Characterization of Human Recombinant β1,4-GalNAc-Transferase B4GALNT1 and Inhibition by Selected Compounds
Abstract
1. Introduction
2. Results and Discussion
2.1. Protein Expression and Purification
2.2. Characterization of Purified B4GALNT1 Activity
2.3. Bioinformatics
2.4. Molecular Docking
2.5. Inhibitors
3. Materials and Methods
3.1. Materials
3.2. Plasmid Isolation and Transformation
3.3. Expression of B4GALNT1 in Expi293 Cells
3.4. Purification of B4GALNT1 Using Ni-NTA Column Chromatography
3.5. Glycosyltransferase Standard Assays for Human B4GALNT1
3.6. Bioinformatics
3.7. Inhibition of B4GALNT1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ledeen, R.; Wu, G. Gangliosides of the nervous system. Methods Mol. Biol. 2018, 1804, 19–55. [Google Scholar] [PubMed]
- Ohmi, Y.; Tajima, O.; Ohkawa, Y.; Yamauchi, Y.; Sugiura, Y.; Furukawa, K.; Furukawa, K. Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: Elucidation by a series of ganglioside-deficient mutant mice. J. Neurochem. 2011, 116, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Lingwood, D.; Simons, K. Lipid rafts as a membrane-organizing principle. Science 2010, 327, 46–50. [Google Scholar] [CrossRef]
- Furukawa, K.; Takamiya, K.; Furukawa, K. Beta1,4-N-acetylgalactosaminyltransferase-GM2/GD2 synthase: A key enzyme to control the synthesis of brain-enriched complex gangliosides. Biochim. Biophys. Acta 2002, 1573, 356–362. [Google Scholar] [CrossRef]
- Kaya, I.; Jennische, E.; Dunevall, J.; Lange, S.; Ewing, A.G.; Malmberg, P.; Baykal, A.T.; Fletcher, J.S. Spatial Lipidomics Reveals Region and Long Chain Base Specific Accumulations of Monosialogangliosides in Amyloid Plaques in Familial Alzheimer’s Disease Mice (5xFAD) Brain. ACS Chem. Neurosci. 2020, 11, 14–24. [Google Scholar] [CrossRef]
- Manich, M.; Knapp, O.; Gibert, M.; Maier, E.; Jolivet-Reynaud, C.; Geny, B.; Benz, R.; Popoff, M.R. Clostridium perfringens delta toxin is sequence related to beta toxin, NetB, and Staphylococcus pore-forming toxins, but shows functional differences. PLoS ONE 2008, 3, e3764. [Google Scholar] [CrossRef]
- Liang, Y.J.; Wang, C.Y.; Wang, I.A.; Chen, Y.W.; Li, L.T.; Lin, C.Y.; Ho, M.Y.; Chou, T.L.; Wang, Y.H.; Chiou, S.P.; et al. Interaction of glycosphingolipids GD3 and GD2 with growth factor receptors maintains breast cancer stem cell phenotype. Oncotarget 2017, 8, 47454–47473. [Google Scholar] [CrossRef]
- Itokazu, Y.; Ariga, T.; Fuchigami, T.; Li, D. Gangliosides in neural stem cell fate determination and nerve cell specification--preparation and administration. bioRxiv 2024, 598109. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.; Hofmann, T.J.; Marino, R.; Dominici, M.; Horwitz, E.M. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: A novel surface marker for the identification of MSCs. Blood 2007, 109, 4245–4248. [Google Scholar] [CrossRef]
- Ryckman, A.E.; Brockhausen, I.; Walia, J.S. Metabolism of Glycosphingolipids and Their Role in the Pathophysiology of Lysosomal Storage Disorders. Int. J. Mol. Sci. 2020, 21, 6881. [Google Scholar] [CrossRef]
- Tropak, M.B.; Yonekawa, S.; Karumuthil-Melethil, S.; Thompson, P.; Wakarchuk, W.; Gray, S.J.; Walia, J.S.; Mark, B.L.; Mahuran, D. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo. Mol. Ther.—Methods Clin. Dev. 2016, 3, 15057. [Google Scholar] [CrossRef]
- Corrias, M.V.; Parodi, S.; Haupt, R.; Lacitignola, L.; Negri, F.; Sementa, A.R.; Dau, D.; Scuderi, F.; Carlini, B.; Bianchi, M.; et al. Detection of GD2-positive cells in bone marrow samples and survival of patients with localised neuroblastoma. Br. J. Cancer 2008, 98, 263–269. [Google Scholar] [CrossRef]
- Yi, H.; Lin, Y.; Li, Y.; Guo, Y.; Yuan, L.; Mao, Y. Pan-Cancer Analysis of B4GALNT1 as a Potential Prognostic and Immunological Biomarker. J. Immunol. Res. 2022, 2022, 4355890. [Google Scholar] [CrossRef]
- Yamashiro, S.; Ruan, S.; Furukawa, K.; Tai, T.; Lloyd, K.O.; Shiku, H.; Furukawa, K. Genetic and enzymatic basis for the differential expression of GM2 and GD2 gangliosides in human cancer cell lines. Cancer Res. 1993, 53, 5395–5400. [Google Scholar] [PubMed]
- Chiricozzi, E.; Mauri, L.; Lunghi, G.; Di Biase, E.; Fazzari, M.; Maggioni, M.; Valsecchi, M.; Prioni, S.; Loberto, N.; Pomè, D.Y.; et al. Parkinson’s disease recovery by GM1 oligosaccharide treatment in the B4galnt1+/− mouse model. Sci. Rep. 2019, 9, 19330. [Google Scholar] [CrossRef] [PubMed]
- Latour, Y.L.; Yoon, R.; Thomas, S.E.; Grant, C.; Li, C.; Sena-Esteves, M.; Allende, M.L.; Proia, R.L.; Tifft, C.J. Human GLB1 knock-out cerebral organoids: A model system for testing AAV9-mediated GLB1 gene therapy for reducing GM1 ganglioside storage in GM1 gangliosidosis. Mol. Genet. Metab. Rep. 2019, 21, 100513. [Google Scholar]
- Deschenes, N.M.; Cheng, C.; Ryckman, A.E.; Quinville, B.M.; Khanal, P.; Mitchell, M.; Chen, Z.; Sangrar, W.; Gray, S.J.; Walia, J.S. Biochemical Correction of GM2 Ganglioside Accumulation in AB-Variant GM2 Gangliosidosis. Int. J. Mol. Sci. 2023, 24, 9217. [Google Scholar] [CrossRef] [PubMed]
- Vyas, M.; Deschenes, N.M.; Osmon, K.J.L.; Chen, Z.; Ahmad, I.; Kot, S.; Thompson, P.; Richmond, C.; Gray, S.J.; Walia, J.S. Efficacy of Adeno-Associated Virus Serotype 9-Mediated Gene Therapy for AB-Variant GM2 Gangliosidosis. Int. J. Mol. Sci. 2023, 24, 14611. [Google Scholar]
- Coutinho, M.F.; Santos, J.I.; Alves, S. Less Is More: Substrate Reduction Therapy for Lysosomal Storage Disorders. Int. J. Mol. Sci. 2016, 17, 1065. [Google Scholar] [CrossRef]
- Marshall, J.; Nietupski, J.B.; Park, H.; Cao, J.; Bangari, D.S.; Silvescu, C.; Wilper, T.; Randall, K.; Tietz, D.; Wang, B.; et al. Substrate Reduction Therapy for Sandhoff Disease through Inhibition of Glucosylceramide Synthase Activity. Mol. Ther. 2019, 27, 1495–1506. [Google Scholar] [CrossRef]
- Cox, T.; Lachmann, R.; Hollak, C.; Aerts, J.; van Weely, S.; Hrebícek, M.; Platt, F.; Butters, T.; Dwek, R.; Moyses, C.; et al. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 2000, 355, 1481–1485. [Google Scholar] [CrossRef] [PubMed]
- Jaskiewicz, E.; Zhu, G.; Bassi, R.; Darling, D.S.; Young, W.W., Jr. Beta1,4-N-acetylgalactosaminyltransferase (GM2 synthase) is released from Golgi membranes as a neuraminidase-sensitive, disulfide-bonded dimer by a cathepsin D-like protease. J. Biol. Chem. 1996, 271, 26395–26403. [Google Scholar] [CrossRef] [PubMed]
- Breton, C.; Fournel-Gigleux, S.; Palcic, M.M. Recent structures, evolution and mechanisms of glycosyltransferases. Curr. Opin. Struct. Biol. 2012, 22, 540–549. [Google Scholar] [CrossRef]
- Boukhris, A.; Schule, R.; Loureiro, J.L.; Lourenço, C.M.; Mundwiller, E.; Gonzalez, M.A.; Charles, P.; Gauthier, J.; Rekik, I.; Acosta Lebrigio, R.F.; et al. Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am. J. Hum. Genet. 2013, 93, 118–123. [Google Scholar] [CrossRef]
- Harlalka, G.V.; Lehman, A.; Chioza, B.; Baple, E.L.; Maroofian, R.; Cross, H.; Sreekantan-Nair, A.; Priestman, D.A.; Al-Turki, S.; McEntagart, M.E.; et al. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain 2013, 136 Pt 12, 3618–3624. [Google Scholar] [CrossRef] [PubMed]
- Alecu, J.E.; Ohmi, Y.; Bhuiyan, R.H.; Inamori, K.I.; Nitta, T.; Saffari, A.; Jumo, H.; Ziegler, M.; de Gusmao, C.M.; Sharma, N.; et al. Functional validation of novel variants in B4GALNT1 associated with early-onset complex hereditary spastic paraplegia with impaired ganglioside synthesis. Am. J. Med. Genet. 2022, 188, 2590–2598. [Google Scholar] [CrossRef]
- Gil-Tommee, C.; Vidal-Martinez, G.; Annette Reyes, C.; Vargas-Medrano, J.; Herrera, G.V.; Martin, S.M.; Chaparro, S.A.; Perez, R.G. Parkinsonian GM2 synthase knock-out mice lacking mature gangliosides develop urinary dysfunction and neurogenic bladder. Exp. Neurol. 2019, 311, 265–273. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Yamauchi, Y.; Furukawa, K.; Ohmi, Y.; Ohkawa, Y.; Zhang, Q.; Okajima, T.; Furukawa, K. Expression of B4GALNT1, an essential glycosyltransferase for the synthesis of complex gangliosides, suppresses BACE1 degradation and modulates APP processing. Sci. Rep. 2016, 6, 34505. [Google Scholar] [CrossRef]
- Dodge, J.C.; Tamsett, T.J.; Treleaven, C.M.; Taksir, T.V.; Piepenhagen, P.; Sardi, S.P.; Cheng, S.H.; Shihabuddin, L.S. Glucosylceramide synthase inhibition reduces ganglioside GM3 accumulation, alleviates amyloid neuropathology, and stabilizes remote contextual memory in a mouse model of Alzheimer’s disease. Alzheimer’s Res. Ther. 2022, 14, 19. [Google Scholar] [CrossRef]
- Blumenreich, S.; Yaacobi, C.; Vardi, A.; Barav, O.B.; Vitner, E.B.; Park, H.; Wang, B.; Cheng, S.H.; Sardi, S.P.; Futerman, A.H. Substrate reduction therapy using Genz-667161 reduces levels of pathogenic components in a mouse model of neuronopathic forms of Gaucher disease. J. Neurochem. 2021, 156, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Pacuszka, T.; Duffard, R.O.; Nishimura, R.N.; Brady, R.O.; Fishman, P.H. Biosynthesis of bovine thyroid gangliosides. J. Biol. Chem. 1978, 253, 5839–5846. [Google Scholar] [CrossRef]
- Senn, H.J.; Cooper, C.; Warnke, P.C.; Wagner, M.; Decker, K. Ganglioside biosynthesis in rat liver. Characterization of UDP-N-acetylgalactosamine—GM3 acetylgalactosaminyltransferase. Eur. J. Biochem. 1981, 120, 59–67. [Google Scholar] [CrossRef]
- Yamashiro, S.; Haraguchi, M.; Furukawa, K.; Takamiya, K.; Akihito Yamamoto, A. Substrate specificity of β1,4-N-Acetylgalactosaminyltransferase in Vitro and in cDNA-transfected Cells. J. Biol. Chem. 1995, 270, 6149–6155. [Google Scholar] [CrossRef]
- Hidari, J.K.; Ichikawa, S.; Furukawa, K.; Yamasaki, M.; Hirabayashi, Y. Beta 1-4N-acetylgalactosaminyltransferase can synthesize both asialoglycosphingolipid GM2 and glycosphingolipid GM2 in vitro and in vivo: Isolation and characterization of a beta 1-4N-acetylgalactosaminyltransferase cDNA clone from rat ascites hepatoma cell line AH7974F. Biochem. J. 1994, 303 Pt 3, 957–965. [Google Scholar]
- Takamiya, K.; Yamamoto, A.; Furukawa, K.; Yamashiro, S.; Shin, M.; Okada, M.; Fukumoto, S.; Haraguchi, M.; Takeda, N.; Fujimura, K.; et al. Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc. Natl. Acad. Sci. USA 1996, 93, 10662–10667. [Google Scholar] [CrossRef]
- Li, J.; Yen, T.Y.; Allende, M.L.; Joshi, R.K.; Cai, J.; Pierce, W.M.; Jaskiewicz, E.; Darling, D.S.; Macher, B.A.; Young, W.W., Jr. Disulfide bonds of GM2 synthase homodimers. Antiparallel orientation of the catalytic domains. J. Biol. Chem. 2000, 275, 41476–41486. [Google Scholar] [CrossRef] [PubMed]
- Welland, J.W.J.; Barrow, H.G.; Stansfeld, P.J.; Deane, J.E. Conformational dynamics and membrane insertion mechanism of B4GALNT1 in ganglioside synthesis. Nat. Commun. 2025, 16, 5442. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Rancour, D.M.; Allende, M.L.; Worth, C.A.; Darling, D.S. The DXD motif is required for GM2 synthase activity but is not critical for nucleotide binding. Glycobiology 2001, 11, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Inamori, K.I.; Nakamura, K.; Shishido, F.; Hsu, J.C.; Nagafuku, M.; Nitta, T.; Ikeda, J.; Yoshimura, H.; Kodaira, M.; Tsuchida, N.; et al. Functional evaluation of novel variants of B4GALNT1 in a patient with hereditary spastic paraplegia and the general population. Front. Neurosci. 2024, 18, 1437668. [Google Scholar] [CrossRef]
- Haraguchi, M.; Yamashiro, S.; Furukawa, K.; Takamiya, K.; Shiku, H.; Furukawa, K. The effects of the site-directed removal of N-glycosylation sites from beta-1,4-N-acetylgalactosaminyltransferase on its function. Biochem. J. 1995, 312 Pt 1, 273–280. [Google Scholar] [CrossRef]
- Brockhausen, I.; Dowler, T.; Paulsen, H. Site directed processing: Role of amino acid sequences and glycosylation of acceptor glycopeptides in the assembly of extended mucin type O-glycan core 2. Biochim. Biophys. Acta 2009, 1790, 1244–1257. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tao, S.; Orlando, R.; Brockhausen, I.; Kan, F.W. Structures and biosynthesis of the N- and O-glycans of recombinant human oviduct-specific glycoprotein expressed in human embryonic kidney cells. Carbohydr. Res. 2012, 358, 47–55. [Google Scholar] [CrossRef]
- Gao, Y.; Vlahakis, J.; Szarek, W.; Brockhausen, I. Selective inhibition of glycosyltransferases by bivalent imidazolium salts. Bioorg. Med. Chem. 2013, 21, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Brockhausen, I.; Benn, M.; Bhat, J.G.; Marone, S.; Riley, J.G.; Montoya-Peleaz, P.; Vlahakis, J.Z.; Paulsen, H.; Schutzbach, J.S.; Szarek, W.A. UDP-Gal: GlcNAc-R beta1, 4-galactosyltransferase–a target enzyme for drug design. Acceptor specificity and inhibition of the enzyme. Glycoconj. J. 2006, 23, 525–541. [Google Scholar] [CrossRef]
- Gao, Y.; Lazar, C.; Szarek, W.A.; Brockhausen, I. Specificity of β1,4-galactosyltransferase inhibition by 2-naphthyl 2-butanamido-2-deoxy-1-thio-β-D-glucopyranoside. Glycoconj. J. 2010, 27, 673–684. [Google Scholar] [CrossRef]
- Kocev, A.; Melamed, J.; Wang, S.; Kong, X.; Vlahakis, J.Z.; Xu, Y.; Szarek, W.A.; Brockhausen, I. Inhibition of bacterial growth and galactosyltransferase activity of WbwC by α, ω-bis(3-alkyl-1H-imidazolium)alkane salts: Effect of varying carbon content. Bioorg. Med. Chem. 2020, 28, 115494. [Google Scholar] [CrossRef]
- Prabhala, S.V.; Marshall, B.; Galiardi, J.; Fan, Y.; Creamer, E.; Wood, D.W. Highly selective split intein method for efficient separation and purification of recombinant therapeutic proteins from mammalian cell culture fluid. J. Chromatogr. 2024, 1736, 465430. [Google Scholar] [CrossRef]
- Moremen, K.W.; Ramiah, A.; Stuart, M.; Steel, J.; Meng, L.; Forouhar, F.; Moniz, H.A.; Gahlay, G.; Gao, Z.; Chapla, D.; et al. Expression system for structural and functional studies of human glycosylation enzymes. Nat. Chem. Biol. 2018, 14, 156–162. [Google Scholar] [CrossRef]
- Babulic, J.L.; Capicciotti, C.J. Exo-Enzymatic Cell-Surface Glycan Labeling for Capturing Glycan-Protein Interactions through Photo-Cross-Linking. Bioconjugate Chem. 2022, 33, 773–780. [Google Scholar] [CrossRef] [PubMed]
MSA | Variants | Activity of Mutants | References |
---|---|---|---|
K284N | SPG | [25] | |
R288 | SPG | [24] | |
R300C | SPG | [24] | |
D313A | SPG | [24,39] | |
V352 | 167% | [38] | |
W354 | 24% | [38] | |
D356 | nd | [38] | |
D357 | |||
D358 | nd | [38] | |
(F392) | |||
C429 | |||
D433A | SPG | [24] | |
N437K | SPG | nd | [39] |
F438L | SPG | [39] | |
F439 | SPG | [24] | |
A441E | SPG | nd | [39] |
P453H | SPG | nd | [39] |
C476 | |||
H483 | |||
K486 | |||
Y501 | |||
R505H | SPG | nd | [25] |
Q514 | |||
A516 | SPG | [24] | |
R519P/W | SPG | nd | [26,39] |
Inhibitor | n | m | % Inhibition |
---|---|---|---|
QT149 | 22 | 1 | 90 |
QT163 | 6 | 11 | 80 |
QT160 | 10 | 10 | 89 |
QT161 | 10 | 11 | 84 |
QT162 | 10 | 12 | 94 |
QT166 | 16 | 7 | 92 |
QT169 | 16 | 10 | 74 |
QT170 | 16 | 11 | 40 |
QT171 | 16 | 12 | 47 |
612 | - | - | 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abidi, I.; Kocev, A.N.; Babulic, J.L.; Capicciotti, C.J.; Walia, J.; Brockhausen, I. Characterization of Human Recombinant β1,4-GalNAc-Transferase B4GALNT1 and Inhibition by Selected Compounds. Molecules 2025, 30, 3615. https://doi.org/10.3390/molecules30173615
Abidi I, Kocev AN, Babulic JL, Capicciotti CJ, Walia J, Brockhausen I. Characterization of Human Recombinant β1,4-GalNAc-Transferase B4GALNT1 and Inhibition by Selected Compounds. Molecules. 2025; 30(17):3615. https://doi.org/10.3390/molecules30173615
Chicago/Turabian StyleAbidi, Iram, Alexander N. Kocev, Jonathan L. Babulic, Chantelle J. Capicciotti, Jagdeep Walia, and Inka Brockhausen. 2025. "Characterization of Human Recombinant β1,4-GalNAc-Transferase B4GALNT1 and Inhibition by Selected Compounds" Molecules 30, no. 17: 3615. https://doi.org/10.3390/molecules30173615
APA StyleAbidi, I., Kocev, A. N., Babulic, J. L., Capicciotti, C. J., Walia, J., & Brockhausen, I. (2025). Characterization of Human Recombinant β1,4-GalNAc-Transferase B4GALNT1 and Inhibition by Selected Compounds. Molecules, 30(17), 3615. https://doi.org/10.3390/molecules30173615