Preparation and Sensing Study of Houttuynia cordata-Based Carbon Quantum Dots
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimization of Synthesis Conditions
2.2. Characterization of Hc-CQDs
2.3. Optical Properties of the Hc-CQDs
2.4. Fluorescence Detection of Cr3+
2.4.1. Linear Range
2.4.2. Selectivity of Cr3+
2.4.3. Fluorescence Quenching Mechanism
2.4.4. Detection of Cr3+ in Actual Samples
3. Experimental Section
3.1. Reagents and Instruments
3.2. Preparation of Houttuynia Cordata-Based CQDs
3.3. Preparation of Characterization Samples for Hc-CQDs
3.4. Detection of Metal Ions by Hc-CQDs
3.5. Analysis of Metal Ions in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahn, J.; Chae, H.-S.; Chin, Y.-W.; Kim, J. Alkaloids from aerial parts of Houttuynia cordata and their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2017, 27, 2807–2811. [Google Scholar] [CrossRef]
- Andrade, A.W.L.; Machado, K.d.C.; Figueiredo, D.D.R.; David, J.M.; Islam, M.T.; Uddin, S.J.; Shilpi, J.A.; Costa, J.P. In vitro antioxidant properties of the biflavonoid agathisflavone. BMC Chem. 2018, 12, 75. [Google Scholar] [CrossRef]
- Niknejad, A.; Hosseini, Y.; Arab, Z.N.; Razavi, S.M.; Momtaz, S.; Sathyapalan, T.; Majeed, M.; Jamialahmadi, T.; Abdolghaffari, A.H.; Sahebkar, A. Pharmacological Activities of Turmerones. Curr. Med. Chem. 2024, 32, 1718–1731. [Google Scholar] [CrossRef]
- Tao, H.; Li, L.; He, Y.; Zhang, X.; Zhao, Y.; Wang, Q.; Hong, G. Flavonoids in vegetables: Improvement of dietary flavonoids by metabolic engineering to promote health. Crit. Rev. Food Sci. Nutr. 2022, 64, 3220–3234. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Chen, C.-Y.; Lai, K.-H.; Chang, Y.-C.; Hwang, T.-L. Anti-inflammatory and antiviral activities of flavone C-glycosides of Lophatherum gracile for COVID-19. J. Funct. Foods 2023, 101, 105407. [Google Scholar] [CrossRef]
- Liu, X.-M.; Liu, Y.; Shan, C.-H.; Yang, X.-Q.; Zhang, Q.; Xu, N.; Xu, L.-Y.; Song, W. Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube. Food Chem. X 2022, 14, 100287. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Li, Z.; Tang, X.; Liu, X.; Hughes, S.S. Mechanisms of chromium isotope fractionation and the applications in the environment. Ecotoxicol. Environ. Saf. 2022, 242, 113948. [Google Scholar] [CrossRef] [PubMed]
- Acharyya, S.; Das, A.; Thaker, T.P. Remediation processes of hexavalent chromium from groundwater: A short review. Aqua Water Infrastruct. Ecosyst. Soc. 2023, 72, 648–662. [Google Scholar] [CrossRef]
- Campillo-Cora, C.; Arenas-Lago, D.; Arias-Estévez, M.; Fernández-Calviño, D. Increase in bacterial community induced tolerance to Cr in response to soil properties and Cr level in the soil. Soil 2023, 9, 561–571. [Google Scholar] [CrossRef]
- Yuxin, X.; Laipeng, S.; Kang, L.; Haipeng, S.; Zonghua, W.; Wenjing, W. Metal-doped carbon dots as peroxidase mimic for hydrogen peroxide and glucose detection. Anal. Bioanal. Chem. 2022, 414, 5857–5867. [Google Scholar] [CrossRef]
- Ali, H.; Ghosh, S.; Jana, N.R. Fluorescent carbon dots as intracellular imaging probes. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. 2020, 12, e1617. [Google Scholar] [CrossRef]
- Yu, Z.; Li, F.; Xiang, Q. Carbon dots-based nanocomposites for heterogeneous photocatalysis. J. Mater. Sci. Technol. 2024, 175, 244–257. [Google Scholar] [CrossRef]
- Zhang, T.; Long, D.; Gu, X.; Yang, M. A dual-recognition MIP-ECL sensor based on boric acid functional carbon dots for detection of dopamine. Microchim. Acta 2022, 189, 389. [Google Scholar] [CrossRef]
- Ding, X.; Tian, W.; Wang, F.; Imhanria, S.; Chen, L.; Ding, L.; Wang, W.; Zhang, J. Green Hydrothermal Preparation of Ag-CP Nanocomposites with Lily Bulbs for Non-Enzymatic Glucose Detection. J. Electron. Mater. 2024, 53, 5637–5646. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, R.; Zhou, J. Shrimp-Shell-Derived Carbon Dots for Quantitative Detection by Fluorometry and Colorimetry: A New Analytic Chemistry Experiment for University Education. J. Chem. Educ. 2024, 101, 2784–2789. [Google Scholar] [CrossRef]
- Zhai, H.; Bai, Y.; Qin, J.; Feng, F. Colorimetric and Ratiometric Fluorescence Dual-Mode Sensing of Glucose Based on Carbon Quantum Dots and Potential UV/Fluorescence of o-Diaminobenzene. Sensors 2019, 19, 674. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.T.; Leoi, M.W.N.; Yu, Y.; Tan, S.C.L.; Nadzri, N.; Goh, W.P.; Jiang, C.; Ni, X.P.; Wang, P.; Zhao, M.; et al. Co-Encapsulating Enzymes and Carbon Dots in Metal–Organic Frameworks for Highly Stable and Sensitive Touch-Based Sweat Sensors. Adv. Funct. Mater. 2023, 34, 2310121. [Google Scholar] [CrossRef]
- Chen, J.; Yan, J.; Dou, B.; Feng, Q.; Miao, X.; Wang, P. Aggregatable thiol-functionalized carbon dots-based fluorescence strategy for highly sensitive detection of glucose based on target-initiated catalytic oxidation. Sens. Actuators B Chem. 2021, 330, 129325. [Google Scholar] [CrossRef]
- Maaoui, H.; Teodoresu, F.; Wang, Q.; Pan, G.-H.; Addad, A.; Chtourou, R.; Szunerits, S.; Boukherroub, R. Non-Enzymatic Glucose Sensing Using Carbon Quantum Dots Decorated with Copper Oxide Nanoparticles. Sensors 2016, 16, 1720. [Google Scholar] [CrossRef]
- He, J.; Chen, J.; Qiu, H. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics. Prog. Chem. 2023, 35, 655–682. [Google Scholar] [CrossRef]
- Sangsin, S.; Srivilai, P.; Tongraung, P. Colorimetric Detection of Cr3+ in Dietary Supplements Using a Smartphone Based on Edta and Tannic Acid-Modified Silver Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 246, 119050. [Google Scholar] [CrossRef]
- Sruthi, L.; Asad, M.; Arshad, M.N.; Asiri, A.M.; Khan, S.S. Dual functionalized Ag plasmonic sensor for colorimetric detection of Cr(III)/Hg(II)-carboxyl complexes: Mechanism and its sensing based on the interference of organic ligand. J. Environ. Chem. Eng. 2022, 11, 109147. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, S.; Chen, Z.; Tang, K.; Zeng, L.; Sun, W.; Wu, F.; Chen, J.; Lan, J. Nucleic acid-functionalized upconversion luminescence biosensor based on strand displacement-mediated signal amplification for the detection of trivalent chromium ions. Anal. Chim. Acta 2024, 1328, 343161. [Google Scholar] [CrossRef]
- Zhu, A.; Pan, J.; Liu, Y.; Chen, F.; Ban, X.; Qiu, S.; Luo, Y.; Zhu, Q.; Yu, J.; Liu, W. A Novel Dibenzimidazole-Based Fluorescent Organic Molecule as a Turn-off Fluorescent Probe for Cr3+ Ion with High Sensitivity and Quick Response. J. Mol. Struct. 2020, 1206, 127696. [Google Scholar] [CrossRef]
- Algethami, J.S. A Review on Recent Progress in Organic Fluorimetric and Colorimetric Chemosensors for the Detection of Cr3+/6+ Ions. Crit. Rev. Anal. Chem. 2022, 54, 487–507. [Google Scholar] [CrossRef] [PubMed]
- Shanthi, S.; Saravanakumar, M.; Sathiyanarayanan, I.K. A new furan based fluorescent chemosensor for the recognition of Cr3+ ion and its application in real sample analysis. J. Photochem. Photobiol. A Chem. 2021, 418, 113441. [Google Scholar]
- Mahata, S.; Janani, G.; Mandal, B.B.; Manivannan, V. A coumarin based visual and fluorometric probe for selective detection of Al (III), Cr (III) and Fe (III) ions through “turn-on” response and its biological application. J. Photochem. Photobiol. A Chem. 2021, 417, 113340. [Google Scholar] [CrossRef]
- Lu, D.; Yin, K.; Zhao, Y.; Gao, Z.; Godbert, N.; Li, H.; Li, H.; Hao, J. Facile synthesis of alkylated carbon dots with blue emission in halogenated benzene solvents. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126129. [Google Scholar] [CrossRef]
- Dhariwal, J.; Rao, G.K.; Vaya, D. Recent advancements towards the green synthesis of carbon quantum dots as an innovative and eco-friendly solution for metal ion sensing and monitoring. RSC Sustain. 2024, 2, 11–36. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, C.; Cui, Y.; Li, D.; Zhang, Y.; Xu, J.; Li, C.; Iqbal, S.; Cao, M. Blue-emitting carbon quantum dots: Ultrafast microwave synthesis, purification and strong fluorescence in organic solvents. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 623, 126673. [Google Scholar] [CrossRef]
- Li, C.; Zeng, J.; Guo, D.; Liu, L.; Xiong, L.; Luo, X.; Hu, Z.; Wu, F. Cobalt-Doped Carbon Quantum Dots with Peroxidase-Mimetic Activity for Ascorbic Acid Detection through Both Fluorometric and Colorimetric Methods. ACS Appl. Mater. Interfaces 2021, 13, 49453–49461. [Google Scholar] [CrossRef]
- Pizzoferrato, R.; Bisauriya, R.; Antonaroli, S.; Cabibbo, M.; Moro, A.J. Colorimetric and Fluorescent Sensing of Copper Ions in Water through o-Phenylenediamine-Derived Carbon Dots. Sensors 2023, 23, 3029. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Green, R.J.; Frazier, R.A. Interaction of flavonoids with bovine serum albumin: A fluorescence quenching study. J. Agric. Food Chem. 2004, 53, 158–163. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, M.; Shao, C.; Li, Z.; Cao, X.; Wang, Y.; Wu, Y.; Lu, S. Visual detection and sensing of mercury ions and glutathione using fluorescent copper nanoclusters. ACS Appl. Bio Mater. 2023, 6, 1283–1293. [Google Scholar] [CrossRef]
- Liang, M.; Yuan, L.; Shao, C.; Zheng, X.; Song, Q.; Gu, Z.; Lu, S. Sequential visual sensing of H2O2 and GSH based on fluorescent copper nanoclusters incorporated eggshell membrane. IEEE Sens. J. 2023, 23, 18142–18149. [Google Scholar] [CrossRef]
- Guo, Y.; Shi, J.; Wei, C.; Fang, T.; Tao, T. One-pot synthesis of fluorescent aminoclay and the ratiometric fluorescence detection of sunset yellow. Dye. Pigment. 2023, 212, 111102. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Li, H.; Zhao, W. Tunable multicolour S/N co-doped carbon quantum dots synthesized from waste foam and application to detection of Cr3+ ions. Luminescence 2020, 35, 1373–1383. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, L.; Zhao, L.; Wang, X.; Yang, W. Facile synthesis of water-soluble carbon spheres for the sensitive and selective determination of Fe3+, Cr3+, and Hg2+ ions. Anal. Sci. 2020, 36, 1171–1175. [Google Scholar] [CrossRef]
- Kaur, H.; Sareen, S.; Mutreja, V.; Verma, M. Spinach-derived carbon dots for the turn-on detection of chromium ions (Cr3+). J. Inorg. Organomet. Polym. Mater. 2023, 33, 3703–3715. [Google Scholar] [CrossRef]
Samples | Spiked Concentration (mg/L) | Detected Concentration (mg/L) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Tap water | 40 | 36.8 | 92.0 | 1.34 |
Lake water | 50 | 47.5 | 95.0 | 2.18 |
River water | 60 | 54 | 90.0 | 1.59 |
Methods | Linear Range | LOD | Actual Sample | References |
---|---|---|---|---|
S/N-B-CQDs | 0–0.5 mM | 6 mM | Mineral water | [37] |
CS | 0–700 mM | 6.72 mM | - | [38] |
Spinach direct juice-CDs | - | 0.138 mM | - | [39] |
Hc-CQDs | 0.025–1.0 μg/mL | 49 μg/L | Tap water, lake water, and river water | This paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, M.; Meng, L. Preparation and Sensing Study of Houttuynia cordata-Based Carbon Quantum Dots. Molecules 2025, 30, 3668. https://doi.org/10.3390/molecules30183668
Ye M, Meng L. Preparation and Sensing Study of Houttuynia cordata-Based Carbon Quantum Dots. Molecules. 2025; 30(18):3668. https://doi.org/10.3390/molecules30183668
Chicago/Turabian StyleYe, Min, and Lifen Meng. 2025. "Preparation and Sensing Study of Houttuynia cordata-Based Carbon Quantum Dots" Molecules 30, no. 18: 3668. https://doi.org/10.3390/molecules30183668
APA StyleYe, M., & Meng, L. (2025). Preparation and Sensing Study of Houttuynia cordata-Based Carbon Quantum Dots. Molecules, 30(18), 3668. https://doi.org/10.3390/molecules30183668