Effects of Pyrolysis Temperatures and Modified Methods on Rice Husk-Derived Biochar Characteristics and Heavy Metal Adsorption
Abstract
1. Introduction
2. Results and Discussion
2.1. Thermogravimetry
2.2. Elemental Analysis
2.3. BET and Pore Analysis
2.4. SEM Analysis
2.5. FTIR Analysis
2.6. XPS Analysis
2.7. Adsorption Kinetics
2.8. Adsorption Isotherm
2.9. Adsorption Mechanisms
3. Materials and Methods
3.1. Biochar Preparation
3.2. Biochar Modification
3.3. Biochar Characterization
3.4. Adsorption Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanka, P.M.; Rwiza, M.J.; Mtei, K.M. Removal of Selected Heavy Metal Ions from Industrial Wastewater Using Rice and Corn Husk Biochar. Water Air Soil. Pollut. 2020, 231, 244. [Google Scholar] [CrossRef]
- Skwarek, E.; Matysek–Nawrocka, M.; Janusz, W.; Zarko, V.I.; Gun’ko, V.M. Adsorption of heavy metal ions at the Al2O3-SiO2/NaClO4 electrolyte interface. Physicochem. Probl. Miner. Process. 2008, 42, 153–164. [Google Scholar]
- Kwon, G.; Bhatnagar, A.; Wang, H.L.; Kwon, E.E.; Song, H. A review of recent advancements in utilization of biomass and industrial wastes into engineered biochar. J. Hazard. Mater. 2020, 400, 123242. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Pawar, R.R.; Lalhmunsiama; Kim, M.; Kim, J.G.; Hong, S.M.; Sawant, S.Y.; Lee, S.M. Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads. Appl. Clay Sci. 2018, 162, 339–350. [Google Scholar] [CrossRef]
- Kołody’nskaa, D.; Skwarek, E.; Hubicki, Z.; Janusz, W. Effect of adsorption of Pb (II) and Cd (II) ions in the presence of EDTA on the characteristics of electrical double layers at the ion exchanger/NaCl electrolyte solution interface. J. Colloid Interface Sci. 2009, 333, 448–456. [Google Scholar] [CrossRef]
- Wu, J.; Wang, T.; Wang, J.; Zhang, Y.; Pan, W.P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci. Total Envrion. 2021, 754, 142150. [Google Scholar] [CrossRef]
- Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Yong, S.O. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresour. Technol. 2020, 312, 123613. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Z.; Ali, A.; Guan, w.; Xiao, R.; Wang, J.J.; Ma, S.; Guo, D.; Zhou, B.; Zhang, Z. Characterization of phosphorus engineered biochar and its impact on immobilization of Cd and Pb from smelting contaminated soils. J. Soil. Sediment 2020, 20, 3041–3052. [Google Scholar] [CrossRef]
- Liao, W.; Zhang, X.; Ke, S.; Shao, J.; Yang, H.; Zhang, S.; Chen, H. Effect of different biomass species and pyrolysis temperatures on heavy metal adsorption, stability and economy of biochar. Ind. Crops Prod. 2022, 186, 115238. [Google Scholar] [CrossRef]
- He, M.; Chan, P.S.; Tsang, D.C.W.; Xu, Z.; Lui, I.; Sun, Y. Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. Bioresour. Technol. 2021, 341, 125811. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. A review of the next-generation biochar production from waste biomass for material applications. Sci. Total Envrion. 2023, 904, 167171. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jin, L.; Guo, C.; Min, L.; Zhang, C. Enhanced heavy metals sorption by modified biochars derived from pig manure. Sci. Total Envrion. 2021, 786, 147595. [Google Scholar] [CrossRef]
- Jin, H.M.; Caparedac, S.; Chang, Z.Z.; Gao, J.; Xu, Y.D.; Zhang, J.Y. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Bioresour. Technol. 2014, 169, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.J.; Tang, J.C.; Gong, Y.; Zhang, H.R. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water. Envrion. Sci. Pollut. Res. 2015, 22, 16640–16651. [Google Scholar] [CrossRef]
- Li, F.Y.; Gui, X.Y.; Xu, J.H.; Ma, J.R.; Wen, Z.W.; Fan, X.J.; Cai, Y.B.; Wang, J.F. Spectral Analysis of Dissolved Organic Matter from Biochar. Spectrosc. Spect. Anal. 2019, 39, 3475–3481. [Google Scholar]
- Huong, P.T.; Jitae, K.; AL Tahtamouni, T.M.; Kim, H.H.; Cho, K.H.; Lee, C.H. Novel activation of peroxymonosulfate by biochar derived from rice husk toward oxidation of organic contaminants in wastewater. J. Water Process. Eng. 2020, 33, 101037. [Google Scholar] [CrossRef]
- Gęca, M.; Wiśniewska, M.; Nowicki, P. Preparation of biochars by conventional pyrolysis of herbal waste and their potential application for adsorption and energy purposes. ChemPhysChem 2020, 25, e202300507. [Google Scholar] [CrossRef]
- Bushra, B.; Remya, N. Biochar from pyrolysis of rice husk biomass-characteristics, modification and environmental application. Biomass-Convers. Biorefinery 2024, 14, 5759–5770. [Google Scholar] [CrossRef]
- Manoj Tripathi, J.N.; Sahub, P.G. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Kalogiannis, K.G.; Iliopoulou, E.F.; Michailof, C.M.; Pilavachi, P.A.; Lappas, A.A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis 2014, 105, 143–150. [Google Scholar] [CrossRef]
- Shukla, N.; Sahoo, D.; Remya, N. Biochar from microwave pyrolysis of rice husk for tertiary wastewater treatment and soil nourishment. J. Clean. Prod. 2019, 235, 1073–1079. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Jiang, X.; Li, F.; Lei, Y.; Lin, Q. The thermal behavior and kinetics of co-combustion between sewage sludge and wheat straw. Fuel. Process. Technol. 2019, 189, 1–14. [Google Scholar] [CrossRef]
- Wang, C.X.; Bi, H.B.; Lin, Q.Z.; Jiang, X.D.; Jiang, C.l. Co-pyrolysis of sewage sludge and rice husk by TG-FTIR-MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics. Renew. Energ. 2020, 160, 1048–1066. [Google Scholar] [CrossRef]
- Palacio Lozano, D.C.; Jones, H.E.; Ramirez Reina, T.; Volpe, R.; Barrow, M.P. Unlocking the potential of biofuels via reaction pathways in van Krevelen diagrams. Green Chem. 2021, 23, 8949–8963. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Naeth, M.A.; Chang, S.X. Feedstock type drive surface property, demineralization and element leaching of nitric acid-activated biochars more than pyrolysis temperature. Bioresour. Technol. 2022, 344, 126316. [Google Scholar] [CrossRef]
- Li, Y.; Shao, J.A.; Wang, X.H.; Deng, Y.; Yang, H.P.; Chen, H.P. Characterization of Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target Component (Furfural) Adsorption. Energy Fuels 2014, 28, 5119–5127. [Google Scholar] [CrossRef]
- Waqas, M.; Aburiazaiza, A.; Miandad, R.; Rehan, M.; Barakat, M.; Nizami, A. Development of biochar as fuel and catalyst in energy recovery technologies. J. Clean. Prod. 2018, 188, 477–488. [Google Scholar] [CrossRef]
- Li, M.; Ma, S.W.; Zhu, X.F. Preparation of Activated Carbon from Pyrolyzed Rice Husk by Leaching out Ash Content after CO2 Activation. Bioresources 2016, 11, 3384–3396. [Google Scholar] [CrossRef]
- Shen, Y.; Fu, Y. KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption. Mater. Today Energy 2018, 9, 397–405. [Google Scholar] [CrossRef]
- Qin, J.J.; Wang, J.; Long, J.; Huang, J.; Tang, S.S.; Hou, H.B.; Pneg, P.Q. Recycling of heavy metals and modification of biochar derived from Napier grass using HNO3. J. Envrion. Manag. 2022, 318, 115556. [Google Scholar] [CrossRef]
- Muniandy, L.; Adam, F.; Mohamed, A.R.; Ng, E.-P. The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater. 2014, 197, 316–323. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Hu, L.C.; Dai, J.Y. Effects of ageing on the surface characteristics and Cu(II) adsorption behaviour of rice husk biochar in soil. Open Chem. 2020, 18, 1421–1432. [Google Scholar] [CrossRef]
- Xiong, Q.; Wu, X.; Lv, H.; Liu, S.H.; Hou, H.B.; Wu, X. Influence of rice husk addition on phosphorus fractions and heavy metals risk of biochar derived from sewage sludge. Chemosphere 2021, 280, 130566. [Google Scholar] [CrossRef]
- Huang, H.J.; Yang, T.; Lai, F.Y.; Wu, G.Q. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. J. Anal. Appl. Pyrolysis 2017, 125, 61–68. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, H.P.; Shao, J.G. Multifunctional carboxymethyl cellulose sodium encapsulated phosphorus-enriched biochar composites: Multistage adsorption of heavy metals and controllable release of soil fertilization. Chem. Eng. J. 2023, 453, 139809. [Google Scholar] [CrossRef]
- Aguié-Béghin, V.; Adriaensen, Y.; Péron, N.; Valade, M.; Rouxhet, P.; Douillard, R. Structure and Chemical Composition of Layers Adsorbed at Interfaces with Champagne. J. Agric. Food Chem. 2009, 21, 10399–10407. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Sui, Z.J.; Zhu, J.; Li, P.; Chen, D.; Dai, Y.C.; Yuan, W.K. Characterization of surface oxygen complexes on carbon nanofibers by TPD,XPS and FT-IR. Carbon 2007, 45, 785–796. [Google Scholar] [CrossRef]
- Lin, Y.; Munroe, P.; Joseph, S.; Kimber, S.; Zwieten, L.V. Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy. Plant Soil. 2012, 357, 369–380. [Google Scholar] [CrossRef]
- Chen, W.; Gong, M.; Li, K.X.; Xia, M.W.; Chen, Z.Q.; Xiao, H.Y.; Fang, Y.; Chen, Y.Q.; Yang, H.P.; Chen, H.P. Insight into KOH activation mechanism during biomass pyrolysis: Chemicalreactions between O-containing groups and KOH. Appl. Energ. 2020, 278, 115730. [Google Scholar] [CrossRef]
- Deng, J.Q.; Liu, Y.Q.; Liu, S.B.; Zeng, G.M.; Tang, X.J.; Wang, S.F.; Hua, Q.; Yan, Z.L. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. J. Colloid. Interface Sci. 2017, 506, 355–364. [Google Scholar] [CrossRef]
- Xue, Y.W.; Gao, B.; Yao, Y.; Inyang, M.D.; Zhang, M.; Zimmerman, A.R.; Ro, K.S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 2021, 200–202, 673–680. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gao, Z.X.; Fan, X.P.; Tan, L.; Jiang, Y.S.; Zheng, W.N.; Han, F.X.; Liang, Y.C. A comparative study on adsorption of cadmium and lead by hydrochars and biochars derived from rice husk and Zizania latifolia straw. Environ. Sci. Pollut. Res. 2022, 29, 63768–63781. [Google Scholar] [CrossRef]
- Wang, S.; Wang, N.; Yao, K.; Fan, Y.C.; Li, W.H.; Han, W.H.; Yin, X.H.; Chen, D.Y. Characterization and Interpretation of Cd (II) Adsorption by Different Modified Rice Straws under Contrasting Conditions. Sci. Rep. 2019, 9, 17868. [Google Scholar] [CrossRef]
- Zhu, S.H.; Zhao, J.J.; Zhao, N.; Yang, X.; Chen, C.; Shang, J.J. Goethite modified biochar as a multifunctional amendment for cationic Cd(II), anionic As(III), roxarsone, and phosphorus in soil and water. J. Clean. Prod. 2020, 247, 119579. [Google Scholar] [CrossRef]
- Herath, A.; Layne, C.A.; Perez, F.; Hassan, B.; Pittman, C.U.; Mlsna, T.E. KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr(VI), Pb(II) and Cd(II). Chemosphere 2021, 269, 128409. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.L.; Liu, Z.H.; Azeem, M.; Guo, Z.Q.; Li, R.H.; Li, Y.G.; Peng, Y.R.; Ali, E.F.; Wang, H.L.; Wang, S.S.; et al. Hydroxyapatite tailored hierarchical porous biochar composite immobilized Cd(II) and Pb(II) and mitigated their hazardous effects in contaminated water and soil. J. Hazard. Mater. 2022, 437, 129330. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Liu, Y.Z.; Xing, B.L.; Qin, X.J.; Zhang, C.X.; Xia, H.Y. Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust. J. Clean. Prod. 2021, 314, 128074. [Google Scholar] [CrossRef]
- Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 2018, 209, 201–219. [Google Scholar] [CrossRef]
- Chen, H.; Yang, X.; Liu, Y.; Lin, X.; Wang, J.; Zhang, Z.; Li, N.; Li, Y.; Zhang, Y. KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers. Waste Manag. 2021, 130, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.L.; Qiu, W.; Wang, P.P.; Liu, Y.L.; Zou, J.; Wang, L.; Ma, J. Mechanism study about the adsorption of Pb(II) and Cd(II) with iron-trimesic metal-organic frameworks. Chem. Eng. J. 2020, 385, 123507. [Google Scholar] [CrossRef]
Sample | Ash (wt.%) | C (%) | H (%) | N (%) | O (%) | H/C | O/C |
---|---|---|---|---|---|---|---|
BC300 | 26.19 | 46.96 | 3.50 | 0.55 | 22.79 | 0.89 | 0.36 |
BC400 | 31.69 | 48.42 | 2.54 | 0.57 | 16.79 | 0.62 | 0.26 |
BC500 | 35.81 | 55.05 | 1.93 | 0.79 | 6.42 | 0.42 | 0.09 |
HNO3-BC300 | 24.67 | 28.74 | 2.32 | 2.59 | 41.68 | 0.96 | 1.09 |
HNO3-BC400 | 28.68 | 37.44 | 2.02 | 2.68 | 29.18 | 0.64 | 0.59 |
HNO3-BC500 | 30.64 | 44.85 | 1.76 | 2.47 | 20.28 | 0.47 | 0.34 |
KOH-BC300 | 10.83 | 53.56 | 4.07 | 0.61 | 30.93 | 0.90 | 0.43 |
KOH-BC400 | 16.55 | 61.81 | 3.10 | 0.67 | 17.87 | 0.60 | 0.22 |
KOH-BC500 | 24.83 | 58.02 | 2.24 | 0.61 | 14.30 | 0.46 | 0.18 |
Sample | BET Surface Area (m2·g−1) | Total Pore Volume (cm3·g−1) | Average Pore Diameter (nm) |
---|---|---|---|
BC300 | 0.6 | 0.0089 | 61.50 |
BC400 | 5.4 | 0.0098 | 7.29 |
BC500 | 23.0 | 0.021 | 3.58 |
HNO3-BC300 | 119.1 | 0.14 | 4.81 |
HNO3-BC400 | 26.2 | 0.033 | 5.03 |
HNO3-BC500 | 11.1 | 0.013 | 4.66 |
KOH-BC300 | 3.0 | 0.0091 | 11.48 |
KOH-BC400 | 26.9 | 0.035 | 5.22 |
KOH-BC500 | 74.9 | 0.065 | 3.45 |
Line | Binding Energy (eV) | Structure | Relative Atomic Percentage (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BC300 | BC400 | BC500 | HNO3- BC300 | HNO3-BC400 | HNO3-BC500 | KOH- BC300 | KOH- BC400 | KOH- BC500 | |||
C1s | 284.8 | C–(C,H), C=C | 71.54 | 76.09 | 80.47 | 55.62 | 61.53 | 75.95 | 68.00 | 74.09 | 75.57 |
285.8–286.2 | C–(O,N) | 18.30 | 15.15 | 12.22 | 25.06 | 17.12 | 11.14 | 25.32 | 17.58 | 12.63 | |
286.9–287.9 | C=O; O–C–O | 4.17 | 3.82 | 3.78 | 19.32 | 8.15 | 8.39 | 3.48 | 3.66 | 6.88 | |
288.6–289.2 | O–C=O | 5.98 | 4.94 | 3.53 | 0.00 | 13.20 | 4.52 | 3.20 | 4.67 | 4.92 | |
O1s | 531.2 | O=C | 2.41 | 10.23 | 2.79 | 29.03 | 0.04 | 3.80 | 8.67 | 8.07 | 2.63 |
531.8 | O=C–O–(C,H) | 13.81 | 16.07 | 7.31 | 17.46 | 30.47 | 5.66 | 14.96 | 7.30 | 5.82 | |
532.6 | C–O–C;C–OH | 37.32 | 36.12 | 29.61 | 35.69 | 41.57 | 34.29 | 40.53 | 31.31 | 26.80 | |
533.4 | O=C–O–(C,H) | 46.46 | 37.58 | 60.29 | 17.82 | 27.92 | 56.24 | 35.84 | 53.31 | 64.75 | |
N1s | 399.9–400.1 | N–C,N–C–COOH | 82.85 | 77.69 | 90.38 | 47.16 | 46.47 | 46.26 | / | / | / |
401.5–401.8 | Ammonium N | 17.15 | 22.31 | 9.62 | 28.17 | 11.66 | 10.85 | / | / | / | |
405.8–406.2 | Nitrate N | 0.00 | 0.00 | 0.00 | 24.67 | 41.87 | 42.89 | / | / | / |
Metal | Sample | Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | ||||
---|---|---|---|---|---|---|---|
Qe,1 ) | k1 (min−1) | R2 | Qe,2 ) | k2 )) | R2 | ||
Cd(II) | BC300 | 2.58 | 0.25 | 0.9733 | 2.66 | 0.16 | 0.9937 |
BC400 | 6.86 | 0.13 | 0.9439 | 7.22 | 0.03 | 0.9912 | |
BC500 | 3.93 | 0.13 | 0.9271 | 4.13 | 0.05 | 0.9792 | |
HNO3-BC300 | 16.83 | 0.43 | 0.9993 | 16.98 | 0.09 | 0.9999 | |
HNO3-BC400 | 15.23 | 0.33 | 0.9946 | 15.49 | 0.05 | 0.9994 | |
HNO3-BC500 | 4.81 | 0.04 | 0.9394 | 5.17 | 0.01 | 0.9819 | |
KOH-BC300 | 19.80 | 0.39 | 0.9984 | 20.02 | 0.06 | 0.9999 | |
KOH-BC400 | 19.61 | 0.44 | 0.9921 | 19.84 | 0.07 | 0.9977 | |
KOH-BC500 | 19.28 | 0.40 | 0.9977 | 19.46 | 0.06 | 0.9967 |
Metal | Sample | Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | ||||
---|---|---|---|---|---|---|---|
Qe,1 ) | k1 (min−1) | R2 | Qe,2 ) | k2 )) | R2 | ||
Pb(II) | BC300 | 4.20 | 0.12 | 0.9906 | 4.37 | 0.05 | 0.9946 |
BC400 | 12.51 | 0.57 | 0.9990 | 12.57 | 0.24 | 0.9993 | |
BC500 | 10.89 | 0.27 | 0.9723 | 11.19 | 0.04 | 0.9920 | |
HNO3-BC300 | 20.37 | 0.37 | 0.9991 | 20.61 | 0.05 | 0.9995 | |
HNO3-BC400 | 20.21 | 0.49 | 0.9951 | 20.39 | 0.09 | 0.9981 | |
HNO3-BC500 | 15.20 | 0.42 | 0.9922 | 15.37 | 0.08 | 0.9959 | |
KOH-BC300 | 20.07 | 0.44 | 0.9896 | 20.31 | 0.06 | 0.9952 | |
KOH-BC400 | 20.50 | 0.41 | 0.9973 | 20.72 | 0.06 | 0.9996 | |
KOH-BC500 | 19.88 | 0.48 | 0.9980 | 20.03 | 0.09 | 0.9994 |
Metal | Sample | Langmuir Adsorption Isotherms Model | Freundlich Adsorption Isotherms Model | ||||
---|---|---|---|---|---|---|---|
Qm | KL | R2 | 1/n | KF | R2 | ||
Cd(II) | BC300 | 5.96 | 0.0062 | 0.9230 | 0.54 | 0.18 | 0.9573 |
BC400 | 6.87 | 0.13 | 0.9927 | 0.15 | 2.98 | 0.9543 | |
BC500 | 4.69 | 0.14 | 0.9886 | 0.17 | 1.84 | 0.9674 | |
HNO3-BC300 | 23.12 | 0.62 | 0.9264 | 0.15 | 11.20 | 0.9639 | |
HNO3-BC400 | 17.50 | 0.60 | 0.9725 | 0.13 | 9.29 | 0.9540 | |
HNO3-BC500 | 6.79 | 0.08 | 0.9624 | 0.18 | 2.46 | 0.9506 | |
KOH-BC300 | 72.14 | 1.31 | 0.9791 | 0.16 | 35.38 | 0.8141 | |
KOH-BC400 | 29.11 | 2.36 | 0.9809 | 0.12 | 16.58 | 0.9353 | |
KOH-BC500 | 35.87 | 1.71 | 0.9705 | 0.12 | 19.51 | 0.8597 |
Metal | Sample | Langmuir Adsorption Isotherms Model | Freundlich Adsorption Isotherms Model | ||||
---|---|---|---|---|---|---|---|
Qm | KL | R2 | 1/n | KF | R2 | ||
Pb(II) | BC300 | 7.14 | 0.06 | 0.9778 | 0.25 | 1.74 | 0.9404 |
BC400 | 11.86 | 0.10 | 0.9921 | 0.22 | 3.47 | 0.9509 | |
BC500 | 9.98 | 0.012 | 0.9781 | 0.42 | 0.73 | 0.9651 | |
HNO3-BC300 | 89.46 | 0.20 | 0.9653 | 0.31 | 23.20 | 0.9623 | |
HNO3-BC400 | 71.52 | 0.21 | 0.9648 | 0.26 | 21.81 | 0.9557 | |
HNO3-BC500 | 27.77 | 0.20 | 0.9566 | 0.18 | 10.81 | 0.9406 | |
KOH-BC300 | 170.84 | 2.02 | 0.9788 | 0.11 | 114.80 | 0.9519 | |
KOH-BC400 | 93.58 | 0.26 | 0.9819 | 0.24 | 32.56 | 0.9069 | |
KOH-BC500 | 102.82 | 0.44 | 0.9822 | 0.24 | 38.87 | 0.8245 |
Raw Material | Pyrolysis Temperature | Modification Reagents | Target Pollutant | Adsorption Capacity (298 K) | Reference |
---|---|---|---|---|---|
Rice straw | 500 °C | / | Cd(II) | 5.55 mg·g−1 | (Wang et al., 2019) [45] |
Rice straw | 120 °C | Citric acid | Cd(II) | 8.14 mg·g−1 | (Wang et al., 2019) [45] |
Wheat straw | 600 °C | KOH; Fe(NO)3 | Cd(II) | 31.89 mg·g−1 | (Zhu et al., 2020) [46] |
Rice husk | 300 °C | KOH | Cd(II) | 72.14 mg·g−1 | This study |
Douglas fir green wood chips | 700 °C | KOH | Pb(II) | 80 mg·g−1 | (Herath et al., 2021) [47] |
Rice husk | 750 °C | NaOH; NaCl + KCl (1:1) | Pb(II) | 110.22 mg·g−1 | (Wu et al., 2022) [48] |
Poplar saw dust | 700 °C | / | Pb(II) | 62.68 mg·g−1 | (Cheng et al., 2021) [49] |
Rice husk | 300 °C | KOH | Pb(II) | 170.84 mg·g−1 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Wang, Q.; Zhang, Y.; Du, B.; Zhou, J.; Ji, D. Effects of Pyrolysis Temperatures and Modified Methods on Rice Husk-Derived Biochar Characteristics and Heavy Metal Adsorption. Molecules 2025, 30, 3616. https://doi.org/10.3390/molecules30173616
Huang Z, Wang Q, Zhang Y, Du B, Zhou J, Ji D. Effects of Pyrolysis Temperatures and Modified Methods on Rice Husk-Derived Biochar Characteristics and Heavy Metal Adsorption. Molecules. 2025; 30(17):3616. https://doi.org/10.3390/molecules30173616
Chicago/Turabian StyleHuang, Zhaoqin, Qin Wang, Yufeng Zhang, Buyun Du, Jun Zhou, and Dongliang Ji. 2025. "Effects of Pyrolysis Temperatures and Modified Methods on Rice Husk-Derived Biochar Characteristics and Heavy Metal Adsorption" Molecules 30, no. 17: 3616. https://doi.org/10.3390/molecules30173616
APA StyleHuang, Z., Wang, Q., Zhang, Y., Du, B., Zhou, J., & Ji, D. (2025). Effects of Pyrolysis Temperatures and Modified Methods on Rice Husk-Derived Biochar Characteristics and Heavy Metal Adsorption. Molecules, 30(17), 3616. https://doi.org/10.3390/molecules30173616