, E.P.; Araiza-Macias, M.J.; Heredia, J.B. Antioxidant and anti-inflammatory properties of novel peptides from Moringa oleifera Lam. leaves. S. Afr. J. Bot. 2021, 141, 466–473. [Google Scholar] [CrossRef]
- Sun, C.; Tang, X.; Ren, Y.; Yang, D.; Lu, W.; Xiong, W. Novel Antioxidant Peptides Purified from Mulberry (Morus atropurpurea Roxb.) Leaf Protein Hydrolysates with Hemolysis Inhibition Ability and Cellular Antioxidant Activity. J. Agric. Food Chem. 2019, 67, 7650–7659. [Google Scholar] [CrossRef]
- Kusumah, J.; Real Hernandez, L.M.; de Mejia, E.G. Antioxidant potential of mung bean (Vigna radiata) albumin peptides produced by enzymatic hydrolysis analyzed by biochemical and in silico methods. Foods 2020, 9, 1241. [Google Scholar] [CrossRef]
- Chunkao, S.; Youravong, W.; Yupanqui, C.T.; Alashi, A.M.; Aluko, R.E. Structure and Function of Mung Bean Protein-Derived Iron-Binding Antioxidant Peptides. Foods 2020, 9, 1406. [Google Scholar] [CrossRef] [PubMed]
- Sonklin, C.; Alashi, A.M.; Laohakunjit, N.; Aluko, R.E. Functional characterization of mung bean meal protein-derived antioxidant peptides. Molecules 2021, 26, 1515. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Song, H.; Huang, K.; Li, S.; Guan, X. Purification and characterization of antioxidant peptides from enzymatic hydrolysate of mungbean protein. J. Food Sci. 2020, 85, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Ebrahimpour, A.; Abdul-Hamid, A.; Anwar, F.; Saari, N. Identification and characterization of papain-generated antioxidant peptides from palm kernel cake proteins. Food Res. Int. 2014, 62, 726–734. [Google Scholar] [CrossRef]
- Agrawal, H.; Joshi, R.; Gupta, M. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem. 2016, 204, 365–372. [Google Scholar] [CrossRef]
- Wang, M.; Li, C.; Li, H.; Li, J.; Zhao, F.; Jiang, L. In vitro and in silico antioxidant activity of novel peptides prepared from Paeonia ostii ‘Feng Dan’ hydrolysate. Antioxidants 2019, 8, 433. [Google Scholar] [CrossRef]
- Yang, J.; Hu, L.; Cai, T.; Li, P.; Zheng, Z.; Cheng, X.; Liu, J.; Zhou, H.; Li, H.; Fu, H. Purification and identification of two novel antioxidant peptides from perilla (Perilla frutescens L. Britton) seed protein hydrolysates. PLoS ONE 2018, 13, e0200021. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Liceaga, A.M.; Yoon, K.Y. Purification and identification of an antioxidant peptide from perilla seed (Perilla frutescens) meal protein hydrolysate. Food Sci. Nutr. 2019, 7, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.-J.; Huang, L.-H.; Sun, Q.; Jiang, Z.-Q.; Wu, X. Isolation, identification and synthesis of four novel antioxidant peptides from rice residue protein hydrolyzed by multiple proteases. Food Chem. 2015, 179, 290–295. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Fu, X.; Li, S.; Wei, J. A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT 2017, 75, 93–99. [Google Scholar] [CrossRef]
- Wattanasiritham, L.; Theerakulkait, C.; Wickramasekara, S.; Maier, C.S.; Stevens, J.F. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food Chem. 2016, 192, 156–162. [Google Scholar] [CrossRef]
- Ren, L.-K.; Yang, Y.; Ma, C.-M.; Liu, D.-Y.; Wu, K.; Wang, T.-W.; Feng, W.-H.; Li, Y. Identification and in silico analysis of novel antioxidant peptides in broken rice protein hydrolysate and its cytoprotective effect against H2O2-induced 2BS cell model. Food Res. Int. 2022, 162, 112108. [Google Scholar] [CrossRef]
- Garzón, A.G.; Veras, F.F.; Brandelli, A.; Drago, S.R. Purification, identification and in silico studies of antioxidant, antidiabetogenic and antibacterial peptides obtained from sorghum spent grain hydrolysate. LWT 2022, 153, 112414. [Google Scholar] [CrossRef]
- Ma, H.; Liu, R.; Zhao, Z.; Song, D.; Yang, J.; Ni, Y. A novel peptide from soybean protein isolate significantly enhances resistance of the organism under oxidative stress. PLoS ONE 2016, 11, e0159938. [Google Scholar] [CrossRef]
- Tonolo, F.; Moretto, L.; Grinzato, A.; Fiorese, F.; Folda, A.; Scalcon, V.; Marin, O.; Bindoli, A.; Feller, E.; Bellamio, M.; et al. Fermented Soy-Derived Bioactive Peptides Selected by a Molecular Docking Approach Show Antioxidant Properties Involving the Keap1/Nrf2 Pathway. Antioxidants 2020, 9, 1306. [Google Scholar] [CrossRef]
- Zhang, M.; Mu, T.-H.; Sun, M.-J. Purification and identification of antioxidant peptides from sweet potato protein hydrolysates by Alcalase. J. Funct. Foods 2014, 7, 191–200. [Google Scholar] [CrossRef]
- Meshginfar, N.; Mahoonak, A.S.; Hosseinian, F.; Ghorbani, M.; Tsopmo, A. Production of antioxidant peptide fractions from a by-product of tomato processing: Mass spectrometry identification of peptides and stability to gastrointestinal digestion. J. Food Sci. Technol. 2018, 55, 3498–3507. [Google Scholar] [CrossRef]
- Ce, N.; Tianhong, C.; Min, C.; Jianing, D.; Xueli, Z.; Juanjuan, L. Enzymatic hydrolysis preparation and activity analysis of antioxidant peptides derived from walnut dregs. Food Mach. 2024, 40, 51–61. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Q.; Lu, Q. Purification, structural analysis, and stability of antioxidant peptides from purple wheat bran. BMC Chem. 2020, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chao, W.; Qiu, L. Therapeutic peptides: Chemical strategies fortify peptides for enhanced disease treatment efficacy. Amino Acids 2025, 57, 25. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Liu, H.; Zhang, Y.; Liao, M.; Wang, A.; Wang, J. Review on plant-derived bioactive peptides: Biological activities, mechanism of action and utilizations in food development. J. Future Foods 2022, 2, 143–159. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Q.; Shen, Y.; Xiao, H.; Li, C.; Wang, S.; Chen, J.; Liu, G. Research Progress on Antioxidant Peptides from Fish By-Products: Purification, Identification, and Structure-Activity Relationship. Metabolites 2024, 14, 561. [Google Scholar] [CrossRef]
- Selamassakul, O.; Laohakunjit, N.; Kerdchoechuen, O.; Yang, L.; Maier, C.S. Isolation and characterisation of antioxidative peptides from bromelain-hydrolysed brown rice protein by proteomic technique. Process Biochem. 2018, 70, 179–187. [Google Scholar] [CrossRef]
- Chatupheeraphat, C.; Roytrakul, S.; Phaonakrop, N.; Rattanabunyong, S.; Viyanant, V.; Rinaldi, G.; Brindley, P.J.; Berriman, M.; Hongeng, S.; Loukas, A.; et al. A novel peptide derived from ginger induces apoptosis through the modulation of p53, BAX, and BCL2 expression in leukemic cell lines. Planta Medica 2021, 87, 560–569. [Google Scholar] [CrossRef]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef]
- Luna-Vital, D.A.; de Mejía, E.G.; Loarca-Piña, G. Selective mechanism of action of dietary peptides from common bean on HCT116 human colorectal cancer cells through loss of mitochondrial membrane potential and DNA damage. J. Funct. Foods 2016, 23, 24–39. [Google Scholar] [CrossRef]
- Clemente, A.; Marín-Manzano, M.C.; Jiménez, E.; Arques, M.C.; Domoney, C. The anti-proliferative effect of TI1B, a major Bowman–Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition. Br. J. Nutr. 2012, 108, S135–S144. [Google Scholar] [CrossRef] [PubMed]
- Chiangjong, W.; Chutipongtanate, S.; Hongeng, S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application. Int. J. Oncol. 2020, 57, 678–696. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Lin, J.; Peng, D.; Lin, L.; Yang, B.; Lin, Z. Peptide fractions from Sacha inchi induced apoptosis in HepG2 cells via P53 activation and a mitochondria-mediated pathway. J. Sci. Food Agric. 2023, 103, 7621–7630. [Google Scholar] [CrossRef] [PubMed]
- Schaduangrat, N.; Nantasenamat, C.; Prachayasittikul, V.; Shoombuatong, W. ACPred: A computational tool for the prediction and analysis of anticancer peptides. Molecules 2019, 24, 1973. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Huang, D.; Zhai, M.; Li, D.; Wang, Z.; Duan, H.; Ji, H. Isolation of a novel bio-peptide from walnut residual protein inducing apoptosis and autophagy on cancer cells. BMC Complement. Altern. Med. 2015, 15, 413. [Google Scholar] [CrossRef]
- Gupta, N.; Bhagyawant, S.S. Bioactive peptide of Cicer arietinum L. induces apoptosis in human endometrial cancer via DNA fragmentation and cell cycle arrest. 3 Biotech 2021, 11, 63. [Google Scholar] [CrossRef]
- Vital, D.A.L.; Loarca-Piña, G.; Dia, V.P.; de Mejía, E.G. Peptides extracted from common bean (Phaseolus vulgaris L.) non-digestible fraction caused differential gene expression of HCT116 and RKO human colorectal cancer cells. Food Res. Int. 2014, 62, 193–204. [Google Scholar] [CrossRef]
- Wang, H.; Ng, T. Isolation and characterization of an antifungal peptide with antiproliferative activity from seeds of Phaseolus vulgaris cv. ‘Spotted Bean’. Appl. Microbiol. Biotechnol. 2007, 74, 125–130. [Google Scholar] [CrossRef]
- Kuerban, A.; Al-Malki, A.L.; Kumosani, T.A.; Yagoub, A.E.A.; Abuzinadah, M.F.; Al-Jaouni, S.K.; Kamal, M.A.; Al-Ghamdi, S.N.; Hassan, H.M. Identification, protein antiglycation, antioxidant, antiproliferative, and molecular docking of novel bioactive peptides produced from hydrolysis of Lens culinaris. J. Food Biochem. 2020, 44, e13494. [Google Scholar] [CrossRef]
- Caccialupi, P.; Ceci, L.R.; Siciliano, R.A.; Duranti, M.; Morale, C.U.; Zacheo, G. Bowman-Birk inhibitors in lentil: Heterologous expression, functional characterisation and anti-proliferative properties in human colon cancer cells. Food Chem. 2010, 120, 1058–1066. [Google Scholar] [CrossRef]
- Ye, N.; Hu, P.; Xu, S.; Xu, S.; Liu, L.; Wang, K.; Li, J.; Wang, J. Preparation and characterization of antioxidant peptides from carrot seed protein. J. Food Qual. 2018, 2018, 8579094. [Google Scholar] [CrossRef]
- Ortiz-Martinez, M.; de Mejia, E.G.; García-Lara, S.; Oseguera-Toledo, M.E. Antiproliferative effect of peptide fractions isolated from a quality protein maize, a white hybrid maize, and their derived peptides on hepatocarcinoma human HepG2 cells. J. Funct. Foods 2017, 34, 36–48. [Google Scholar] [CrossRef]
- Chu, K.T.; Ng, T.B. First report of a glutamine-rich antifungal peptide with immunomodulatory and antiproliferative activities from family Amaryllidaceae. Biochem. Biophys. Res. Commun. 2004, 325, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.E.F.; Najas, J.Z.; Magalhães, L.G.; Cilli, E.M.; de Souza, J.; Raddi, M.S.G.; de Azevedo, R.A.; de Camargo, M.S.; Said, S.; de Oliveira, L.S.; et al. Inhibition of breast cancer cell migration by cyclotides isolated from Pombalia calceolaria. J. Nat. Prod. 2018, 81, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Guo, H.; Teng, C.; Yang, X.; Wang, Z.; Li, Y.; Zhang, Z. Anti-colon cancer activity of novel peptides isolated from in vitro digestion of quinoa protein in Caco-2 cells. Foods 2022, 11, 194. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Yuan, Q.; Sun, Q.; Yao, W.; Guo, H. Separation and purification of an anti-tumor peptide from rapeseed (Brassica campestris L.) and the effect on cell apoptosis. Food Funct. 2016, 7, 2239–2248. [Google Scholar] [CrossRef]
- Ma, K.; Wang, Z.; Ju, X.; Huang, J.; He, R. Rapeseed peptide inhibits HepG2 cell proliferation by regulating the mitochondrial and P53 signaling pathways. J. Sci. Food Agric. 2023, 103, 1474–1483. [Google Scholar] [CrossRef]
- Kannan, A.; Hettiarachchy, N.S.; Lay, J.O.; Liyanage, R. Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides 2010, 31, 1629–1634. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Santhanam, R.K.; Lim, S.H.E.; Kim, H. Bioactive peptide with antioxidant and anticancer activities from black soybean [Glycine max (L.) Merr.] byproduct: Isolation, identification and molecular docking study. Eur. Food Res. Technol. 2019, 245, 677–689. [Google Scholar] [CrossRef]
- Gao, C.; Sun, R.; Xie, Y.-R.; Fan, S.; Ma, G.; Ma, F.; Hou, B. The soy-derived peptide Vglycin inhibits the growth of colon cancer cells in vitro and in vivo. Exp. Biol. Med. 2017, 242, 1034–1043. [Google Scholar] [CrossRef]
- González-Montoya, M.; Hernández-Ledesma, B.; Silván, J.M.; Mora-Escobedo, R.; Martínez-Villaluenga, C. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chem. 2018, 242, 75–82. [Google Scholar] [CrossRef]
- Rayaprolu, S.J.; Hettiarachchy, N.S.; Horax, R.; Satchithanandam, E.; Chen, P.; Mauromoustakos, A. Purification and characterization of a peptide from soybean with cancer cell proliferation inhibition. J. Food Biochem. 2017, 41, e12374. [Google Scholar] [CrossRef]
- Cruz-Huerta, E.; Fernández-Tomé, S.; Arques, M.C.; Clemente, A.; Amigo, L.; Recio, I.; Hernández-Ledesma, B. The protective role of the Bowman-Birk protease inhibitor in soybean lunasin digestion: The effect of released peptides on colon cancer growth. Food Funct. 2015, 6, 2626–2635. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.H.-S.; Yang, D.H.-A.; Lin, H.-H.; Hsu, J.-C.; Liu, Y.-C.; Hsu, C.-L. IbACP, a sixteen-amino-acid peptide isolated from Ipomoea batatas leaves, induces carcinoma cell apoptosis. Peptides 2013, 47, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Liu, D.; Yang, Y. Anti-cancer peptides: Classification, mechanism of action, reconstruction and modification. Open Biol. 2020, 10, 200004. [Google Scholar] [CrossRef]
- Akbarmehr, A.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Sarabandi, K. Physicochemical, antioxidant, antimicrobial, and in vitro cytotoxic activities of corn pollen protein hydrolysates obtained by different peptidases. Food Sci. Nutr. 2023, 11, 2403–2417. [Google Scholar] [CrossRef]
- Kaur, A.; Kehinde, B.A.; Sharma, P.; Sharma, D.; Kaur, S. Recently isolated food-derived antihypertensive hydrolysates and peptides: A review. Food Chem. 2021, 346, 128719. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Aluko, R.E. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef]
- Aluko, R.E. Structure and function of plant protein-derived antihypertensive peptides. Curr. Opin. Food Sci. 2015, 4, 44–50. [Google Scholar] [CrossRef]
- Chen, L.; Cheng, F.; Chen, H.; Shu, G. Preparation and identification of novel angiotensin-I-converting enzyme inhibitory peptides from Moringa oleifera leaf. LWT 2024, 205, 116472. [Google Scholar] [CrossRef]
- Wu, J.; Aluko, R.E.; Nakai, S. Structural Requirements of Angiotensin I-Converting Enzyme Inhibitory Peptides: Quantitative Structure−Activity Relationship Study of Di- and Tripeptides. J. Agric. Food Chem. 2006, 54, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, X.; Qi, W.; Guo, Q. Bioactive protein/peptides of flaxseed: A review. Trends Food Sci. Technol. 2019, 92, 184–193. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Toldrá, F. Health relevance of antihypertensive peptides in foods. Curr. Opin. Food Sci. 2018, 19, 8–14. [Google Scholar] [CrossRef]
- Tang, S.; Chen, D.; Shen, H.; Guo, X.; Yuan, Y.; Jiang, X.; Zheng, B.; Zeng, S.; Huang, M. Discovery of two novel ACE inhibitory peptides from soybeans: Stability, molecular interactions, and in vivo antihypertensive effects. Int. J. Biol. Macromol. 2025, 308, 142247. [Google Scholar] [CrossRef]
- Wu, J.-S.; Li, J.-M.; Lo, H.-Y.; Hsiang, C.-Y.; Ho, T.-Y. Anti-hypertensive and angiotensin-converting enzyme inhibitory effects of Radix Astragali and its bioactive peptide AM-1. J. Ethnopharmacol. 2020, 254, 112724. [Google Scholar] [CrossRef]
- Wei, D.; Fan, W.-l.; Xu, Y. Identification of water-soluble peptides in distilled spent grain and its angiotensin converting enzyme (ACE) inhibitory activity based on UPLC-Q-TOF-MS and proteomics analysis. Food Chem. 2021, 353, 129521. [Google Scholar] [CrossRef]
- Sangiorgio, S.; Vidović, N.; Boschin, G.; Arnoldi, A.; Lammi, C. Preparation, characterization and in vitro stability of a novel ACE-inhibitory peptide from soybean protein. Foods 2022, 11, 2667. [Google Scholar] [CrossRef]
- Aiello, G.; Lammi, C.; Boschin, G.; Zanoni, C.; Arnoldi, A. Exploration of Potentially Bioactive Peptides Generated from the Enzymatic Hydrolysis of Hempseed Proteins. J. Agric. Food Chem. 2017, 65, 10174–10184. [Google Scholar] [CrossRef]
- Nuchprapha, A.; Paisansak, S.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Karnchanatat, A. Two novel ACE inhibitory peptides isolated from longan seeds: Purification, inhibitory kinetics and mechanisms. RSC Adv. 2020, 10, 12711–12720. [Google Scholar] [CrossRef]
- Ma, K.; Wang, Y.; Wang, M.; Wang, J.; Guo, C.; Yang, Y. Antihypertensive activity of the ACE–renin inhibitory peptide derived from Moringa oleifera protein. Food Funct. 2021, 12, 8994–9006. [Google Scholar] [CrossRef]
- Esteve, C.; Marina, M.L.; Garcia, M.C. Novel strategy for the revalorization of olive (Olea europaea) residues based on the extraction of bioactive peptides. Food Chem. 2015, 167, 272–280. [Google Scholar] [CrossRef]
- Siow, H.-L.; Gan, C.-Y. Extraction, identification, and structure-activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). J. Funct. Foods 2016, 22, 1–12. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, E.; Marina, M.L.; Garcia, M. Plum (Prunus domestica L.) by-product as a new and cheap source of bioactive peptides: Extraction method and peptides characterization. J. Funct. Foods 2014, 11, 428–437. [Google Scholar] [CrossRef]
- Zhang, L.; Miao, J.; Guo, J.; Liu, S.; Wang, R.; Ding, Y. Two novel angiotensin I-converting enzyme (ACE) inhibitory peptides from rice (Oryza sativa L.) bran protein. J. Agric. Food Chem. 2023, 71, 4153–4162. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhao, H.; Pan, X.; Orfila, C.; Lu, W.; Ma, Y. Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of alpha-glucosidase inhibitory peptides from soy protein. Food Sci. Nutr. 2019, 7, 1848–1856. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, C.; Sun-Waterhouse, D.; Li, D.; Zhao, W.; Su, G.; Ma, H. Identification of post-digestion angiotensin-I converting enzyme (ACE) inhibitory peptides from soybean protein Isolate: Their production conditions and in silico molecular docking with ACE. Food Chem. 2021, 345, 128855. [Google Scholar] [CrossRef]
- Foltz, M.; van der Pijl, P.C.; Duchateau, G. Current In Vitro Testing of Bioactive Peptides Is Not Valuable. J. Nutr. 2010, 140, 117–118. [Google Scholar] [CrossRef]
- Shen, W.; Matsui, T. Current knowledge of intestinal absorption of bioactive peptides. Food Funct. 2017, 8, 4306–4314. [Google Scholar] [CrossRef]
- Lammi, C.; Aiello, G.; Boschin, G.; Arnoldi, A. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. J. Funct. Foods 2019, 55, 135–145. [Google Scholar] [CrossRef]
- Ye, H.; Xu, Y.; Sun, Y.; Ye, S.; Tang, H.; Wei, X. Purification, identification and hypolipidemic activities of three novel hypolipidemic peptides from tea protein. Food Res. Int. 2023, 165, 112450. [Google Scholar] [CrossRef]
- Soares, R.A.M.; Mendonça, S.; de Castro, L.Í.A.; Menezes, A.C.C.C.C.; Arêas, J.A.G. Major peptides from Amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. Int. J. Mol. Sci. 2015, 16, 4150–4160. [Google Scholar] [CrossRef]
- Gomes, M.J.C.; Lima, S.L.S.; Alves, N.E.G.; Silva, A.G.M.; Morais, H.A.; Pimenta, D.C.; Vidigal, P.V.T.; Arêas, J.A.G. Common bean protein hydrolysate modulates lipid metabolism and prevents endothelial dysfunction in BALB/c mice fed an atherogenic diet. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 141–150. [Google Scholar] [CrossRef]
- Garzón, A.G.; Cian, R.E.; Aquino, M.E.; Drago, S.R. Isolation and identification of cholesterol esterase and pancreatic lipase inhibitory peptides from brewer’s spent grain by consecutive chromatography and mass spectrometry. Food Funct. 2020, 11, 4994–5003. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Míguez, R.; Marina, M.L.; Castro-Puyana, M. High resolution liquid chromatography tandem mass spectrometry for the separation and identification of peptides in coffee silverskin protein hydrolysates. Microchem. J. 2019, 149, 103951. [Google Scholar] [CrossRef]
- Marques, M.R.; Fontanari, G.G.; Pimenta, D.C.; Soares-Freitas, R.M.; Arêas, J.A.G. Proteolytic hydrolysis of cowpea proteins is able to release peptides with hypocholesterolemic activity. Food Res. Int. 2015, 77, 43–48. [Google Scholar] [CrossRef]
- Zanoni, C.; Aiello, G.; Arnoldi, A.; Lammi, C. Hempseed Peptides Exert Hypocholesterolemic Effects with a Statin-Like Mechanism. J. Agric. Food Chem. 2017, 65, 8829–8838. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, Y.; Li, W.; Yang, B.; Wang, X.; Tian, Z.; Zhang, X. Hemp seed protein exerts its hypoglycemic and hypolipidemic effects through degradation into short peptides. Food Chem. 2025, 484, 144406. [Google Scholar] [CrossRef]
- Lammi, C.; Zanoni, C.; Arnoldi, A.; Aiello, G. YDFYPSSTKDQQS (P3), a peptide from lupin protein, absorbed by Caco-2 cells, modulates cholesterol metabolism in HepG2 cells via SREBP-1 activation. J. Food Biochem. 2018, 42, e12757. [Google Scholar] [CrossRef]
- Lammi, C.; Bollati, C.; Lecca, D.; Pia Abbracchio, M.; Arnoldi, A. Lupin peptide T9 (GQEQSHQDEGVIVR) modulates the mutant PCSK9D374Y pathway: In vitro characterization of its dual hypocholesterolemic behavior. Nutrients 2019, 11, 1665. [Google Scholar] [CrossRef]
- Lammi, C.; Aiello, G.; Dellafiora, L.; Galaverna, G.; Vistoli, G.; Arnoldi, A. Assessment of the multifunctional behavior of lupin peptide P7 and its metabolite using an integrated strategy. J. Agric. Food Chem. 2020, 68, 13179–13188. [Google Scholar] [CrossRef]
- Lammi, C.; Aiello, G.; Bollati, C.; Vistoli, G.; Abbracchio, M.P.; Arnoldi, A. Trans-epithelial transport, metabolism and biological activity assessment of the multi-target lupin peptide lilpkhsdad (P5) and its metabolite lpkhsdad (p5-met). Nutrients 2021, 13, 863. [Google Scholar] [CrossRef]
- Prados, I.M.; Plaza, M.; Marina, M.L.; García, M.C. Evaluation of the relationship between the peptide profiles and the lipid-lowering properties of olive seed hydrolysates as a tool for tuning hypocholesterolemic functionality. Food Funct. 2020, 11, 4973–4981. [Google Scholar] [CrossRef] [PubMed]
- Ngoh, Y.-Y.; Choi, S.B.; Gan, C.-Y. The potential roles of Pinto bean (Phaseolus vulgaris cv. Pinto) bioactive peptides in regulating physiological functions: Protease activating, lipase inhibiting and bile acid binding activities. J. Funct. Foods 2017, 33, 67–75. [Google Scholar] [CrossRef]
- Yang, F.; Huang, J.; He, H.; Li, Y.; Zhang, Z.; Chen, Z. Study on the hypolipidemic activity of rapeseed protein-derived peptides. Food Chem. 2023, 423, 136315. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.T.; Ju, Z.; Qiu, J.; Zhang, H.L.; Wang, Y.Q.; Wang, F. Peptide GEQQQQPGM derived from rice α-globulin reduces the risk of atherosclerosis in hamsters by improving vascular endothelial cells injury. RSC Adv. 2017, 7, 49194–49203. [Google Scholar] [CrossRef]
- Wakasa, Y.; Tamakoshi, C.; Ohno, T.; Hayashi, S.; Ozawa, K.; Takaiwa, F. The hypocholesterolemic activity of transgenic rice seed accumulating lactostatin, a bioactive peptide derived from bovine milk β-lactoglobulin. J. Agric. Food Chem. 2011, 59, 3845–3850. [Google Scholar] [CrossRef]
- Aiello, G.; Ferruzza, S.; Ranaldi, G.; Sambuy, Y.; Vistoli, G.; Arnoldi, A.; Lammi, C. Behavior of three hypocholesterolemic peptides from soy protein in an intestinal model based on differentiated Caco-2 cell. J. Funct. Foods 2018, 45, 363–370. [Google Scholar] [CrossRef]
- Lammi, C.; Arnoldi, A.; Aiello, G. Soybean peptides exert multifunctional bioactivity modulating 3-hydroxy-3-methylglutaryl-CoA reductase and dipeptidyl peptidase-IV targets in vitro. J. Agric. Food Chem. 2019, 67, 4824–4830. [Google Scholar] [CrossRef]
- Lammi, C.; Zanoni, C.; Arnoldi, A.; Vistoli, G. Two peptides from soy β-conglycinin induce a hypocholesterolemic effect in HepG2 cells by a statin-like mechanism: Comparative in vitro and in silico modeling studies. J. Agric. Food Chem. 2015, 63, 7945–7951. [Google Scholar] [CrossRef]
- Yao, S.; Agyei, D.; Udenigwe, C.C. Structural basis of bioactivity of food peptides in promoting metabolic health. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2018; Volume 84, pp. 145–181. [Google Scholar]
- Karami, Z.; Akbari-adergani, B. Bioactive food derived peptides: A review on correlation between the structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef]
- Nagaoka, S. Structure-function properties of hypolipidemic peptides. J. Food Biochem. 2019, 43, e12539. [Google Scholar] [CrossRef] [PubMed]
- Orona-Tamayo, D.; Valverde, M.E.; Paredes-López, O. Bioactive peptides from selected Latin American food crops–A nutraceutical and molecular approach. Crit. Rev. Food Sci. Nutr. 2019, 59, 1949–1975. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean bioactive peptides and their functional properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Maestri, E.; Marmiroli, M.; Marmiroli, N. Bioactive peptides in plant-derived foodstuffs. J. Proteom. 2016, 147, 140–155. [Google Scholar] [CrossRef]
- Peighambardoust, S.H.; Karami, Z.; Pateiro, M.; Lorenzo, J.M. A review on health-promoting, biological, and functional aspects of bioactive peptides in food applications. Biomolecules 2021, 11, 631. [Google Scholar] [CrossRef]
- Görgüç, A.; Gençdağ, E.; Yılmaz, F.M. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments—A review. Food Res. Int. 2020, 136, 109504. [Google Scholar] [CrossRef]
- García, M.C.; Puchalska, P.; Esteve, C.; Marina, M.L. Vegetable foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta 2013, 106, 328–349. [Google Scholar] [CrossRef]
- Meena, S.; Kanthaliya, B.; Joshi, A.; Khan, F.; Arora, J. Biologia futura: Medicinal plants-derived bioactive peptides in functional perspective—A review. Biol. Futur. 2020, 71, 195–208. [Google Scholar] [CrossRef]
- Moreno-Valdespino, C.A.; Luna-Vital, D.; Camacho-Ruiz, R.M.; Mojica, L. Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food Res. Int. 2020, 130, 108905. [Google Scholar] [CrossRef]
- Patil, S.P.; Goswami, A.; Kalia, K.; Kate, A.S. Plant-Derived Bioactive Peptides: A Treatment to Cure Diabetes. Int. J. Pept. Res. Ther. 2020, 26, 955–968. [Google Scholar] [CrossRef]
- Marya; Khan, H.; Nabavi, S.M.; Habtemariam, S. Anti-diabetic potential of peptides: Future prospects as therapeutic agents. Life Sci. 2018, 193, 153–158. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karaś, M.; Złotek, U.; Szymanowska, U. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Res. Int. 2017, 100, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Mojica, L.; Luna-Vital, D.A.; González de Mejía, E. Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension, and oxidative stress. J. Sci. Food Agric. 2017, 97, 2401–2410. [Google Scholar] [CrossRef] [PubMed]
- Oseguera-Toledo, M.E.; Gonzalez de Mejia, E.; Amaya-Llano, S.L. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Res. Int. 2015, 76, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.K.; Pan, F.F.C.; Hsieh, C.S. McIRBP-19 of bitter melon peptide effectively regulates diabetes mellitus (DM) patients’ blood sugar levels. Nutrients 2020, 12, 1252. [Google Scholar] [CrossRef]
- Jin, J.; Huang, W.-L.; Rao, G.-L.; Zhang, X.-Q.; Xu, D.-Q.; Ye, H.-L. Total Synthesis of MC2, a Peptide from Momordica Charantia and Its Hypoglycemic Activity. Chin. J. Nat. Med. 2011, 9, 58–60. [Google Scholar] [CrossRef]
- Yang, B.; Li, X.; Zhang, C.; Deng, Y.; Zhang, Z.; Rao, Z.; Ji, A.; Xu, L. Design, synthesis and biological evaluation of novel peptide MC2 analogues from Momordica charantia as potential anti-diabetic agents. Org. Biomol. Chem. 2015, 13, 4551–4561. [Google Scholar] [CrossRef]
- Lo, H.Y.; Li, C.C.; Ho, T.Y.; Hsiang, C.Y. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein. Food Chem. 2016, 204, 298–305. [Google Scholar] [CrossRef]
- Mojica, L.; De Mejía, E.G. Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food Funct. 2016, 7, 713–727. [Google Scholar] [CrossRef]
- Cermeño, M.; Connolly, A.; O’Keeffe, M.B.; Flynn, C.; Alashi, A.M.; Aluko, R.E.; FitzGerald, R.J. Identification of bioactive peptides from brewers’ spent grain and contribution of Leu/Ile to bioactive potency. J. Funct. Foods 2019, 60, 103455. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Luna-Vital, D.; de Mejia, E.G. Identification and comparison of peptides from chickpea protein hydrolysates using either bromelain or gastrointestinal enzymes and their relationship with markers of type 2 diabetes and bitterness. Nutrients 2020, 12, 3843. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, G.; Liang, R.; Zhu, Y.; Li, Y.; Liu, B. Identification and function analysis of Novel hypoglycemic and antioxidant peptides from Chickpea. Plant Foods Hum. Nutr. 2024, 79, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Wu, S.; Jia, C.; Cui, C.; Sun-Waterhouse, D. Active peptides with hypoglycemic effect obtained from hemp (Cannabis sativa L.) protein through identification, molecular docking, and virtual screening. Food Chem. 2023, 429, 136912. [Google Scholar] [CrossRef] [PubMed]
- Lammi, C.; Bollati, C.; Ferruzza, S.; Ranaldi, G.; Sambuy, Y.; Canali, R.; Virgili, F.; Arnoldi, A. Soybean-and lupin-derived peptides inhibit DPP-IV activity on in situ human intestinal Caco-2 cells and ex vivo human serum. Nutrients 2018, 10, 1082. [Google Scholar] [CrossRef]
- Jha, S.; Gupta, S.K.; Bhattacharyya, P.; Ghosh, A.; Mandal, P. In vitro Antioxidant and Antidiabetic Activity of Oligopeptides Derived from Different Mulberry (Morus alba L.) Cultivars. Pharmacogn. Res. 2018, 10, 361–367. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Yu, T.; Zhang, B.; Tian, S.; Fan, J.; Mao, F. Oat globulin peptides regulate antidiabetic drug targets and glucose transporters in Caco-2 cells. J. Funct. Foods 2018, 42, 12–20. [Google Scholar] [CrossRef]
- Wang, F.; Yu, G.; Zhang, Y.; Zhang, B.; Fan, J. Dipeptidyl peptidase IV inhibitory peptides derived from oat (Avena sativa L.), buckwheat (Fagopyrum esculentum), and highland barley (Hordeum vulgare trifurcatum (L.) Trofim) proteins. J. Agric. Food Chem. 2015, 63, 9543–9549. [Google Scholar] [CrossRef]
- Mazloomi, S.N.; Mora, L.; Aristoy, M.-C.; Toldrá, F.; Mahoonak, A.S.; Ghorbani, M. Impact of simulated gastrointestinal digestion on the biological activity of an alcalase hydrolysate of orange seed (Siavaraze, Citrus sinensis) by-products. Foods 2020, 9, 1217. [Google Scholar] [CrossRef]
- Mazloomi, S.N.; Mahoonak, A.S.; Mora, L.; Aristoy, M.-C.; Ghorbani, M.; Toldrá, F. Pepsin hydrolysis of orange by-products for the production of bioactive peptides with gastrointestinal resistant properties. Foods 2021, 10, 679. [Google Scholar] [CrossRef]
- Ngoh, Y.-Y.; Tye, G.J.; Gan, C.-Y. The investigation of α-amylase inhibitory activity of selected Pinto bean peptides via preclinical study using AR42J cell. J. Funct. Foods 2017, 35, 641–647. [Google Scholar] [CrossRef]
- Asokan, S.M.; Wang, T.; Su, W.T.; Lin, W.T. Antidiabetic effects of a short peptide of potato protein hydrolysate in STZ-induced diabetic mice. Nutrients 2019, 11, 779. [Google Scholar] [CrossRef]
- Mudgil, P.; Kilari, B.P.; Kamal, H.; Ghuman, B.S.; Maqsood, S. Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. J. Cereal Sci. 2020, 96, 103130. [Google Scholar] [CrossRef]
- Vilcacundo, R.; Martínez-Villaluenga, C.; Hernández-Ledesma, B. Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. J. Funct. Foods 2017, 35, 531–539. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Espejo-Carpio, F.J.; Guadix, E.M. Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources. Food Chem. 2021, 354, 129473. [Google Scholar] [CrossRef] [PubMed]
- González-Montoya, M.; Hernández-Ledesma, B.; Mora-Escobedo, R.; Martínez-Villaluenga, C. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes. Int. J. Mol. Sci. 2018, 19, 2883. [Google Scholar] [CrossRef]
- Jiang, H.; Feng, J.; Du, Z.; He, X.; Zhang, C.; Gao, C.; Yang, M.; Sun, R.; Ma, G.; Xie, Y. Oral administration of soybean peptide Vglycin normalizes fasting glucose and restores impaired pancreatic function in Type 2 diabetic Wistar rats. J. Nutr. Biochem. 2014, 25, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.Z.; Yan, H.; He, R.H.; Ma, Y.K. Purification and a molecular docking study of alpha-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment. Eur. Food Res. Technol. 2018, 244, 1995–2005. [Google Scholar] [CrossRef]
- Wang, T.; Bo, N.; Sha, G.; Li, Y.; Sun, Q.; Huang, W.; Wang, Z.; Li, Z.; Ma, C. Identification and molecular mechanism of novel hypoglycemic peptide in ripened pu-erh tea: Molecular docking, dynamic simulation, and cell experiments. Food Res. Int. 2024, 194, 114930. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Bester, M.J.; Neitz, A.W.H.; Gaspar, A.R.M. Structural properties of bioactive peptides with α-glucosidase inhibitory activity. Chem. Biol. Drug Des. 2018, 91, 370–379. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, J.; Yang, R.; Zhao, W. Bioactive peptides with antidiabetic properties: A review. Int. J. Food Sci. Technol. 2019, 54, 1909–1919. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Espejo-Carpio, F.J.; Guadix, E.M. Antidiabetic food-derived peptides for functional feeding: Production, functionality and in vivo evidences. Foods 2020, 9, 983. [Google Scholar] [CrossRef]
- Acquah, C.; Dzuvor, C.K.O.; Tosh, S.; Agyei, D. Anti-diabetic effects of bioactive peptides: Recent advances and clinical implications. Crit. Rev. Food Sci. Nutr. 2020, 62, 2158–2171. [Google Scholar] [CrossRef]
- Castañeda-Pérez, E.; Jiménez-Morales, K.; Quintal-Novelo, C.; Segura-Campos, M.; Chel-Guerrero, L.; Betancur-Ancona, D. Enzymatic protein hydrolysates and ultrafiltered peptide fractions from Cowpea Vigna unguiculata L bean with in vitro antidiabetic potential. J. Iran. Chem. Soc. 2019, 16, 1773–1781. [Google Scholar] [CrossRef]
- Liu, R.; Cheng, J.; Wu, H. Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides: A review. Int. J. Mol. Sci. 2019, 20, 463. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. J. Food Biochem. 2019, 43, e12451. [Google Scholar] [CrossRef] [PubMed]
- Panya, A.; Sawasdee, N.; Songprakhon, P.; Tragoolpua, Y.; Rotarayanont, S.; Choowongkomon, K.; Yenchitsomanus, P.T. A Synthetic Bioactive Peptide Derived from the Asian Medicinal Plant Acacia catechu Binds to Dengue Virus and Inhibits Cell Entry. Viruses 2020, 12, 1267. [Google Scholar] [CrossRef]
- Galdiero, S.; Falanga, A.; Tarallo, R.; Vitiello, M.; Raiola, J.; Galdiero, M.; Vitiello, G. Peptide inhibitors against herpes simplex virus infections. J. Pept. Sci. 2013, 19, 148–158. [Google Scholar] [CrossRef]
- Divyashree, M.; Mani, M.K.; Reddy, D.; Kumavath, R.; Ghosh, P.; Azevedo, V.; Barh, D. Clinical Applications of Antimicrobial Peptides (AMPs): Where do we Stand Now? Protein Pept. Lett. 2020, 27, 120–134. [Google Scholar] [CrossRef]
- dos Santos-Silva, C.A.; Zupin, L.; Oliveira-Lima, M.; Ricci-Azevedo, R.; Guimarães, A.G.; da Cunha, M.; da Silva, A.A. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era. Bioinform. Biol. Insights 2020, 14, 1177932220952739. [Google Scholar] [CrossRef]
- Scocchi, M.; Mardirossian, M.; Runti, G.; Benincasa, M. Non-Membrane Permeabilizing Modes of Action of Antimicrobial Peptides on Bacteria. Curr. Top. Med. Chem. 2016, 16, 76–88. [Google Scholar] [CrossRef]
- Nawrot, R.; Barylski, J.; Nowicki, G.; Broniarczyk, J.; Buchwald, W.; Goździcka-Józefiak, A. Plant antimicrobial peptides. Folia Microbiol. 2014, 59, 181–196. [Google Scholar] [CrossRef]
- Li, J.; Hu, S.; Jian, W.; Xie, C.; Yang, X. Plant antimicrobial peptides: Structures, functions, and applications. Bot. Stud. 2021, 62, 5. [Google Scholar] [CrossRef]
- Tam, J.P.; Wang, S.; Wong, K.H.; Tan, W.L. Antimicrobial Peptides from Plants. Pharmaceuticals 2015, 8, 711–757. [Google Scholar] [CrossRef]
- Craik, D.J.; Du, J. Cyclotides as drug design scaffolds. Curr. Opin. Chem. Biol. 2017, 38, 8–16. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 2559. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Enan, G.; Al-Mohammadi, A.-R.; Badr, A.; El-Didamony, G.; El-Gazzar, N.; El-Badry, M. Antibacterial peptides produced by Alcalase from cowpea seed proteins. Antibiotics 2021, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Pizzo, E.; Pane, K.; Bosso, A.; Gaglione, R.; Di Maro, A.; Chambery, A.; Parente, A.; Arciello, A. Novel bioactive peptides from PD-L1/2, a type 1 ribosome inactivating protein from Phytolacca dioica L. Evaluation of their antimicrobial properties and anti-biofilm activities. Biochim. Biophys. Acta (BBA)—Biomembr. 2018, 1860, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Bosso, A.; Di Maro, A.; Cafaro, V.; Gaglione, R.; Pizzo, E.; Varcamonti, M.; Parente, A.; Arciello, A. Enzymes as a reservoir of host defence peptides. Curr. Top. Med. Chem. 2020, 20, 1310–1323. [Google Scholar] [CrossRef]
- Kobbi, S.; Nedjar, N.; Chihib, N.; Guesmi, A.; Bachère, E.; Arroume, N. Synthesis and antibacterial activity of new peptides from Alfalfa RuBisCO protein hydrolysates and mode of action via a membrane damage mechanism against Listeria innocua. Microb. Pathog. 2018, 115, 41–49. [Google Scholar] [CrossRef]
- Kaewklom, S.; Wongchai, M.; Petvises, S.; Hanpithakphong, W.; Aunpad, R. Structural and biological features of a novel plant defensin from Brugmansia × candida. PLoS ONE 2018, 13, e0201668. [Google Scholar] [CrossRef]
- Farkas, A.; Maróti, G.; Dürgő, H. Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proc. Natl. Acad. Sci. USA 2014, 111, 5183. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-S.; Chen, C.-Y.; Ravinath, D.M.; Lin, C.-H.; Chuang, C.-C.; Chen, J.-Y.; Tzen, T.C. Functional characterization of chitin-binding lectin from Solanum integrifolium containing anti-fungal and insecticidal activities. BMC Plant Biol. 2018, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Slavokhotova, A.A.; Rogozhin, E.A.; Musolyamov, A.K.; Andreev, Y.A.; Oparin, P.B.; Berkut, A.A.; Egorov, T.A.; Grishin, E.V.; Odintsova, T.I. Novel antifungal α-hairpinin peptide from Stellaria media seeds: Structure, biosynthesis, gene structure and evolution. Plant Mol. Biol. 2014, 84, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Diz, M.S.; Carvalho, A.O.; Ribeiro, S.F.F.; Da Cunha, M.; Gadelha, C.A.; Gomes, V.M. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties. Physiol. Plant. 2011, 142, 233–246. [Google Scholar] [CrossRef]
- Schmidt, M.; Arendt, E.K.; Thery, T.L.C. Isolation and characterisation of the antifungal activity of the cowpea defensin Cp-thionin II. Food Microbiol. 2019, 82, 504–514. [Google Scholar] [CrossRef]
- Wong, J.H.; Ng, T.B. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 2005, 26, 1120–1126. [Google Scholar] [CrossRef]
- Lee, J.-K.; Gopal, R.; Seo, C.H.; Cheong, H.; Park, Y. Isolation and Purification of a Novel Deca-Antifungal Peptide from Potato (Solanum tuberosum L. cv. Jopung) Against Candida albicans. Int. J. Mol. Sci. 2012, 13, 4021–4032. [Google Scholar] [CrossRef]
- Taniguchi, M.; Kameda, M.; Namae, T.; Ochiai, A.; Saitoh, E.; Tanaka, T. Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. J. Funct. Foods 2017, 34, 287–296. [Google Scholar] [CrossRef]
- Takayama, S.; Hashimoto, K.; Kokubu, E.; Ishihara, K.; Saito, K. Inhibitory effects of a novel cationic dodecapeptide [CL(14–25)] derived from cyanate lyase of rice on endotoxic activities of LPSs from Escherichia coli and periodontopathic Aggregatibacter actinomycetemcomitans. Microb. Pathog. 2016, 94, 2–11. [Google Scholar] [CrossRef]
- Pu, C.; Tang, W. The antibacterial and antibiofilm efficacies of a liposomal peptide originating from rice bran protein against Listeria monocytogenes. Food Funct. 2017, 8, 4159–4169. [Google Scholar] [CrossRef]
- Cunsolo, V.; Schicchi, R.; Chiaramonte, M.; Salmeri, M.; Vella, F.M.; Foti, S.; Geraci, C. Identification of New Antimicrobial Peptides from Mediterranean Medical Plant Charybdis pancration (Steinh.) Speta. Antibiotics 2020, 9, 747. [Google Scholar] [CrossRef] [PubMed]
- Dhayakaran, R.; Neethirajan, S.; Weng, X. Investigation of the antimicrobial activity of soy peptides by developing a high throughput drug screening assay. Biochem. Biophys. Rep. 2016, 6, 149–157. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Freitas, C.S.; Vericimo, M.A.; da Silva, M.L.; Motta, M.C.; da Silva, A.F.; Leite, S.G.; Rozental, S.; de Alencar, A.C.; Uchoa, A.F.; de Freitas, C.M.; et al. Encrypted antimicrobial and antitumoral peptides recovered from a protein-rich soybean (Glycine max) by-product. J. Funct. Foods 2019, 54, 187–198. [Google Scholar] [CrossRef]
- Rashid, R.; Veleba, M.; Kline, K.A. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides. Front. Cell Dev. Biol. 2016, 4, 55. [Google Scholar] [CrossRef]
- Bechinger, B.; Gorr, S.U. Antimicrobial Peptides: Mechanisms of Action and Resistance. J. Dent. Res. 2017, 96, 254–260. [Google Scholar] [CrossRef]
- Shwaiki, L.N.; Lynch, K.M.; Arendt, E.K. Future of antimicrobial peptides derived from plants in food application—A focus on synthetic peptides. Trends Food Sci. Technol. 2021, 112, 312–324. [Google Scholar] [CrossRef]
- Vilas Boas, L.C.P.; Campos, M.L.; Berlanda, R.L.A.; de Carvalho Neves, N.; Franco, O.L. Antiviral peptides as promising therapeutic drugs. Cell. Mol. Life Sci. 2019, 76, 3525–3542. [Google Scholar] [CrossRef]
- Panya, A.; Yongpitakwattana, P.; Budchart, P.; Sawasdee, N.; Songprakhon, P.; Choowongkomon, K.; Yenchitsomanus, P.T. Novel bioactive peptides demonstrating anti-dengue virus activity isolated from the Asian medicinal plant Acacia Catechu. Chem. Biol. Drug Des. 2019, 93, 100–109. [Google Scholar] [CrossRef]
- Moulin, M.M.; Rodrigues, R.; Ribeiro, S.F.F.; Nogueira, F.C.; de Freitas, R.G.; Soares, M.R.; da Cunha, M.; Aragão, F.J.; Gomes, V.M. Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance. Genet. Mol. Res. 2014, 13, 9229–9243. [Google Scholar] [CrossRef]
- Nguyen, P.Q.T.; Ooi, J.S.G.; Nguyen, N.T.K.; He, W.S.; Tan, T.Y.T.; Fang, C.M.; Chen, W.N.; Tam, J.P.; Ooi, L.S.M. Antiviral Cystine Knot α-Amylase Inhibitors from Alstonia scholaris. J. Biol. Chem. 2015, 290, 31138–31150. [Google Scholar] [CrossRef]
- Henriques, S.T.; Huang, Y.-H.; Rosengren, K.J.; Franquelim, H.G.; Carvalho, F.A.; Johnson, A.; Sonza, S.; Tachedjian, G.; Castanho, M.A.; Daly, N.L.; et al. Decoding the membrane activity of the cyclotide kalata B1: The importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J. Biol. Chem. 2011, 286, 24231–24241. [Google Scholar] [CrossRef] [PubMed]
- Nawae, W.; Hannongbua, S.; Ruengjitchatchawalya, M. Molecular dynamics exploration of poration and leaking caused by Kalata B1 in HIV-infected cell membrane compared to host and HIV membranes. Sci. Rep. 2017, 7, 3638. [Google Scholar] [CrossRef] [PubMed]
- Camargo Filho, I.; Cortez, D.A.G.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P. Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine 2008, 15, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, M.; Nucara, A. Legume proteins and peptides as compounds in nutraceuticals: A structural basis for dietary health effects. Nutrients 2022, 14, 1188. [Google Scholar] [CrossRef]
- Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Andersen, F.A. Safety Assessment of Plant-Derived Proteins and Peptides as Used in Cosmetics; Cosmetic Ingredient Review: Washington, DC, USA, 2017. [Google Scholar]
- Bustamante, M.Á.; Fernández-Gil, M.P.; Churruca, I.; Pinto, Á.; Sarria, B.; Rodriguez, M.A.; Landa, B.B. Evolution of gluten content in cereal-based gluten-free products: An overview from 1998 to 2016. Nutrients 2017, 9, 21. [Google Scholar] [CrossRef]
- Yuan, H.; Luo, Z.; Ban, Z.; Liu, D.; Wu, S.; Cheng, Z.; Li, Y.; Chen, M. Bioactive peptides of plant origin: Distribution, functionality, and evidence of benefits in food and health. Food Funct. 2022, 13, 3133–3158. [Google Scholar] [CrossRef]
- Avilés-Gaxiola, S.; Contreras-Angulo, L.A.; García-Aguiar, I.; Heredia, J.B. Moringa oleifera Lam. leaf peptides: Antioxidant and antiproliferative activity in human colon cancer Caco-2 cell line. Antioxidants 2024, 13, 1367. [Google Scholar] [CrossRef]
- Rasouli, H.; Parvaneh, S.; Mahnam, A.; Kiamari, A.M.; Barzegar, A. Anti-angiogenic potential of trypsin inhibitor purified from Cucumis melo seeds: Homology modeling and molecular docking perspective. Int. J. Biol. Macromol. 2017, 96, 118–128. [Google Scholar] [CrossRef]
- Nardo, A.E.; Suárez, S.; Quiroga, A.V.; Añón, M.C. Amaranth as a source of antihypertensive peptides. Front. Plant Sci. 2020, 11, 578631. [Google Scholar] [CrossRef]
- Gao, X.; Bu, F.; Yi, D.; Shi, H.; Yang, Y.; Jiang, X.; Zheng, S. Molecular docking and antihypertensive effects of a novel angiotensin-I converting enzyme inhibitory peptide from yak bone. Front. Nutr. 2022, 9, 993744. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, J.; Chandrapala, J.; Liu, Z.; Wang, S.; Chen, J.; Liu, G. Recent progress of food-derived bioactive peptides: Extraction, purification, function, and encapsulation. Food Front. 2024, 5, 1240–1264. [Google Scholar] [CrossRef]
- Pérez-Pérez, V.; Jiménez-Martínez, C.; González-Escobar, J.L.; Corzo-Ríos, L.J. Exploring the impact of encapsulation on the stability and bioactivity of peptides extracted from botanical sources: Trends and opportunities. Front. Chem. 2024, 12, 1423500. [Google Scholar] [CrossRef]
- Atma, Y.; Murray, B.S.; Sadeghpour, A.; Goycoolea, F.M. Encapsulation of short-chain bioactive peptides (BAPs) for gastrointestinal delivery: A review. Food Funct. 2024, 15, 3959–3979. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Jiang, W.; Chen, Z.; Hang, Z.; Liu, C.; Han, K.; Li, J.; Zhang, S.; Wei, D.; Wang, T.; et al. Advance in peptide-based drug development: Delivery platforms, therapeutics and vaccines. Signal Transduct. Target. Ther. 2025, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Thongpon, P.; Tang, M.; Cong, Z. Peptide-based nanoparticle for tumor therapy. Biomedicines 2025, 13, 1415. [Google Scholar] [CrossRef]
- Mirzapour-Kouhdasht, A.; McClements, D.J.; Taghizadeh, M.S.; Niazi, A.; Garcia-Vaquero, M. Strategies for oral delivery of bioactive peptides with focus on debittering and masking. NPJ Sci. Food 2023, 7, 22. [Google Scholar] [CrossRef]
Plant Source (Common Name) | Obtaining Method | Peptides Sequences | Activity | Reference |
---|---|---|---|---|
Apricot | Alcalase | SHNLPILR and SEAGVTE | Hydroxyl radical and superoxide anion radical scavenging capacities of 60 and 50% (1 mg/mL) and DPPH of 25% (1 mg/mL). | [28] |
Asparagus | Alcalase | FAPVPFDF, MLLFPM * and FIARNFLLGW | DPPH scavenging Activity (EC50 of 4.14 μmol/L). | [29] |
Basul | Alcalase | 10 peptides (CCGDYY * among them) | ABTS and ORAC scavenging Activity (IC50 of 1.18 and 3.61 μmol TE/μmol). | [30] |
Bitter bean | Alcalase | 29 peptides | DPPH and reducing power of 2.9 mg GAE/g and 11.7 mM, respectively. | [31] |
Cress | Alkaline protease and neutral protease | GRVGSSSC, GRAGGSYM, GHPNFKLNCSGG, GTKSCKA, ASSNARDMI, TAGGCYIPI, and KNCALQ | DPPH, OH−, O2−, and ABTS scavenging activities of 89.2, 26.3, 40.6, and 42.9%, respectively (0.1 mg/mL). | [32] |
Cherrie | Alcalase | 14 peptides | ABTS, FRAP, and Hydroxyl scavenging activity of 40, 35, and 20%, respectively. | [33] |
Cherries | Thermolysin | 22 peptides | ABTS, FRAP, and Hydroxyl scavenging activity of 55, 45, and 30%, respectively. | [33] |
Chickpea | Neutrase | LTEIIP | DPPH and hydroxyl radicals scavenging activity (IC50 of 0.24 and 0.57 mg/mL, respectively). | [34] |
Chickpea | Alcalase | NRYHE | DPPH, Hydroxyl, and superoxide free radicals scavenging activity of 50, 80, and 60%, respectively. | [35] |
Chickpea | Pepsin and pancreatin | ALEPDHR *, TETWNPNHPEL, FVPH, and SAEHGSLH | 50 CAA units. | [26] |
Chickpea | Alcalase | DHG and VGDI * | DPPH scavenging activity of 67% at 200 μg/mL | [36] |
Chickpea | Alcalase and flavorzyme | RQSHFANAQP | DPPH and Hydroxyl radical scavenging activity of 64.9 and 95.8%, respectively (5 mg/mL) | [37] |
Corn | Alcalase and flavouryzme | CSQAPLA *, YPKLAPNE, and YPQLLPNE | DPPH radical and superoxide anion radical (IC50 of 0.116 and 0.39 mg/mL, respectively). | [38] |
Corn | Alcalase | MGGN, MNN * and MEN | CAA of 1213.79 μmol of QE/100 mmol | [39] |
Corn | Alcalase and trypsin | MI/LPP | DPPH scavenging activity (IC50 of 220 μg/mL). | [40] |
Corn | Alcalase | AGI/LPM * and HAI/LGA | Scavenges hydroxyl radicals by 79.41% (10 mg/mL) | [41] |
Corn | Alkaline protease and flavourzyme | LPF, LLPF, and FLPF * | DPPH and ABTS radical scavenging activity (IC50 of 1.51 and 2.83 mM, respectively). | [42] |
Corn | Alcalase | YA and LMCH * | ABTS, DPPH, and O2 of 25, 15, and 30%, respectively (1, 10, and 10 mg/mL, respectively) | [43] |
Cottonseed | Microbial fermentation | YSNQNGRF | DPPH, ABTS, and hydroxy radical scavenging activity (EC50 of 0.49, 2.05, and 2.21 mg/mL). | [44] |
Hemp | Pepsin and pancreatin | WVYY * and PSLPA | DPPH scavenging activity of 67% (0.5 mg/mL). | [45] |
Hemp | Alcalase | NHAV and HVRETALV | Protective effects against cell death and oxidative apoptosis. | [46] |
Hemp | Protamex | YGRDEISV and LDLVKPQ | ABTS, FE2+ chelating activity, and hydroxy radical scavenging activity of 52.3, 52.9, and 50.9%, respectively (0.4 mg/mL). | [47] |
Hemp | Alcalase | LLY, LLR, IR, TY, VY, LH, EL, LK, AY, H, R and F. | ABTS, DPPH, FCA, and FRAP (IC50 of 0.5, 1, 1.2, and 1 mg/mL, respectively). | [48] |
Jackfruit | Trypsin | VGPWQK | ABTS EC50 of 1 mg/mL | [49] |
Jujube | Trypsin | VGQHTR * and GWLK | ABTS, DPPH, and chelating activity of 30, 20, and 15%, respectively (0.3 mg/mL). | [50] |
Korean Pine | Alcalase | KWFCT and QWFCT * | ABTS scavenging activity of 74.9% (2 mg/mL), CAA of 916.32 µmol of QE/100 g. | [51] |
Lentil | Savinase | LLSGTQNQPSFLSGF, NSLTLPILRYL * and TLEPNSVFLPVLLH | ORAC 1.432 μmol TE/μmol. | [52] |
Lotus | Flavourzyme | 16 peptides | DPPH and H2O2 scavenging (EC50 of 2.9 and 16.1 mg/mL, and reducing power activity of 8.0 mg/mL, respectively)- | [27] |
Moringa | Pepsin and pancreatin | 20 peptides | DPPH and ABTS of 45.70 and 93.09%, respectively (1.33 mg/mL), ORAC 1.27 mM TE/g. | [53] |
Mulberry | Neutrase | SVL, EAVQ, and RDY * | DPPH and ABTS scavenging activity of 45 and 100%, respectively (0.4 mg/mL), CAA of 2204 μM QE/100 g. | [54] |
Mung bean | Pepsin and pancreatin | MD, QSA, EW, LGW, KK, SVP, and DVAF | ABTS, ORAC, and iron chelating activity of 581.3 ascorbic acid, 127 TE, and 4843.5 EDTA equivalent, respectively (1 µM). | [55] |
Mung Bean | Thermolysin | KK, DM, S, Y and W | ABTS, ORAC, and iron chelating activity of 646.2 ascorbic acid, 127 TE, and 5161.7 EDTA equivalent, respectively (1 µM). | [55] |
Mung bean | Pancreatin | 10 peptides (LLGIL * among them) | DPPH and hydroxyl radical neutralizers of 81.27% (4 mg/mL) and EC50 of 0.37 mM, respectively. | [56] |
Mung Bean | Bromelain | CTN, HC, CGN, and CSGD | DPPH radical scavengers (EC50 values of 0.30, 0.29, 0.28, and 0.30 mg/mL, respectively). | [57] |
Mungbean | Neutral protease | WN, WGN, LY, AW, RGWYE *, FW, GVPFW, and WLF | DPPH, ABTS, and OH− radical scavenging activities of 60%, 35%, and 30%, respectively. | [58] |
Palm | Papain | YLLLK, YGIKVGYAIP, GGIF *, GIFE, WAFS, GVQEGAGHYALL, WAF, AWFS, and LPWRPATNVF | DPPH scavenging Activity (IC50 of 0.02 μM). | [59] |
Pearl millet | Trypsin | SDRDLLGPNNQYLPK | DPPH, ABTS, Fe2+ chelating ability, and hydroxyl assay of 67.66, 78.81, 51.20, and 60.95%, respectively. | [60] |
Peony | Alcalase | FSAP, PVETVR, QEPLLR, EAAY * and VLRPPLS | ABTS and hydroxyl radical-scavenging activity of 98.5 and 61.9%, respectively (0.5 mg/mL). | [61] |
Perilla | Alkaline protease | YL and FY * | Inhibition of lipid peroxidation in rat liver (IC50 of 6.81 mg/mL), 0.05 mg/mL elevated H2O2 exposed cell ratios from 44.3 to 57.8%. | [62] |
Perilla | Trypsin | ISPRILSYNLR | DPPH and ABTS scavenging activity of 48.13 and 78.14%, respectively (0.1 mg/mL). | [63] |
Rice | Papain, flavourzyme, and protamex | RPNYTDA, TSQLLSDQ, TRTGDPFF * and NFHPQ | DPPH, ABTS, and FRAP scavenging activity (IC50 of 0.446, 0.658, and 0.235 mg/mL, respectively). | [64] |
Rice | Trypsin | YSK | DPPH and reducing power (IC50 of 0.15 and 0.125 mg/mL, respectively). | [65] |
Rice | Trypsin | 91 peptides | ORAC 4.07 μmol TE/mg. | [66] |
Rice | Alcalase | SGDWSDIGGR *, DFGSEILPR, GEPFPSDPKKQLQ, and GEKGGIPIGIGK | ORAC and DPPH of 41.57 μmol TE/g and 29.41%. | [67] |
Sorghum | Protease-Purazyme | 11 peptides | ABTS of 6.10% | [68] |
Soybean | Alcalase | FDPAL | The scavenging rate on superoxide anion and hydroxyl radical was 75% and 80%, respectively. (2 mM)·500 µM elevated H2O2 exposed HeLa cells’ survival rate. | [69] |
Soybean | Pepsin and pancreatin | 28 peptides (FSREEGQQQGEQ * among them) | ROS production by Caco-2 was lowered by half. | [70] |
Sweet potato | Alcalase | TYQTF, SGQYFL, YMVSAIWG, YYIVS * and YYDPL | OH− scavenging activity of 74.52% (1.0 mg/mL). | [71] |
Tomato | Alcalase | 29 peptides | DPPH scavenging activity of 60.36% (1 mg/mL). | [72] |
Walnut | Alcalase | ALWPF and PLRWPF | Zebrafish embryo oxidative damage model values of 50 μg/mL and 30 μg/mL, respectively. | [73] |
Wheat | Alcalase | CGFPGHC, QAC, RNF, SSC, and WF | TEAC and superoxide anion radical scavenging activity of 4760 μmol TE/g and 43.72%, respectively (5 mg/mL). | [74] |
Plant Source (Common Name) | Obtaining Method | Peptides Sequences | Activity | Reference |
---|---|---|---|---|
Bean | Pepsin and pancreatin hydrolysis | GLTSK, LSGNK, GEGSGA *, MPACGSS and MTEEY | Cell cycle arrest (G1) and Apoptosis induction (loss of mitochondrial membrane potential) in HCT116 cells (IC50 of 134.6 μM). | [88] |
Chickpea | Alcalase hydrolysis | ADLPGLK | Cytotoxicity to Ishikawa cells (IC50 of 101.5 μg/mL), inhibition of Ishikawa cells proliferation by 68.9% (500 μg/mL), and activation of caspase-3 and cell cycle arrest at S and G2. | [87] |
Common bean | Naturally occurring | KTYENLADTY KGPYFTTGSH DHYKNKEHLRSGRMRDDFF | Cytotoxicity to L1210 and MBL2 cells (IC50 of 4.0 and 9.0 μM, respectively). | [89] |
Ginger | Pepsin hydrolysis | RALGWSCL | Cytotoxicity to NB4 cells (IC50 of 600 μg/mL) and upregulation of caspase 3, 8, and 9. | [79] |
Lentil | Trypsin hydrolysis | 27 peptides | Cytotoxicity to PC3 cells (IC50 of 0.96 mg/mL). | [90] |
Lentil | Naturally occurring | Bowman-Birk trypsin inhibitor | Cytotoxicity to HT29 cells (IC50 of 32 μM). | [91] |
Lima Bean | Naturally occurring | KTCENLATY and RGPCF | Antiproliferative activity BEL-7402 and SHSY5Ycells | [92] |
Maize | Alcalase hydrolysis | EDLPGCPRE, LTKYNIT, DFGGGHPDPN, EDIIPF, MMAAAAGAG, DAVLQTLA, AAFVVAGT and MEVAMAM | Cytotoxicity to HepG2 cells (IC50 of 8.9 μg/mL). | [93] |
Narcissus | Naturally occurring | GNNNLTSSQQQQIQFILQQI | Inhibited leukemia cells’ proliferation by 100% (80 μM) | [94] |
Nut | Trypsin hydrolysis | AYRNRYRRQY, RYEQRPRT, and LPTSEAAKY | Inhibited HeLa cell proliferation by 19% (50 μg/L). | [86] |
Pea | Naturally occurring | Bowman-Birk trypsin inhibitor | Cytotoxicity to HT29 cells with an IC50 of 31 μM. | [82] |
Pombalia calceolaria | Naturally occurring | GLPCAESCVFIPCTITAILGCSCRDRVCYD *, GIPCAESCVFIPCVTAILGCSCKDRVCYN and GIPCGECVWIPCISSAIGCSCKNKVCYRN | Cytotoxicity to MDA-MB-231 cells (IC50 of 1.8 μM). | [95] |
Quinoa | Pepsin and pancreatin hydrolysis | SENIDDPS, DVYSPEAG, EAGRLTTL, IRAMPV, IFQEYI, SFFVFL, RELGEWGI GGLGDVLGGLP | Cytotoxicity to Caco-2, HT-29, and HCT-116 cells (IC50 of 0.256, 0.195, and 0.193 mg/mL, respectively). | [96] |
Quinoa | Trypsin hydrolysis | FHPFPR, NWFPLPR, and HYNPFPG | Inhibited Ishikawa cells proliferation by 53.93% (8 g/L) and upregulation of caspase-3. | [96] |
Rapeseed | Fermentation with Bacillus subtilis and A. elegans Plus, neutral protease hydrolysis | WTP | Inhibited HepG2 cells proliferation by 58.86% by increasing p53 and BAX expression and decreasing BCL-2 expression (800 μg/mL) | [97] |
Rapeseed | Naturally occurring | NDGNQPL | Cytotoxicity to HepG2 cells (IC50 of 1.56 mmol/L) and cell cycle arrest at G0/G1. | [98] |
Rice | Alcalase and Gastrointestinal juices hydrolysis | EQRPR | Inhibited Caco-2, MCF-7, and HepG-2 cells growth by 84%, 80%, and 84%, respectively. | [99] |
Sacha inchi | Alkaline and neutral proteases | LLEPDVR, ALVEKAKAS and TGDGSLRPY | Cytotoxicity to HepG2 cells (IC50 of 109 μg/m). | [84] |
Soybean | Alcalase hydrolysis | L/I-VPK | Cytotoxicity to HepG2, MCF-7 and HeLa cells (IC50 of 0.22, 0.15, and 0.32 μM, respectively). | [100] |
Soybean | Naturally occurring | Vglycin | Promoted apoptosis and cell cycle arrest at G1/S in CT-26, SW480, and NCL-H716 (IC50 values of 4.21, 3.68, and 3.62 μmol/L, respectively). 38% inhibition of colon cancer in mice at 20 mg/kg/Day/21 days. | [101] |
Soybean | Pepsin and pancreatin hydrolysis | 15 peptides | Cytotoxicity to Caco-2, HT-29, and HCT-116 cells (IC50 of 10.3, 14.9, and 15.2 mg/mL, respectively). | [102] |
Soybean | Alcalase, pepsin, and pancreatin hydrolysis | 158 amino acid residues peptide | Inhibited Caco-2 and HCT-116 cells proliferation by 80% (700 μg/mL). | [103] |
Soybean | Pepsin, trypsin, and chymotrypsin hydrolysis | CSDMRLNSCHSA, LSYPAQC, CYEPCKPSEDDKEN and PCKPSEDDKEN | Cytotoxicity to HT-29 cells (IC50 of 0.29 mg/mL). | [104] |
Sweet potato | Naturally occurring | AASTPVGGGR and RLDRGQ | Inhibited Panc-1 cells’ proliferation by 55% by promoting apoptosis through the mitochondrial apoptotic pathway (100 μM) | [105] |
Walnut | Papain hydrolysis | CTLEW | Cytotoxicity to Caco-2 and HeLa cells (IC50 of 0.65 and 0.60 mg/mL, respectively). | [86] |
Walnut | Papain hydrolysis | CTLEW | Cytotoxicity to Caco-2, HeLa, and MCF-7 cells (IC50 of 0.65, 0.60, and 0.449 mg/mL, respectively). | [86] |
Plant Source (Common Name) | Obtaining Method | Peptides | ACE Inhibitor Activity | Reference |
---|---|---|---|---|
Hempseed | Pepsin, trypsin, and pancreatin | SHLNWVCIFLGFHSFGLYI, QIQFEGFCRF, and IPDKANLGFRFP | Determined as an ACE-inhibitor using the PeptideRanker and BIOPEP | [119] |
Huangqi root | Aqueous extraction | LVPPHA | IC50 of 414.88 μM | [116] |
Longan seeds | Pepsin and pancreatin | ETSGMKPTEL and ISSMGILVCL | IC50 of 0.003 mg/mL | [120] |
Moringa | Flavourzyme, | IPPAYSK, ILVDR *, FFFPK and LLDPR | IC50 of 81.25 μM | [111] |
Moringa | Alcalase | LGFF and GLFF | IC50 of 0.29 and 1.88 mM, respectively | [121] |
Olive | Alcalase, thermolysin, neutrase, PTN, and flavourzyme | LTPTSN, LVVDGEGY, and FDAVGVK | IC50 of 0.029 mg/mL | [122] |
Stink bean seeds | Alcalase | ASPAPAGLSYCVPEVDPLLLRAEDKLDLSDL | 51.7–80.2% inhibition | [123] |
Plum | Alcalase, thermolysin, flavourzyme, and protease P. | MLPSLPK, HLPLL, NLPLL, HNLPLL, KGVL, and HLPLLR | IC50 of 0.5 mg/mL | [124] |
Rice | Neutrase | FDGSPVGY * and VFDGVLRPGQ | IC50 of 0.079 mg/mL | [125] |
Soybean | Alkaline proteinase, papain, trypsin, pepsin, and pancreatin | LLPLPVLK, WLRL, SWLRL and MLPVMR | 51.43% inhibition | [126] |
Soybean | Alkaline protease, flavored protease, papain, trypsin, and chymotrypsin | GKGLW and GDGLKW * | IC50 of 33.98 μM | [115] |
Soybean | Alcalase | LY *, YVVF, LVF, WMY, LVLL, and FF | IC50 of 0.53 μM | [127] |
Soybean | Alcalase and Flavourzyme | ALKPDNR, VVPD, NDRP, and NDTP | IC50 of 148.28 μg/ml | [118] |
Plant Source (Common Name) | Obtaining | Peptides | Activity | Reference |
---|---|---|---|---|
Amaranth | Pepsin, trypsin, and pancreatin hydrolysis | GGV, IVG/LVG, VGVI/VGVL | 4 μg/mL inhibited HMG-CoA reductase by 45%. | [132] |
Bean | Pepsin and pancreatin hydrolysis | LVTTTVDL, QTSTPLFS, VELVGPK, TRGVLV | 700 mg/kg/day for nine weeks in BALB/c mice decreased lipid profile, total cholesterol, triglycerides, and HDL-c levels. | [133] |
Brewer’s spent grain | Purazyme and flavourzyme hydrolysis | WNIHMEHQDLTTME, DFGIASF, LAAVEALSTNG | 0.4 mg/mL inhibited cholesterol esterase by 35% and 1.4 mg /mL inhibited pancreatic lipase by 80%. | [134] |
Coffee | Alcalase, pepsin, pancreatin, and thermolysin hydrolysis | 79 peptides | Reduced in vitro micellar cholesterol solubility by 32%. | [135] |
Cowpea | Pepsin and pancreatin hydrolysis | 11 peptides | 35 μg/mL reduced cholesterol micellar solubilization by 71.7% and 50 μg/mL inhibited HMGCoAR by 57.1%. | [136] |
Hemp seed | Pepsin hydrolysis | 90 peptides | 1.0 mg/mL inhibited HMGCoAR by 80%, up-regulated the LDLR protein levels by 63% and increased the LDL-uptake in HepG2 cells. | [137] |
Hemp seed | Trypsin | 20 peptides | Reduced serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol by 28, 34, and 40% in high-fat-induced mouse. | [138] |
Lupin | Pepsin hydrolysis | YDFYPSSTKDQQS | 100 μM inhibited HMGCoAR by 87.4%, modulated the cholesterol metabolism in HepG2 cells, improved the low-density lipoprotein levels by 50.5% and increased the receptor protein levels by 37.8% via SREBP-1 activation. | [139] |
Lupin | Trypsin hydrolysis | GQEQSHQDEGVIVR | Inhibited HMGCoAR, with an IC50 of 99.5 μM, 00 µM, enhanced the LDLR protein levels by 43.4%, reduced the PCSK9D374Y protein level by 41.2% and decreased the HNF-1α level by 19.8% in HepG2 cells. | [140] |
Lupin | Trypsin and pepsin hydrolysis Synthesized | YDFYPSSTKDQQS, LILPKHSDAD, LTFPGSAED, LTFPG | Produced a fast and efficient decrease in systolic blood pressure (−37 mmHg after 2 h). | [141] |
Lupin | Trypsin and pepsin hydrolysis | LILPKHSDAD, LPKHSDAD, YDFYPSSTKDQQS, LTFPGSAED | Inhibited HMGCoAR (IC50 of 175.3 µM), increased LDLR expression, and decreased the PCSK9 production of HepG2 cells. | [142] |
Olive seed | Alcalase hydrolysis | 130 peptides | Reduced cholesterol micellar solubility by 49%, bound to 10% of total bile acid, and inhibited cholesterol esterase and HMGCoA enzymes by 30% and 15%, respectively. | [143] |
Pinto bean | Protamex® | PPHMLP, PLPTGAGP, PPHMGGP, PLPLHMLP, LSSLGMGSLGALPVCM | 4.59 μM inhibited pancreatic lipase by 87%. | [144] |
Rapeseed | Alcalase | EFLELL | Decreased total cholesterol and triglyceride by 46% and 32%, respectively, at a concentration of 2 mM | [145] |
Rice | Pepsin and trypsin hydrolysis | GEQQQQPGM | 100 mg/body weight for 30 days reduced the atherogenic index. | [146] |
Rice | N/A | IIAEK | 300 mg/kg body weight/day reduced total serum cholesterol, LDL-cholesterol, and the atherogenic index. | [147] |
Soybean | Trypsin and pepsin hydrolysis | IAVPGEVA, IAVPTGVA, LPYP | 10 μM inhibited the activity of HMGCoAR and modulated cholesterol metabolism in HepG2 cells. | [148] |
Soybean | Pepsin and trypsin hydrolysis | 140 peptides | 0.5 mg/mL inhibited HMGCoAR by 76.9% and Increased LDLR protein levels by 63.0% in HepG2 cells. | [149] |
Soybean | Trypsin and pepsin hydrolysis | YVVNPDNDEN, YVVNPDNNEN | 250 μM inhibited HMGCoAR by 80% and increased the LDL uptake by 2-fold in HepG2 cells. | [150] |
Tea | Pepsin | FLF, IYF, and QIF | Inhibited pancreatic lipase and cholesterol esterase (IC50 values of 0.153 and 0.549 mg/mL, respectively). | [131] |
Plant Source | Obtaining | Peptides | Activity | Reference |
---|---|---|---|---|
Bean | α-amylase, pepsin, and pancreatin hydrolysis | INEGSLLLPH, FVVAEQAGNEEGFE, INEGSLLLPH, SGGGGGGVAGAATASR, GSGGGGGGGFGGPRR, GGYQGGGYGGNSGGGYGNRG, GGSGGGGGSSSGRRP, GDTVTVEFDTFLSR, | α-amylase inhibitory activity (IC50 of 1.94 mg/mL) | [164] |
Bean | Pepsin and pancreatin hydrolysis | 22 peptides | Inhibited DPP-IV (IC50 0.03 mg/mL) | [165] |
Bean | Alcalase and bromelain hydrolysis | 40 peptides | Inhibited α-amylase (50%), α-glucosidase (76.4%), and DPP-IV (55.3%) | [166] |
Bittermelon | N/A | RVRVWVTERGIVARPPTIG. | 600 mg/day/ 3 Regulated the blood glucose of diabetic patients and reduced the glycated hemoglobin by 7.4%. | [167] |
Bittermelon | Naturally occurring | GHPYYSIKKS | 1 mg/kg significantly reduced blood glucose levels (7.68 mmol/L) in an in vivo model | [168] |
Bittermelon | Naturally occurring | H-GHPYYSIKKS-OH | In a murine model, 1 mg/kg showed anti-hyperglycemic effects and lowered blood glucose levels. | [169] |
Bittermelon | Pepsin and pancreatin hydrolysis | SRCQGKSSWPQLVGSTGAAAKAWIERENPRVRAVIIKV, GSGATKDFRCDRVRVWVTERGIVARPPTIG, SRCQGKSSWPQLVGSTGA, GAAAKAWIERENPRVRAVI, VIIKVGSGATKDFRCDRVR, RVRVWVTERGIVARPPTIG, DFRCDRVRVWVTERGIVARPPTIG, VTERGIVARPPTIG | 5 nmol/kg displayed a hypoglycemic activity in vitro and in vivo | [170] |
Black bean | Alcalase, Trypsin, proteinase K, Flavourzyme, Thermolysin, Pepsin, Papain, and Chymotrypsin hydrolysis | 34 peptides | 1 mg/mL inhibited DPP-IV, α-amylase, and α-glucosidase by 96.7, 53.4, and 66.1%, respectively | [171] |
Brewer’s spent grain | Alcalase, ultraFlo, shearzyme, and flavourzyme hydrolysis | IPY, LPY, IPLQP, LPLQP, APLP, VPIP, IPVP *, PLVP | DPP-IV inhibitory activity with an IC50 of 38.67 μM | [172] |
Chickpea | Pepsin/pancreatin and bromelain hydrolysis | 32 peptides | Had affinity for DPPV-IV, α-amylase, and α-glucosidase active sites. | [173] |
Chickpea | Enzymatic hydrolysis (not specified) | LLR, FH, RQLPR, KGF, and NFQ | Inhibited α-glucosidase increased the viability of insulin-resistant cells and the glucose consumption rate. | [174] |
Hemp | Alkaline protease | TGLGR, SPVI, FY, and FR | Inhibited α-glucosidase by 70.02% (20 µL of the hydrolysate). | [175] |
Lupin | Trypsin and pepsin hydrolysis | LTFPGSAED | Inhibited DPP-IV (IC50 of 207.5 µM) | [176] |
Mulberry | N/A | WGVENAATYFWQTV | α-amylase and α-glucosidase inhibitory activity (IC50 of 16.25 and 12.56 μg/mL, respectively) | [177] |
Oat | Trypsin hydrolysis | LQAFEPLR, EFLLAGNNK, LQAFEPLR, EFLLAGNNK. | Inhibited DPP-IV (IC50 141.7 μM) and modulated its expression in Caco-2 cells. | [178] |
Oat, buckwheat, and highland Barley | Alcalase and trypsin hydrolysis, | 35 peptides | Inhibited DPP-IV (IC50 from 0.13 to 8.15 mg/mL) | [179] |
Orange seed | Porcine pepsin, trypsin, and chymotrypsin hydrolysis | 63 peptides | 20 µL Inhibited α-amylase and α-glucosidase by 41.7 and 57%, respectively | [180] |
Orange seed | Pepsin, trypsin, and chymotrypsin hydrolysis | 978 peptides | 0.1 and 1 mg/mL inhibited α-amylase and α-glucosidase by 42.35 and 45.39%, respectively | [181] |
Pinto bean | Protamex® | PPHMLP, PLPTGGAGP, PPHMGGP, PLPLHMLP, LDDLGMGSLGALPVCM | 100 μg/mL Inhibited α-amylase (IC50 of 0.31 mM) | [182] |
Potato | Alcalase hydrolysis | DIKTNKPVIF | 50 mg/kg/day lowered glucose and HbA1c levels in diabetic and non-diabetic mice. | [183] |
Quinoa | α-chymotrypsin, Pronase E, and Bromelain hydrolysis | 136 peptides | Inhibition of DPP-IV and α-glucosidase (IC50 of 1.12 and 1.86 mg/mL, respectively) | [184] |
Quinoa | Pepsin and pancreatin hydrolysis | 20 peptides | 250 μM inhibited DPP-IV, α-amylase, and α-glucosidase by 17, 6.86, and 55.85%, respectively | [185] |
Soy, lupin, and quinoa | Subtilisin, trypsin, and flavourzyme hydrolysis | 20 peptides | Inhibited DPP-IV (IC50 1.16 mg/mL) | [186] |
Soybean | Pepsin and trypsin hydrolysis | 140 peptides | 2.5 mg/mL reduced the DPP-IV activity by 31.4%. | [149] |
Soybean | Pepsin and pancreatin, hydrolysis | 12 peptides | Inhibited DPP-IV (IC50 of 0.91 mg/mL), α-amylase (IC50 of 1.70 mg/mL), and α-glucosidase (IC50 of 3.73 mg/mL). | [187] |
Soybean | Naturally occurring | VSCNGVCSPFEMPPCGSSACRCIPYGLVVGNCRHPSG | 40 μg/[g·d] normalized fasting glucose levels in diabetic rats | [188] |
Soybean | Trypsin hydrolysis | GSA, GAL | α-glucosidase inhibitory activity (IC50 0.049 mg/mL) 3.52 mg/mL reduced fasting blood glucose in diabetic mouse by 42% | [189] |
Soybean | Alkaline proteinase, papain, and trypsin hydrolysis | LLPLPVLK, SWLRL, WLRL * | α-glucosidase inhibitory effect (IC50 162 μmol/L) 2.73 mg/mL inhibited the enzyme DPP-IV in 40.85% | [126] |
Soybean | Trypsin and pepsin hydrolysis | IAVPTGVA | Inhibited DPP-IV (IC50 of 223.2 µM) | [176] |
Tea | Fermentation | AADTDYRFS and AGDGTPYVR | Inhibited α-glucosidase with IC50 of 0.820 and 3.942, respectively. Increased expression levels of MDM2, IRS-1, Akt, PI3k and GLUT4. | [190] |
Plant Source (Common Name) | Obtaining | Peptides Sequences | Target Pathogen | Reference |
---|---|---|---|---|
Alfalfa | Pepsin | MDN, TMW, CVQ, AFR, ELAAAC, ILAAF, GNAPGAVA, LRDDF, ALRMSG, RDRFL, EYLIRKGWI, IEKDRSRGIF | Escherichia coli, Micrococcus luteus, Bacillus subtilis, and Listeria innocua. | [211] |
Angel’s trumpets | Naturally occurring | RHCESQSQRFKGTCLSEKNCASVCETEGFSGGDCRGLRRRCFCTRPC | Staphylococcus epidermidis. | [212] |
Barrel medic | Naturally occurring | RNGCIVDPRCPYQQCRRPLYCRRR | Sinorhizobium meliloti | [213] |
Bitter tomato | Naturally occurring | MKTIQGQSATTALTMEVARVQA | Rhizoctonia solani and Colletotrichum gloeosporioides. | [214] |
Chickweed | Naturally occurring | VDPDVRAYCKHQCMSTRGDQARKICESVCMRQD | Alternaria alternata, Aspergillus niger, Bipolaris sorokiniana, Botrytis cinérea, Fusarium oxysporum, Fusarium solani, Phytophthora infestans and Pythium ultimum. | [215] |
Chili pepper | Naturally occurring | N-terminal: AVTXGQVDANLAPXV | Colletotrichum lindemunthianum and Candida tropicalis. | [216] |
Cowpea | Naturally occurring | N-terminal sequence: KTCMT- Nested in Cp-thionin II | Fusarium culmorum. | [217] |
Cowpea | Alcalase | CW, SC, WS, CR, WC, LA, GP, NV and RG | Listeria monocytognes, Listeria innocua, Staphylococcus aureus, Sreptococcus pyogenes, Klebsiella pnemoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium. | [208] |
Ground Bean | Naturally occurring | N-terminal sequence: KTCENLADTY | Botrytis cinerea, Fusarium oxysporum, Mycosphaerella arachidicola, Escherichia coli, Proteus vulgaris, Mycobacterium phlei and Bacillus megaterium. | [218] |
Phytolocca dioica | Ribosome inactivating protein PD-L1/2 (precursor) | 2 peptides | Planktonic bacterial cells | [209] |
Potato | Acid digestion | AVCENDLNCC | Candida albicans. | [219] |
Rice | Pepsin | LRRHASEGGHGPHW FSKGVQRAAF EKLLGKQDKGVIIRA SSFSKGVQRAAF SSFSKGVQRAAF | Porphyromonas gingivalis and Candida albicans, | [220] |
Rice | Naturally occurring | RRLMAAKAESRK | Escherichia coli and Aggregatibacter actinomycetemcomitans. | [221] |
Rice bran | Bromelain | KVDHFPL | Listeria monocytogenes. | [222] |
Sea onion | Naturally occurring | QIPLTGAHSIIGRA IPLSGPNAVIGRA | Staphylococcus aureus and Pseudomonas aeruginosa. | [223] |
Soy | Synthesized | PGTAVFK IKAFKEATKVDKVVVLWTA | Listeria monocytogenes and Pseudomonas aeruginosa. | [224] |
Soybean | Naturally occurring | PRPIPFPRPQP | Escherichia coli, Staphylococcus aureus, Staphylococcus saprophyticus, Aeromonas hydrophila, Vibrio parahaemolyticus, and Salmonella enterica. | [225] |
Plant Source (Common Name) * | Peptides Sequence | Target Pathogen | Reference |
---|---|---|---|
Catechu | DHVTPDIAYNPRTYM DHVTPDIAYNPWAYF | Dengue virus | [230] |
Chili pepper | Cb-1: GFPFLLNGPDQDQGDFIMFG Cb-1′: GFKGEQGVPQEMQNEQATIP | Pepper yellow mosaic virus | [231] |
Devil’s tree | CRPYGYRCDGVINQCCDPYHCTPPLIGICL CRPYGYRCDGVINQCCDPYRCTPPLIGICL CVPRFGRCDGIINQCCDPYLCTPPLVGICT CVPQYGVCDGIINQCCDPYYCSPPIYGHCI | Infectious bronchitis virus Dengue virus | [232] |
Ground Bean | N-terminal sequence: KTCENLADTY | Human immunodeficiency virus | [218] |
Oldenlandia affinis | CGETCVGGTCNTPGCTCSWPVCTRNGLPV | Human immunodeficiency virus | [233,234] |
Sorghum | - | Herpes simplex virus type 1 | [235] |
Biological Activity | Peptide Length (Amino Acids) | Net Charge | Secondary Structure | Key Hydrophobicity Traits | Key Amino Acids | Mechanism of Action | Reference |
---|---|---|---|---|---|---|---|
Antioxidant | 2–21 (66% are 2–10) | 0 | Low content of random-coil and α-helix | Hydrophobic residues enhance membrane interaction | E, D, G, A, L, F, Y, H, M, C | Radical scavenging (DPPH, ABTS, ORAC); metal chelation; lipid peroxidation inhibition; activation of endogenous antioxidant enzymes | [41,51,62,78] |
Antiproliferative | 3–158 (63% are 3–10) | ≥+1 | β-pleated sheet peptides | >30% hydrophobic content enhances membrane interactions | E, L, S, F, A, K, R, P, W, G | Membrane pore formation; apoptosis (mitochondrial); autophagy-like death; interaction with HDAC1, MDM2; NK cell activation | [79,87,98] |
Ace-inhibitory | 2–10 | 0 | β-turn/random-coil common; small, compact motifs | Hydrophobic pockets | L, I, P, Y, F, W, D, E | Competitive, noncompetitive, and uncompetitive inhibition | [109,112,118] |
Hypolipidemic | 2–20 | Flexible; no strict fold requirement | ≥4 hydrophobic residues promote lipid interactions | K, T, V, E, I, P, L | HMG-CoA reductase inhibition, LDLR upregulation, PCSK9 suppression, and inhibition of cholesterol esterase and pancreatic lipase | [132,133,134] | |
Hypoglycemic | 3–6 | 0 or +1 | Mostly flexible/random-coil; short motifs favored | Hydrophobic residues located near Proline enhance DPP-IV inhibition | P, A, L, I, R, K, T, S, Y, M | Inhibition of α-amylase, α-glucosidase, DPP-IV; GLUT4 modulation; insulin-like activity | [162,163,187] |
Antimicrobial | 10–50 | +2 to +11 | α-helix, β-sheet (disulfide-stabilized), αβ, hairpinin | ~50% hydrophobic residues | R, K, A, G, V, C | Disrupt microbial membranes | [204,226,228] |
Antiviral | 8–2′ | Flexible/α-helical motifs | Amphipathic balance enhances viral interaction | C, P, G, I, D, N, V | Adsorption/receptor blocking, virucidal effects, and intracellular disruption of nucleic acid/protein synthesis | [199,229] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avilés-Gaxiola, S.; García-Aguiar, I.; Jiménez-Ortega, L.A.; Gutiérrez-Grijalva, E.P.; Heredia, J.B. Bioactive Plant Peptides: Physicochemical Features, Structure-Function Insights and Mechanism of Action. Molecules 2025, 30, 3683. https://doi.org/10.3390/molecules30183683
Avilés-Gaxiola S, García-Aguiar I, Jiménez-Ortega LA, Gutiérrez-Grijalva EP, Heredia JB. Bioactive Plant Peptides: Physicochemical Features, Structure-Function Insights and Mechanism of Action. Molecules. 2025; 30(18):3683. https://doi.org/10.3390/molecules30183683
Chicago/Turabian StyleAvilés-Gaxiola, Sara, Israel García-Aguiar, Luis Alfonso Jiménez-Ortega, Erick Paul Gutiérrez-Grijalva, and José Basilio Heredia. 2025. "Bioactive Plant Peptides: Physicochemical Features, Structure-Function Insights and Mechanism of Action" Molecules 30, no. 18: 3683. https://doi.org/10.3390/molecules30183683
APA StyleAvilés-Gaxiola, S., García-Aguiar, I., Jiménez-Ortega, L. A., Gutiérrez-Grijalva, E. P., & Heredia, J. B. (2025). Bioactive Plant Peptides: Physicochemical Features, Structure-Function Insights and Mechanism of Action. Molecules, 30(18), 3683. https://doi.org/10.3390/molecules30183683