Aged Garlic Extract and Its Bioactive Molecules S-Allyl-Cysteine and S1-Propenyl-Cysteine: A Review Focusing on Evidences Supporting Their Use for Mitigating the Effects of Cigarette Smoking
Abstract
1. Introduction
2. Impact of Cigarette Smoke on Human Health
2.1. Smoking and Human Diseases
2.2. Smoking and Cancer
3. Mechanism(s) of Action of Cigarette Smoking: Inflammation
3.1. Cigarette Smoking and Nuclear Factor-kB (NF-kB)
3.2. Cigarette Smoke and Toll-like Receptor-4 (TLR4)
3.3. Cigarette Smoke and Increased Release of Pro-Inflammatory Proteins
3.4. Cigarette Smoke and Apoptosis
3.5. Cigarette-Smoke-Induced Formation of Reactive Oxygen Species (ROS)
4. Natural Products for the Mitigation of Toxic Biological Effects of Cigarette Smoke
4.1. Silymarin
4.2. Eucalyptol
4.3. Curcumin
4.4. Taraxasterol
4.5. Sulforaphane
4.6. Corilagin
4.7. Trans-4,4′-Dihydroxystilbene
4.8. Other Example of Natural Products Against CS Effects
5. Aged Garlic Extract and Its Bioactive Components: Candidates for Mitigating the Cigarette Smoking Effects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CS | Cigarette Smoke |
CSC | Cigarette Smoke Condensate |
CSE | Cigarette Smoke Extract |
VOC | Volatile Organic Compound |
NF-κB | Nuclear Factor-kappa-B |
TLR4 | Toll-like Receptor-4 |
Nrf2 | Nuclear Factor Erythroid 2-related factor 2 |
IL | Interleukin |
ROS | Reactive Oxygen Species |
AGE | Aged Garlic Extract |
SAC | S-allyl-cysteine |
S1PC | S1-propenyl-cysteine |
SFN | Sulforaphane |
DHS | Trans-4,4′-dihydroxystilbene |
COPD | Chronic Obstructive Pulmonary Disease |
CF | Cystic Fibrosis |
BAL | Bronchoalveolar lavage |
WHO | World Health Organization |
References
- World Health Organization. WHO Global Report on Trends in Prevalence of Tobacco Use 2000–2030; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Dai, X.; Gakidou, E.; Lopez, A.D. Evolution of the global smoking epidemic over the past half century: Strengthening the evidence base for policy action. Tob. Control 2022, 31, 129–137. [Google Scholar] [CrossRef]
- Varghese, J.; Muntode Gharde, P. A Comprehensive Review on the Impacts of Smoking on the Health of an Individual. Cureus 2023, 15, e46532. [Google Scholar] [CrossRef]
- Vassallo, R. Diffuse lung diseases in cigarette smokers. Semin. Respir. Crit. Care Med. 2012, 33, 533–542. [Google Scholar] [CrossRef]
- Kondo, T.; Nakano, Y.; Adachi, S.; Murohara, T. Effects of tobacco smoking on cardiovascular disease. Circ. J. 2019, 83, 1980–1985. [Google Scholar] [CrossRef]
- Durazzo, T.C.; Mattsson, N.; Weiner, M.W. Smoking and increased Alzheimer’s disease risk: A review of potential mechanisms. Alzheimers Dement. 2014, 10, 122–145. [Google Scholar] [CrossRef]
- Sloan, A.; Hussain, I.; Maqsood, M.; Eremin, O.; El-Sheemy, M. The effects of smoking on fracture healing. Surgeon 2010, 8, 111–116. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, L.; Yang, H.; Wu, X.; Luo, X.; Shen, J.; Xiao, Z.; Zhao, Y.; Du, F.; Chen, Y.; et al. Dysregulation of immunity by cigarette smoking promotes inflammation and cancer: A review. Environ. Pollut. 2023, 339, 122730. [Google Scholar] [CrossRef]
- Walser, T.; Cui, X.; Yanagawa, J.; Lee, J.M.; Heinrich, E.; Lee, G.; Sharma, S.; Dubinett, S.M. Smoking and lung cancer: The role of inflammation. Proc. Am. Thorac. Soc. 2008, 5, 811–815. [Google Scholar] [CrossRef]
- Xu, X.; Shrestha, S.S.; Trivers, K.F.; Neff, L.; Armour, B.S.; King, B.A. U.S. healthcare spending attributable to cigarette smoking in 2014. Prev. Med. 2021, 150, 106529. [Google Scholar] [CrossRef]
- Gu, D.; Sung, H.Y.; Calfee, C.S.; Wang, Y.; Yao, T.; Max, W. Smoking-Attributable Health Care Expenditures for US Adults With Chronic Lower Respiratory Disease. JAMA Netw. Open 2024, 7, e2413869. [Google Scholar] [CrossRef]
- Bancej, C.; O’Loughlin, J.; Platt, R.W.; Paradis, G.; Gervais, A. Smoking cessation attempts among adolescent smokers: A systematic review of prevalence studies. Tob. Control 2007, 16, e8. [Google Scholar] [CrossRef]
- Torchalla, I.; Okoli, C.T.; Bottorff, J.L.; Qu, A.; Poole, N.; Greaves, L. Smoking cessation programs targeted to women: A systematic review. Women Health 2012, 52, 32–54. [Google Scholar] [CrossRef]
- Aveyard, P.; Begh, R.; Parsons, A. Brief opportunistic smoking cessation interventions: A systematic review and meta-analysis to compare advice to quit and offer of assistance. Addiction 2012, 107, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, M.; Takahashi, Y.; Tateno, H.; Mori, M.; Nagayoshi, N.; Yonehara, H.; Nakasa, N.; Haruki, Y.; Hasegawa, K. Support for Patients Who Have Difficulty Quitting Smoking: A Review. Intern. Med. 2019, 58, 317–320. [Google Scholar] [CrossRef]
- Saad, C.; Cheng, B.H.; Takamizawa, R.; Thakur, A.; Lee, C.W.; Leung, L.; Veerman, J.L.; Aminde, L.N. Effectiveness of tobacco advertising, promotion and sponsorship bans on smoking prevalence, initiation and cessation: A systematic review and meta-analysis. Tob. Control 2025. [Google Scholar] [CrossRef]
- Siddiqi, K.; Elsey, H.; Khokhar, M.A.; Marshall, A.M.; Pokhrel, S.; Arora, M.; Crankson, S.; Mehra, R.; Morello, P.; Collin, J.; et al. Framework Convention on Tobacco Control 2030-A Program to Accelerate the Implementation of World Health Organization Framework Convention for Tobacco Control in Low- and Middle-Income Countries: A Mixed-Methods Evaluation. Nicotine Tob. Res. 2023, 25, 1074–1081. [Google Scholar] [CrossRef]
- Lahiri, S.; Bingenheimer, J.B.; Evans, W.D.; Wang, Y.; Cislaghi, B.; Dubey, P.; Snowden, B. Understanding the mechanisms of change in social norms around tobacco use: A systematic review and meta-analysis of interventions. Addiction 2025, 120, 215–235. [Google Scholar] [CrossRef] [PubMed]
- Tabeshpour, J.; Asadpour, A.; Norouz, S.; Hosseinzadeh, H. The protective effects of medicinal plants against cigarette smoking: A comprehensive review. Phytomedicine 2024, 135, 156199. [Google Scholar] [CrossRef]
- Hsu, C.L.; Wu, Y.L.; Tang, G.J.; Lee, T.S.; Kou, Y.R. Ginkgo biloba extract confers protection from cigarette smoke extract-induced apoptosis in human lung endothelial cells: Role of heme oxygenase-1. Pulm. Pharmacol. Ther. 2009, 22, 286–296. [Google Scholar] [CrossRef]
- Kennedy-Feitosa, E.; Okuro, R.T.; Pinho Ribeiro, V.; Lanzetti, M.; Barroso, M.V.; Zin, W.A.; Porto, L.C.; Brito-Gitirana, L.; Valenca, S.S. Eucalyptol attenuates cigarette smoke-induced acute lung inflammation and oxidative stress in the mouse. Pulm. Pharmacol. Ther. 2016, 41, 11–18. [Google Scholar] [CrossRef]
- Sasco, A.J.; Secretan, M.B.; Straif, K. Tobacco smoking and cancer: A brief review of recent epidemiological evidence. Lung Cancer 2004, 45 (Suppl. S2), S3–S9. [Google Scholar] [CrossRef]
- Sparrow, D.; Dawber, T.R. The influence of cigarette smoking on prognosis after a first myocardial infarction: A report from the Framingham Study. J. Chronic Dis. 1978, 31, 425–432. [Google Scholar] [CrossRef]
- Shinton, R.; Beevers, G. Meta-analysis of relation between cigarette smoking and stroke. BMJ 1989, 298, 789–794. [Google Scholar] [CrossRef]
- Ryu, J.H.; Colby, T.V.; Hartman, T.E.; Vassallo, R. Smoking-related interstitial lung diseases: A concise review. Eur. Respir. J. 2001, 17, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Maddatu, J.; Anderson-Baucum, E.; Evans-Molina, C. Smoking and the risk of type 2 diabetes. Transl. Res. 2017, 184, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Laniado-Laborín, R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21 century. Int. J. Environ. Res. Public Health 2009, 6, 209–224. [Google Scholar] [CrossRef]
- Edderkaoui, M.; Thrower, E. Smoking and Pancreatic Disease. J. Cancer Ther. 2013, 4, 34–40. [Google Scholar] [CrossRef]
- Roser, M. “Smoking: How Large of a Global Problem Is It? And How Can We Make Progress Against It?”. 2021. Available online: https://ourworldindata.org/smoking-big-problem-in-brief# (accessed on 28 May 2025).
- Phua, Z.J.; MacInnis, R.J.; Jayasekara, H. Cigarette smoking and risk of second primary cancer: A systematic review and meta-analysis. Cancer Epidemiol. 2022, 78, 102160. [Google Scholar] [CrossRef]
- Inoue-Choi, M.; Hartge, P.; Liao, L.M.; Caporaso, N.; Freedman, N.D. Association between long-term low-intensity cigarette smoking and incidence of smoking-related cancer in the national institutes of health-AARP cohort. Int. J. Cancer 2018, 142, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Khani, Y.; Pourgholam-Amiji, N.; Afshar, M.; Otroshi, O.; Sharifi-Esfahani, M.; Sadeghi-Gandomani, H.; Vejdani, M.; Salehiniya, H. Tobacco Smoking and Cancer Types: A Review. Biomed. Res. Ther. 2018, 5, 2142–2159. [Google Scholar] [CrossRef]
- Shi, H.; Shao, X.; Hong, Y. Association between cigarette smoking and the susceptibility of acute myeloid leukemia: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 10049–10057. [Google Scholar]
- Qi, K.; Cheng, H.; Jiang, Y.; Zheng, Y. Contribution of smoking to the global burden of bladder cancer from 1990 to 2021 and projections to 2046. Tob. Induc. Dis. 2025, 23, 44. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, X.; Lv, J.; Guo, Y.; Pei, P.; Yang, L.; Chen, Y.; Du, H.; Burgess, S.; Hacker, A.; et al. Association between involuntary smoking and risk of cervical cancer in Chinese female never smokers: A prospective cohort study. Environ. Res. 2022, 212 Pt C, 113371. [Google Scholar] [CrossRef]
- Bener, A.; Öztürk, A.E.; Dasdelen, M.F.; Barisik, C.C.; Dasdelen, Z.B.; Agan, A.F.; De La Rosette, J.; Day, A.S. Colorectal cancer and associated genetic, lifestyle, cigarette, nargileh-hookah use and alcohol consumption risk factors: A comprehensive case-control study. Oncol. Rev. 2024, 18, 1449709. [Google Scholar] [CrossRef]
- Islam, M.O.; Thangaretnam, K.; Lu, H.; Peng, D.; Soutto, M.; El-Rifai, W.; Giordano, S.; Ban, Y.; Chen, X.; Bilbao, D.; et al. Smoking induces WEE1 expression to promote docetaxel resistance in esophageal adenocarcinoma. Mol. Ther. Oncolytics 2023, 30, 286–300. [Google Scholar] [CrossRef]
- Yang, X.; Chen, H.; Zhang, J.; Zhang, S.; Wu, Y.S.; Pang, J. Association of cigarette use with risk of prostate cancer among US males: A cross-sectional study from NHANES 1999–2020. BMC Public Health 2025, 25, 608. [Google Scholar] [CrossRef]
- Campi, R.; Rebez, G.; Klatte, T.; Roussel, E.; Ouizad, I.; Ingels, A.; Pavan, N.; Kara, O.; Erdem, S.; Bertolo, R.; et al. Effect of smoking, hypertension and lifestyle factors on kidney cancer—perspectives for prevention and screening programmes. Nat. Rev. Urol. 2023, 20, 669–681. [Google Scholar] [CrossRef]
- Zuo, J.J.; Tao, Z.Z.; Chen, C.; Hu, Z.W.; Xu, Y.X.; Zheng, A.Y.; Guo, Y. Characteristics of cigarette smoking without alcohol consumption and laryngeal cancer: Overall and time-risk relation. A meta-analysis of observational studies. Eur. Arch. Otorhinolaryngol. 2017, 274, 1617–1631. [Google Scholar] [CrossRef]
- Lee, J.; Choi, J.Y.; Lee, S.K. Heavy smoking increases early mortality risk in patients with hepatocellular carcinoma after curative treatment. J. Liver Cancer 2024, 24, 253–262. [Google Scholar] [CrossRef]
- Tang, F.H.; Wong, H.Y.T.; Tsang, P.S.W.; Yau, M.; Tam, S.Y.; Law, L.; Yau, K.; Wong, J.; Farah, F.H.M.; Wong, J. Recent advancements in lung cancer research: A narrative review. Transl. Lung Cancer Res. 2025, 14, 975–990. [Google Scholar] [CrossRef]
- Pérez-Leal, M.; El Helou, B.; Roger, I. Electronic Cigarettes Versus Combustible Cigarettes in Oral Squamous Cell Cancer Patients: A Systematic Review. J. Oral Pathol. Med. 2025, 54, 199–206. [Google Scholar] [CrossRef]
- Subhan, M.; Saji Parel, N.; Krishna, P.V.; Gupta, A.; Uthayaseelan, K.; Uthayaseelan, K.; Kadari, M. Smoking and Pancreatic Cancer: Smoking Patterns, Tobacco Type, and Dose-Response Relationship. Cureus 2022, 14, e26009. [Google Scholar] [CrossRef]
- Li, L.F.; Chan, R.L.; Lu, L.; Shen, J.; Zhang, L.; Wu, W.K.; Wang, L.; Hu, T.; Li, M.X.; Cho, C.H. Cigarette smoking and gastrointestinal diseases: The causal relationship and underlying molecular mechanisms (review). Int. J. Mol. Med. 2014, 34, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.W.; Cartmell, K.B.; Garrett-Mayer, E.; Salloum, R.G.; Cummings, K.M. Attributable Failure of First-line Cancer Treatment and Incremental Costs Associated With Smoking by Patients With Cancer. JAMA Netw. Open 2019, 2, e191703. [Google Scholar] [CrossRef] [PubMed]
- Petrucci, C.M.; Hyland, A. Understanding the Financial Consequences of Smoking During Cancer Treatment in the Era of Value-Based Medicine. JAMA Netw. Open 2019, 2, e191713. [Google Scholar] [CrossRef]
- Warren, G.W. Mitigating the adverse health effects and costs associated with smoking after a cancer diagnosis. Transl. Lung Cancer Res. 2019, 8 (Suppl. S1), S59–S66. [Google Scholar] [CrossRef]
- Isaranuwatchai, W.; de Oliveira, C.; Mittmann, N.; Evans, W.K.B.; Peter, A.; Truscott, R.; Chan, K.K. Impact of smoking on health system costs among cancer patients in a retrospective cohort study in Ontario, Canada. BMJ Open 2019, 9, e026022. [Google Scholar] [CrossRef]
- Arrieta, O.; Quintana-Carrillo, R.H.; Ahumada-Curiel, G.; Corona-Cruz, J.F.; Correa-Acevedo, E.; Zinser-Sierra, J.; de la Mata-Moya, D.; Mohar-Betancourt, A.; Morales-Oyarvide, V.; Myriam Reynales-Shigematsu, L. Medical care costs incurred by patients with smoking-related non-small cell lung cancer treated at the National Cancer Institute of Mexico. Tob. Induc. Dis. 2015, 12, 25. [Google Scholar] [CrossRef]
- Nguyen, T.X.T.; Han, M.; Oh, J.K. The economic burden of cancers attributable to smoking in Korea, 2014. Tob. Induc. Dis. 2019, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Taneja, V.; Vassallo, R. Cigarette smoking and inflammation: Cellular and molecular mechanisms. J. Dent. Res. 2012, 91, 142–149. [Google Scholar] [CrossRef]
- Wang, H.; Chen, H.; Fu, Y.; Liu, M.; Zhang, J.; Han, S.; Tian, Y.; Hou, H.; Hu, Q. Effects of Smoking on Inflammatory-Related Cytokine Levels in Human Serum. Molecules 2022, 27, 3715. [Google Scholar] [CrossRef]
- Elisia, I.; Lam, V.; Cho, B.; Hay, M.; Li, M.Y.; Yeung, M.; Bu, L.; Jia, W.; Norton, N.; Lam, S.; et al. The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci. Rep. 2020, 10, 19480. [Google Scholar] [CrossRef]
- Lugade, A.A.; Bogner, P.N.; Thatcher, T.H.; Sime, P.J.; Phipps, R.P.; Thanavala, Y. Cigarette smoke exposure exacerbates lung inflammation and compromises immunity to bacterial infection. J. Immunol. 2014, 192, 5226–5235. [Google Scholar] [CrossRef]
- Anto, R.J.; Mukhopadhyay, A.; Shishodia, S.; Gairola, C.G.; Aggarwal, B.B. Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): Correlation with induction of cyclooxygenase-2. Carcinogenesis 2002, 23, 1511–1518. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Shabnam, B.; Girisa, S.; Harsha, C.; Banik, K.; Devi, T.B.; Choudhury, R.; Sahu, H.; Parama, D.; Sailo, B.L.; et al. Inflammation, NF-κB, and Chronic Diseases: How are They Linked? Crit. Rev. Immunol. 2020, 40, 1–39. [Google Scholar] [CrossRef]
- Doz, E.; Noulin, N.; Boichot, E.; Guénon, I.; Fick, L.; Le Bert, M.; Lagente, V.; Ryffel, B.; Schnyder, B.; Quesniaux, V.F.; et al. Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J. Immunol. 2008, 180, 1169–1178. [Google Scholar] [CrossRef]
- Karimi, K.; Sarir, H.; Mortaz, E.; Smit, J.J.; Hosseini, H.; De Kimpe, S.J.; Nijkamp, F.P.; Folkerts, G. Toll-like receptor-4 mediates cigarette smoke-induced cytokine production by human macrophages. Respir. Res. 2006, 7, 66. [Google Scholar] [CrossRef]
- Sarir, H.; Mortaz, E.; Karimi, K.; Kraneveld, A.D.; Rahman, I.; Caldenhoven, E.; Nijkamp, F.P.; Folkerts, G. Cigarette smoke regulates the expression of TLR4 and IL-8 production by human macrophages. J. Inflamm. 2009, 6, 12. [Google Scholar] [CrossRef]
- Nadigel, J.; Préfontaine, D.; Baglole, C.J.; Maltais, F.; Bourbeau, J.; Eidelman, D.H.; Hamid, Q. Cigarette smoke increases TLR4 and TLR9 expression and induces cytokine production from CD8(+) T cells in chronic obstructive pulmonary disease. Respir. Res. 2011, 12, 149. [Google Scholar] [CrossRef]
- Pace, E.; Ferraro, M.; Siena, L.; Melis, M.; Montalbano, A.M.; Johnson, M.; Bonsignore, M.R.; Bonsignore, G.; Gjomarkaj, M. Cigarette smoke increases Toll-like receptor 4 and modifies lipopolysaccharide-mediated responses in airway epithelial cells. Immunology 2008, 124, 401–411. [Google Scholar] [CrossRef]
- Yeh, H.Y.; Hung, S.H.; Chen, S.C.; Guo, F.R.; Huang, H.L.; Peng, J.K.; Lee, C.S.; Tsai, J.S. The Expression of Toll-Like Receptor 4 mRNA in PBMCs Is Upregulated in Smokers and Decreases Upon Smoking Cessation. Front. Immunol. 2021, 12, 667460. [Google Scholar] [CrossRef]
- Hudlikar, R.R.; Chou, P.J.; Kuo, H.D.; Sargsyan, D.; Wu, R.; Kong, A.N. Long term exposure of cigarette smoke condensate (CSC) mediates transcriptomic changes in normal human lung epithelial Beas-2b cells and protection by garlic compounds. Food Chem. Toxicol. 2023, 174, 113656. [Google Scholar] [CrossRef]
- Khan, D.; Zhou, H.; You, J.; Kaiser, V.A.; Khajuria, R.K.; Muhammad, S. Tobacco smoke condensate-induced senescence in endothelial cells was ameliorated by colchicine treatment via suppression of NF-κB and MAPKs P38 and ERK pathways activation. Cell Commun. Signal. 2024, 22, 214. [Google Scholar] [CrossRef] [PubMed]
- Thaiparambil, J.; Amara, C.S.; Sen, S.; Putluri, N.; El-Zein, R. Cigarette smoke condensate induces centrosome clustering in normal lung epithelial cells. Cancer Med. 2023, 12, 8499–8509. [Google Scholar] [CrossRef]
- Gellner, C.A.; Reynaga, D.D.; Leslie, F.M. Cigarette Smoke Extract: A Preclinical Model of Tobacco Dependence. Curr. Protoc. Neurosci. 2016, 77, 9.54.1–9.54.10. [Google Scholar] [CrossRef]
- Hirata, N.; Horinouchi, T.; Kanda, Y. Effects of cigarette smoke extract derived from heated tobacco products on the proliferation of lung cancer stem cells. Toxicol. Rep. 2022, 9, 1273–1280. [Google Scholar] [CrossRef]
- Amel Al-Hashimi Shah, J.; Carpenter, R.; Morgan, W.; Meah, M.; Ruchaya, P.J. An In-Vitro Standardized Protocol for Preparing Smoke 1 Extract Media from Cigarette, Electronic Cigarette and 2 Waterpipe. bioRxiv 2024. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, M.-S. Development and assessment of a novel standardized method for preparation of whole cigarette smoke condensate (WCSC) for toxicity testing of cigarette smoke. Microchem. J. 2023, 191, 108914. [Google Scholar] [CrossRef]
- Higashi, T.; Mai, Y.; Noya, Y.; Horinouchi, T.; Terada, K.; Hoshi, A.; Nepal, P.; Harada, T.; Horiguchi, M.; Hatate, C.; et al. A simple and rapid method for standard preparation of gas phase extract of cigarette smoke. PLoS ONE 2014, 9, e107856. [Google Scholar] [CrossRef]
- Wright, C. Standardized methods for the regulation of cigarette-smoke constituents. Trends Anal. Chem. 2015, 66, 118–127. [Google Scholar] [CrossRef]
- Mathewson, H.D. The Direct Preparation of Cigarette Smoke Condensate by High Velocity Impaction. Contrib. Tob. Nicotine Res. 1966, 3, 430–437. [Google Scholar] [CrossRef]
- Agraval, H.; Sharma, J.R.; Yadav, U.C.S. Method of Preparation of Cigarette Smoke Extract to Assess Lung Cancer-Associated Changes in Airway Epithelial Cells. Methods Mol. Biol. 2022, 2413, 121–132. [Google Scholar]
- Li, X. In vitro toxicity testing of cigarette smoke based on the air-liquid interface exposure: A review. Toxicol. In Vitro 2016, 36, 105–113. [Google Scholar] [CrossRef]
- Singh, A.V.; Maharjan, R.S.; Kromer, C.; Laux, P.; Luch, A.; Vats, T.; Chandrasekar, V.; Dakua, S.P.; Park, B.W. Advances in Smoking Related In Vitro Inhalation Toxicology: A Perspective Case of Challenges and Opportunities from Progresses in Lung-on-Chip Technologies. Chem. Res. Toxicol. 2021, 34, 1984–2002. [Google Scholar] [CrossRef]
- Horiyama, S.; Kunitomo, M.; Yoshikawa, N.; Nakamura, K. Mass Spectrometric Approaches to the Identification of Potential Ingredients in Cigarette Smoke Causing Cytotoxicity. Biol. Pharm. Bull. 2016, 39, 903–908. [Google Scholar] [CrossRef]
- Fresenius, R.E. Analysis of tobacco smoke condensate. J. Anal. Appl. Pyrolysis 1985, 8, 561–575. [Google Scholar] [CrossRef]
- Khattri, R.B.; Thome, T.; Fitzgerald, L.F.; Wohlgemuth, S.E.; Hepple, R.T.; Ryan, T.E. NMR Spectroscopy Identifies Chemicals in Cigarette Smoke Condensate That Impair Skeletal Muscle Mitochondrial Function. Toxics 2022, 10, 140. [Google Scholar] [CrossRef]
- Liu, G.; Wang, R.; Chen, H.; Wu, P.; Fu, Y.; Li, K.; Liu, M.; Shi, Z.; Zhang, Y.; Su, Y.; et al. Non-nicotine constituents in cigarette smoke extract enhance nicotine addiction through monoamine oxidase A inhibition. Front. Neurosci. 2022, 16, 1058254. [Google Scholar] [CrossRef]
- Park, J.M.; Jeong, H.; Seo, Y.S.; Do, V.Q.; Choi, S.J.; Lee, K.; Choi, K.C.; Choi, W.J.; Lee, M.Y. Cigarette Smoke Extract Produces Superoxide in Aqueous Media by Reacting with Bicarbonate. Toxics 2021, 9, 316. [Google Scholar] [CrossRef]
- Kim, Y.H.; An, Y.J.; Jo, S.; Lee, S.H.; Lee, S.J.; Choi, S.J.; Lee, K. Comparison of volatile organic compounds between cigarette smoke condensate (CSC) and extract (CSE) samples. Environ. Health Toxicol. 2018, 33, e2018012-0. [Google Scholar] [CrossRef]
- Sun, S.C.; Ley, S.C. New insights into NF-kappaB regulation and function. Trends Immunol. 2008, 29, 469–478. [Google Scholar] [CrossRef]
- Hacker, H.; Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, 2006, re13. [Google Scholar] [CrossRef]
- Chen, F.E.; Huang, D.B.; Chen, Y.Q.; Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription factor NF-κB bound to DNA. Nature 1998, 391, 410–413. [Google Scholar] [CrossRef]
- Hoffmann, A.; Natoli, G.; Ghosh, G. Transcriptional regulation via the NF-κB signaling module. Oncogene 2006, 25, 6706–6716. [Google Scholar] [CrossRef]
- Mathes, E.; O’Dea, E.L.; Hoffmann, A.; Ghosh, G. NF-kappaB dictates the degradation pathway of IkappaBalpha. EMBO J. 2008, 27, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Qin, S.; Qin, L.; Liu, L.; Sun, W.; Li, X.; Li, N.; Wu, R.; Wang, X. Cigarette smoke extract-induced p120-mediated NF-κB activation in human epithelial cells is dependent on the RhoA/ROCK pathway. Sci. Rep. 2016, 6, 23131. [Google Scholar] [CrossRef] [PubMed]
- Wang, V.; Heffer, A.; Roztocil, E.; Feldon, S.E.; Libby, R.T.; Woeller, C.F.; Kuriyan, A.E. TNF-α and NF-κB signaling play a critical role in cigarette smoke-induced epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy. PLoS ONE 2022, 17, e0271950. [Google Scholar] [CrossRef]
- Wang, H.; Yang, T.; Shen, Y.; Wan, C.; Li, X.; Li, D.; Liu, Y.; Wang, T.; Xu, D.; Wen, F.; et al. Ghrelin Inhibits Interleukin-6 Production Induced by Cigarette Smoke Extract in the Bronchial Epithelial Cell Via NF-κB Pathway. Inflammation 2016, 39, 190–198. [Google Scholar] [CrossRef]
- Wang, D.; Tao, K.; Xion, J.; Xu, S.; Jiang, Y.; Chen, Q.; He, S. TAK-242 attenuates acute cigarette smoke-induced pulmonary inflammation in mouse via the TLR4/NF-κB signaling pathway. Biochem. Biophys. Res. Commun. 2016, 472, 508–515. [Google Scholar] [CrossRef]
- Wang, L.; Meng, J.; Wang, C.; Wang, Y.; Yang, C.; Li, Y. Hydrogen sulfide attenuates cigarette smoke-induced pyroptosis through the TLR4/NF-κB signaling pathway. Int. J. Mol. Med. 2022, 49, 56. [Google Scholar] [CrossRef]
- Muresan, X.M.; Cervellati, F.; Sticozzi, C.; Belmonte, G.; Chui, C.H.; Lampronti, I.; Borgatti, M.; Gambari, R.; Valacchi, G. The loss of cellular junctions in epithelial lung cells induced by cigarette smoke is attenuated by corilagin. Oxid. Med. Cell. Longev. 2015, 2015, 631758. [Google Scholar] [CrossRef]
- Geraghty, P.; Dabo, A.J.; D’Armiento, J. TLR4 protein contributes to cigarette smoke-induced matrix metalloproteinase-1 (MMP-1) expression in chronic obstructive pulmonary disease. J. Biol. Chem. 2011, 286, 30211–30218. [Google Scholar] [CrossRef]
- Zhang, F.; Geng, Y.; Shi, X.; Duo, J. EGR3 deficiency alleviates cigarette smoke-induced pulmonary inflammation in COPD through TLR4/NF-κB/TIMP-1 axis. Biochem. Biophys. Res. Commun. 2025, 763, 151741. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Smith, C.; Yin, H. Targeting Toll-like receptors with small molecule agents. Chem. Soc. Rev. 2013, 42, 4859–4866. [Google Scholar] [CrossRef]
- Takashima, K.; Matsunaga, N.; Yoshimatsu, M.; Hazeki, K.; Kaisho, T.; Uekata, M.; Hazeki, O.; Akira, S.; Iizawa, Y.; Ii, M. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br. J. Pharmacol. 2009, 157, 1250–1262. [Google Scholar] [CrossRef]
- Mio, T.; Romberger, D.J.; Thompson, A.B.; Robbins, R.A.; Heires, A.; Rennard, S.I. Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am. J. Respir. Crit. Care Med. 1997, 155, 1770–1776. [Google Scholar] [CrossRef] [PubMed]
- Levänen, B.; Glader, P.; Dahlén, B.; Billing, B.; Qvarfordt, I.; Palmberg, L.; Larsson, K.; Lindén, A. Impact of tobacco smoking on cytokine signaling via interleukin-17A in the peripheral airways. Int. Peer-Rev. J. Ther. Pharmacol. 2016, 11, 2109–2116. [Google Scholar] [CrossRef]
- Guo, J.H.; Thuong, L.H.H.; Jiang, Y.J.; Huang, C.L.; Huang, Y.W.; Cheng, F.J.; Liu, P.I.; Liu, C.L.; Huang, W.C.; Tang, C.H. Cigarette smoke promotes IL-6-dependent lung cancer migration and osteolytic bone metastasis. Int. J. Biol. Sci. 2024, 20, 3257–3268. [Google Scholar] [CrossRef]
- Reynolds, P.R.; Cosio, M.G.; Hoidal, J.R. Cigarette smoke-induced Egr-1 upregulates proinflammatory cytokines in pulmonary epithelial cells. Am. J. Respir. Cell Mol. Biol. 2006, 35, 314–319. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, C.H.; Woo, J.; Jeong, J.; Jang, A.H.; Yoo, C.G. Cigarette Smoke Extract Enhances IL-17A-Induced IL-8 Production via Up-Regulation of IL-17R in Human Bronchial Epithelial Cells. Mol Cells 2018, 41, 282–289. [Google Scholar]
- Yang, S.R.; Chida, A.S.; Bauter, M.R.; Shafiq, N.; Seweryniak, K.; Maggirwar, S.B.; Kilty, I.; Rahman, I. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 291, L46–L57. [Google Scholar] [CrossRef]
- Oltmanns, U.; Chung, K.F.; Walters, M.; John, M.; Mitchell, J.A. Cigarette smoke induces IL-8, but inhibits eotaxin and RANTES release from airway smooth muscle. Respir. Res. 2005, 6, 74. [Google Scholar] [CrossRef]
- Ramage, L.; Jones, A.C.; Whelan, C.J. Induction of apoptosis with tobacco smoke and related products in A549 lung epithelial cells in vitro. J. Inflamm. 2006, 3, 3. [Google Scholar] [CrossRef]
- Jiao, Z.X.; Ao, Q.L.; Xiong, M. Cigarette smoke extract inhibits the proliferation of alveolar epithelial cells and induces apoptosis. Sheng Li Xue Bao 2006, 58, 244–254. [Google Scholar]
- Wang, J.; Wilcken, D.E.; Wang, X.L. Cigarette smoke activates caspase-3 to induce apoptosis of human umbilical venous endothelial cells. Mol. Genet. Metab. 2001, 72, 82–88. [Google Scholar] [CrossRef]
- Messner, B.; Frotschnig, S.; Steinacher-Nigisch, A.; Winter, B.; Eichmair, E.; Gebetsberger, J.; Schwaiger, S.; Ploner, C.; Laufer, G.; Bernhard, D. Apoptosis and necrosis: Two different outcomes of cigarette smoke condensate-induced endothelial cell death. Cell Death Dis. 2012, 3, e424. [Google Scholar] [CrossRef]
- Feng, H.; Li, M.; Altawil, A.; Yin, Y.; Zheng, R.; Kang, J. Cigarette smoke extracts induce apoptosis in Raw264.7 cells via endoplasmic reticulum stress and the intracellular Ca2+/P38/STAT1 pathway. Toxicol. In Vitro 2021, 77, 105249. [Google Scholar] [CrossRef]
- Banerjee, S.; Maity, P.; Mukherjee, S.; Sil, A.K.; Panda, K.; Chattopadhyay, D.; Chatterjee, I.B. Black tea prevents cigarette smoke-induced apoptosis and lung damage. J. Inflamm. 2007, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-X.; Yang, X.-F.; Jiang, J.-X.; Zhang, S.-J.; Guan, Y.; Liu, Y.-N.; Sun, Y.-H.; Xie, Q.-M. Cigarette smoke extract- induced BEAS-2B cell apoptosis and anti-oxidative Nrf-2 up-regulation are mediated by ROS-stimulated p38 activation. Toxicol. Mech. Methods 2014, 24, 575–583. [Google Scholar] [CrossRef]
- Seo, Y.S.; Park, J.M.; Kim, J.H.; Lee, M.Y. Cigarette Smoke-Induced Reactive Oxygen Species Formation: A Concise Review. Antioxidants 2023, 12, 1732. [Google Scholar] [CrossRef]
- Lyons, M.J.; Gibson, J.F.; Ingram, D.J. Free-radicals produced in cigarette smoke. Nature 1958, 181, 1003–1004. [Google Scholar] [CrossRef] [PubMed]
- Shein, M.; Jeschke, G. Comparison of free radical levels in the aerosol from conventional cigarettes, electronic cigarettes, and heat-not-burn tobacco products. Chem. Res. Toxicol. 2019, 32, 1289–1298. [Google Scholar] [CrossRef]
- Bartalis, J.; Chan, W.G.; Wooten, J.B. A new look at radicals in cigarette smoke. Anal. Chem. 2007, 79, 5103–5106. [Google Scholar] [CrossRef]
- Mitra, A.; Mandal, A.K. Conjugation of para-benzoquinone of cigarette smoke with human hemoglobin leads to unstable tetramer and reduced cooperative oxygen binding. J. Am. Soc. Mass Spectrom. 2018, 29, 2048–2058. [Google Scholar] [CrossRef]
- Ghosh, A.; Choudhury, A.; Das, A.; Chatterjee, N.S.; Das, T.; Chowdhury, R.; Panda, K.; Banerjee, R.; Chatterjee, I.B. Cigarette smoke induces p-benzoquinone-albumin adduct in blood serum: Implications on structure and ligand binding properties. Toxicology 2012, 292, 78–89. [Google Scholar] [CrossRef]
- Chang, K.H.; Park, J.M.; Lee, C.H.; Kim, B.; Choi, K.C.; Choi, S.J.; Lee, K.; Lee, M.Y. NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells. Toxicol. In Vitro 2017, 38, 49–58. [Google Scholar] [CrossRef]
- Yildiz, L.; Kayaoglu, N.; Aksoy, H. The changes of superoxide dismutase, catalase and glutathione peroxidase activities in erythrocytes of active and passive smokers. Clin. Chem. Lab. Med. 2002, 40, 612–615. [Google Scholar] [CrossRef]
- Kondo, T.; Tagami, S.; Yoshioka, A.; Nishimura, M.; Kawakami, Y. Current smoking of elderly men reduces antioxidants in alveolar macrophages. Am. J. Respir. Crit. Care Med. 1994, 149, 178–182. [Google Scholar] [CrossRef]
- Oriola, A.O.; Oyedeji, A.O. Plant-Derived Natural Products as Lead Agents against Common Respiratory Diseases. Molecules 2022, 27, 3054. [Google Scholar] [CrossRef]
- Li, D.; Hu, J.; Wang, T.; Zhang, X.; Liu, L.; Wang, H.; Wu, Y.; Xu, D.; Wen, F. Silymarin attenuates cigarette smoke extract-induced inflammation via simultaneous inhibition of autophagy and ERK/p38 MAPK pathway in human bronchial epithelial cells. Sci. Rep. 2016, 6, 37751. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xu, D.; Wang, T.; Shen, Y.; Guo, S.; Zhang, X.; Guo, L.; Li, X.; Liu, L.; Wen, F. Silymarin attenuates airway inflammation induced by cigarette smoke in mice. Inflammation 2015, 38, 871–878. [Google Scholar] [CrossRef]
- Hoch, C.C.; Petry, J.; Griesbaum, L.; Weiser, T.; Werner, K.; Ploch, M.; Verschoor, A.; Multhoff, G.; Bashiri Dezfouli, A.; Wollenberg, B. 1,8-cineole (eucalyptol): A versatile phytochemical with therapeutic applications across multiple diseases. Biomed. Pharmacother. 2023, 167, 115467. [Google Scholar] [CrossRef]
- Seol, G.H.; Kim, K.Y. Eucalyptol and Its Role in Chronic Diseases. Adv. Exp. Med. Biol. 2016, 929, 389–398. [Google Scholar]
- Reis, R.; Orak, D.; Yilmaz, D.; Cimen, H.; Sipahi, H. Modulation of cigarette smoke extract-induced human bronchial epithelial damage by eucalyptol and curcumin. Hum. Exp. Toxicol. 2021, 40, 1445–1462. [Google Scholar] [CrossRef]
- Yu, N.; Sun, Y.T.; Su, X.M.; He, M.; Dai, B.; Kang, J. Treatment with eucalyptol mitigates cigarette smoke-induced lung injury through suppressing ICAM-1 gene expression. Biosci. Rep. 2018, 38, BSR20171636. [Google Scholar] [CrossRef]
- Kennedy-Feitosa, E.; Cattani-Cavalieri, I.; Barroso, M.V.; Romana-Souza, B.; Brito-Gitirana, L.; Valenca, S.S. Eucalyptol promotes lung repair in mice following cigarette smoke-induced emphysema. Phytomedicine 2019, 55, 70–79. [Google Scholar] [CrossRef]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The Essential Medicinal Chemistry of Curcumin. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Fanoudi, S.; Alavi, M.S.; Mehri, S.; Hosseinzadeh, H. The protective effects of curcumin against cigarette smoke-induced toxicity: A comprehensive review. Phytother. Res. 2024, 38, 98–116. [Google Scholar] [CrossRef]
- Kokkinis, S.; De Rubis, G.; Paudel, K.R.; Patel, V.K.; Yeung, S.; Jessamine, V.; MacLoughlin, R.; Hansbro, P.M.; Oliver, B.; Dua, K. Liposomal curcumin inhibits cigarette smoke induced senescence and inflammation in human bronchial epithelial cells. Pathol. Res. Pract. 2024, 260, 155423. [Google Scholar] [CrossRef]
- Patel, V.K.; Kokkinis, S.; De Rubis, G.; Hansbro, P.M.; Paudel, K.R.; Dua, K. Curcumin liposomes attenuate the expression of cigarette smoke extract-induced inflammatory markers IL-8 and IL-24 in vitro. EXCLI J. 2024, 23, 904–907. [Google Scholar]
- Li, Q.; Sun, J.; Mohammadtursun, N.; Wu, J.; Dong, J.; Li, L. Curcumin inhibits cigarette smoke-induced inflammation via modulating the PPARγ-NF-κB signaling pathway. Food Funct. 2019, 10, 7983–7994. [Google Scholar] [CrossRef]
- Ames, T.R.; Beton, J.L.; Bowers, A.; Halsall, T.G.; Jones, E. The chemistry of the triterpenes and related compounds Part XXIII the structure of taraxasterol ψ-taraxasterol (heterolupeol) and lupenol-I. J. Chem. Soc. 1954, 25, 307–318. [Google Scholar] [CrossRef]
- Jiao, F.; Tan, Z.; Yu, Z.; Zhou, B.; Meng, L.; Shi, X. The phytochemical and pharmacological profile of taraxasterol. Front. Pharmacol. 2022, 13, 927365. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, D.; Wang, T. Taraxasterol inhibits cigarette smoke-induced lung inflammation by inhibiting reactive oxygen species-induced TLR4 trafficking to lipid rafts. Eur. J. Pharmacol. 2016, 789, 301–307. [Google Scholar]
- Yagishita, Y.; Fahey, J.W.; Dinkova-Kostova, A.T.; Kensler, T.W. Broccoli or Sulforaphane: Is It the Source or Dose That Matters? Molecules 2019, 24, 3593. [Google Scholar] [CrossRef]
- Baralić, K.; Živanović, J.; Marić, Đ.; Bozic, D.; Grahovac, L.; Antonijević Miljaković, E.; Ćurčić, M.; Buha Djordjevic, A.; Bulat, Z.; Antonijević, B.; et al. Sulforaphane-A Compound with Potential Health Benefits for Disease Prevention and Treatment: Insights from Pharmacological and Toxicological Experimental Studies. Antioxidants 2024, 13, 147. [Google Scholar] [CrossRef]
- Song, H.; Wang, Y.H.; Zhou, H.Y.; Cui, K.M. Sulforaphane alleviates LPS-induced inflammatory injury in ARPE-19 cells by repressing the PWRN2/NF-kB pathway. Immunopharmacol. Immunotoxicol. 2022, 44, 868–876. [Google Scholar] [CrossRef]
- Gasparello, J.; Marzaro, G.; Papi, C.; Gentili, V.; Rizzo, R.; Zurlo, M.; Scapoli, C.; Finotti, A.; Gambari, R. Effects of Sulforaphane on SARS-CoV-2 infection and NF-kappaB dependent expression of genes involved in the COVID-19 ‘cytokine storm’. Int. J. Mol. Med. 2023, 52, 76. [Google Scholar] [CrossRef]
- Starrett, W.; Blake, D.J. Sulforaphane inhibits de novo synthesis of IL-8 and MCP-1 in human epithelial cells generated by cigarette smoke extract. J. Immunotoxicol. 2011, 8, 150–158. [Google Scholar] [CrossRef]
- Jiao, Z.; Chang, J.; Li, J.; Nie, D.; Cui, H.; Guo, D. Sulforaphane increases Nrf2 expression and protects alveolar epithelial cells against injury caused by cigarette smoke extract. Mol. Med. Rep. 2017, 16, 1241–1247. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhang, Q.; Chang, J.; Nie, D.; Li, M.; Zhu, Y.; Wang, C.; Wang, Y.; Liu, F. A protective role of sulforaphane on alveolar epithelial cells exposed to cigarette smoke extract. Exp. Lung Res. 2013, 39, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Hau, D.K.; Gambari, R.; Wong, R.S.; Yuen, M.C.; Cheng, G.Y.; Tong, C.S.; Zhu, G.Y.; Leung, A.K.; Lai, P.B.; Lau, F.Y.; et al. Phyllanthus urinaria extract attenuates acetaminophen induced hepatotoxicity: Involvement of cytochrome P450 CYP2E1. Phytomedicine 2009, 16, 751–760. [Google Scholar] [CrossRef]
- Sudjaroen, Y.; Hull, W.E.; Erben, G.; Würtele, G.; Changbumrung, S.; Ulrich, C.M.; Owen, R.W. Isolation and characterization of ellagitannins as the major polyphenolic components of Longan (Dimocarpus longan Lour) seeds. Phytochemistry 2012, 77, 226–237. [Google Scholar] [CrossRef]
- Okabe, S.; Suganuma, M.; Imayoshi, Y.; Taniguchi, S.; Yoshida, T.; Fujiki, H. New TNF-α releasing inhibitors, geraniin and corilagin, in leaves of acer nikoense, megusurino-ki. Biol. Pharm. Bull. 2001, 24, 1145–1148. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, S.L.; Tao, J.Y.; Pang, R.; Jin, F.; Guo, Y.J.; Dong, J.H.; Ye, P.; Zhao, H.Y.; Zheng, G.H. Preliminary exploration on anti-inflammatory mechanism of Corilagin (beta-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose) in vitro. Int. Immunopharmacol. 2008, 8, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, S.; Inoue, Y.; Nakama, S.; Ichiba, T.; Aniya, Y. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine 2007, 14, 755–762. [Google Scholar] [CrossRef]
- Luo, T.; Zhou, X.; Qin, M.; Lin, Y.; Lin, J.; Chen, G.; Liu, A.; Ouyang, D.; Chen, D.; Pan, H. Corilagin Restrains NLRP3 Inflammasome Activation and Pyroptosis through the ROS/TXNIP/NLRP3 Pathway to Prevent Inflammation. Oxid. Med. Cell. Longev. 2022, 2022, 1652244. [Google Scholar] [CrossRef]
- Fan, G.J.; Liu, X.D.; Qian, Y.P.; Shang, Y.J.; Li, X.Z.; Dai, F.; Fang, J.G.; Jin, X.L.; Zhou, B. 4,4′-Dihydroxy-trans-stilbene, a resveratrol analogue, exhibited enhanced antioxidant activity and cytotoxicity. Bioorg. Med. Chem. 2009, 17, 2360–2365. [Google Scholar] [CrossRef]
- Wang, T.; Dai, F.; Li, G.H.; Chen, X.M.; Li, Y.R.; Wang, S.Q.; Ren, D.M.; Wang, X.N.; Lou, H.X.; Zhou, B.; et al. Trans-4,4′-dihydroxystilbene ameliorates cigarette smoke-induced progression of chronic obstructive pulmonary disease via inhibiting oxidative stress and inflammatory response. Free Radic. Biol. Med. 2020, 152, 525–539. [Google Scholar] [CrossRef]
- Al-Joufi, F.A.; Shaukat, S.; Hussain, L.; Khan, K.U.R.; Hussain, N.; Al Haddad, A.H.I.; Alqahtani, A.; Alqahtani, T.; Momenah, M.A.; Ibrahim, S.A.; et al. Lavandula stoechas significantly alleviates cigarette smoke-induced acute lung injury via modulation of oxidative stress and the NF-κB pathway. Food Biosci. 2024, 59, 103834. [Google Scholar] [CrossRef]
- Hussain, N.; Ikram, N.; Khan, K.U.R.; Hussain, L.; Alqahtani, A.M.; Alqahtani, T.; Hussain, M.; Suliman, M.; Alshahrani, M.Y.; Sitohy, B. Cichorium intybus L. significantly alleviates cigarette smoke-induced acute lung injury by lowering NF-κB pathway activation and inflammatory mediators. Heliyon 2023, 9, e22055. [Google Scholar] [CrossRef]
- Zeng, L.H.; Fatima, M.; Syed, S.K.; Shaukat, S.; Mahdy, A.; Hussain, N.; Al Haddad, A.H.I.; Said, A.S.A.; Alqahtani, A.; Alqahtani, T.; et al. Anti-inflammatory and anti-oxidant properties of Ipomoea nil (Linn.) Roth significantly alleviates cigarette smoke (CS)-induced acute lung injury via possibly inhibiting the NF-κB pathway. Biomed. Pharmacother. 2022, 155, 113267. [Google Scholar] [CrossRef]
- Barroso, M.V.; Cattani-Cavalieri, I.; de Brito-Gitirana, L.; Fautrel, A.; Lagente, V.; Schmidt, M.; Porto, L.C.; Romana-Souza, B.; Valenca, S.S.; Lanzetti, M. Propolis reversed cigarette smoke-induced emphysema through macrophage alternative activation independent of Nrf2. Bioorg. Med. Chem. 2017, 25, 5557–5568. [Google Scholar] [CrossRef]
- Lanzetti, M.; Lopes, A.A.; Ferreira, T.S.; de Moura, R.S.; Resende, A.C.; Porto, L.C.; Valenca, S.S. Mate tea ameliorates emphysema in cigarette smoke-exposed mice. Exp. Lung Res. 2011, 37, 246–257. [Google Scholar] [CrossRef]
- Pires, K.M.; Valenca, S.S.; Resende, A.C.; Porto, L.C.; Queiroz, E.F.; Moreira, D.D.; de Moura, R.S. Grape skin extract reduced pulmonary oxidative response in mice exposed to cigarette smoke. Med. Sci. Monit. 2011, 17, BR187–BR195. [Google Scholar] [CrossRef]
- Imai, J.; Ide, N.; Nagae, S.; Moriguchi, T.; Matsuura, H.; Itakura, Y. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Medica 1994, 60, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.C.E.; Castro-Boqué, E.; García-Carrasco, A.; Morán-Valero, M.I.; González-Hedström, D.; Bermúdez-López, M.; Valdivielso, J.M.; Espinel, A.E.; Portero-Otín, M. Antihypertensive Effects of an Optimized Aged Garlic Extract in Subjects with Grade I Hypertension and Antihypertensive Drug Therapy: A Randomized, Triple-Blind Controlled Trial. Nutrients 2023, 15, 3691. [Google Scholar] [CrossRef]
- Ohkubo, S.; Dalla Via, L.; Grancara, S.; Kanamori, Y.; García-Argáez, A.N.; Canettieri, G.; Arcari, P.; Toninello, A.; Agostinelli, E. The antioxidant, aged garlic extract, exerts cytotoxic effects on wild-type and multidrug-resistant human cancer cells by altering mitochondrial permeability. Int. J. Oncol. 2018, 53, 1257–1268. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, N.; He, Z.; Chen, C.; Ma, J.; Liu, X.; Deng, S.; Xie, L. Diallyl trisulfide inhibits osteosarcoma 143B cell migration, invasion and EMT by inducing autophagy. Heliyon 2024, 10, e26681. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, D.T.; Taka, E.; Messeha, S.; Flores-Rozas, H.; Reed, S.L.; Redmond, B.V.; Soliman, K.F.A.; Kanga, K.J.W.; Darling-Reed, S.F. The Garlic Compound, Diallyl Trisulfide, Attenuates Benzo[a]Pyrene-Induced Precancerous Effect through Its Antioxidant Effect, AhR Inhibition, and Increased DNA Repair in Human Breast Epithelial Cells. Nutrients 2024, 16, 300. [Google Scholar] [CrossRef]
- Bentke-Imiolek, A.; Szlęzak, D.; Zarzycka, M.; Wróbel, M.; Bronowicka-Adamska, P. S-Allyl-L-Cysteine Affects Cell Proliferation and Expression of H2S-Synthetizing Enzymes in MCF-7 and MDA-MB-231 Adenocarcinoma Cell Lines. Biomolecules 2024, 14, 188. [Google Scholar] [CrossRef]
- Kanamori, Y.; Via, L.D.; Macone, A.; Canettieri, G.; Greco, A.; Toninello, A.; Agostinelli, E. Aged garlic extract and its constituent, S-allyl-L-cysteine, induce the apoptosis of neuroblastoma cancer cells due to mitochondrial membrane depolarization. Exp. Ther. Med. 2020, 19, 1511–1521. [Google Scholar] [CrossRef]
- Kodera, Y.; Kurita, M.; Nakamoto, M.; Matsutomo, T. Chemistry of aged garlic: Diversity of constituents in aged garlic extract and their production mechanisms via the combination of chemical and enzymatic reactions. Exp. Ther. Med. 2020, 19, 1574–1584. [Google Scholar] [CrossRef]
- Borek, C. Antioxidant health effects of aged garlic extract. J. Nutr. 2001, 131, 1010S–1015S. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.; Rosen, R.T. Unique Chemistry of Aged Garlic Extract. Orient. Foods Herbs 2003, 19, 258–270. [Google Scholar]
- El-Saadony, M.T.; Saad, A.M.; Korma, S.A.; Salem, H.M.; Abd El-Mageed, T.A.; Alkafaas, S.S.; Elsalahaty, M.I.; Elkafas, S.S.; Mosa, W.F.A.; Ahmed, A.E.; et al. Garlic bioactive substances and their therapeutic applications for improving human health: A comprehensive review. Front. Immunol. 2024, 15, 1277074. [Google Scholar] [CrossRef] [PubMed]
- Nagae, S.; Ushijima, M.; Hatono, S.; Imai, J.; Kasuga, S.; Matsuura, H.; Itakura, Y.; Higashi, Y. Pharmacokinetics of the garlic compound S-allylcysteine. Planta Med. 1994, 60, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Agostinelli, E.; Marzaro, G.; Gambari, R.; Finotti, A. Potential applications of components of Aged Garlic Extract (AGE) in mitigating pro-inflammatory gene expression linked to human diseases. Exp. Ther. Med. 2025, 30, 134. [Google Scholar] [CrossRef]
- Gasparello, J.; Papi, C.; Marzaro, G.; Macone, A.; Zurlo, M.; Finotti, A.; Agostinelli, E.; Gambari, R. Aged Garlic Extract (AGE) and Its Constituent S-Allyl-Cysteine (SAC) Inhibit the Expression of Pro-Inflammatory Genes Induced in Bronchial Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein and the BNT162b2 Vaccine. Molecules 2024, 29, 5938. [Google Scholar] [CrossRef]
- Papi, C.; Gasparello, J.; Marzaro, G.; Macone, A.; Zurlo, M.; Di Padua, F.; Fino, P.; Agostinelli, E.; Gambari, R.; Finotti, A.; et al. Aged garlic extract major constituent S-1-propenyl-l-cysteine inhibits proinflammatory mRNA expression in bronchial epithelial IB3-1 cells exposed to the BNT162b2 vaccine. Exp. Ther. Med. 2025, 30, 153. [Google Scholar] [CrossRef]
- Elmazoglu, Z.; Aydın Bek, Z.; Sarıbaş, S.G.; Özoğul, C.; Goker, B.; Bitik, B.; Aktekin, C.N.; Karasu, Ç. S-allylcysteine inhibits chondrocyte inflammation to reduce human osteoarthritis via targeting RAGE, TLR4, JNK, and Nrf2 signaling: Comparison with colchicine. Biochem. Cell Biol. 2021, 99, 645–654. [Google Scholar] [CrossRef]
- Geng, Z.; Rong, Y.; Lau, B.H. S-allyl cysteine inhibits activation of nuclear factor kappa B in human T cells. Free Radic. Biol. Med. 1997, 23, 345–350. [Google Scholar] [CrossRef]
- Huang, X.P.; Shi, Z.H.; Ming, G.F.; Xu, D.M.; Cheng, S.Q. S-Allyl-L-cysteine (SAC) inhibits copper-induced apoptosis and cuproptosis to alleviate cardiomyocyte injury. Biochem. Biophys. Res. Commun. 2024, 730, 150341. [Google Scholar] [CrossRef]
- Chen, P.; Hu, M.; Liu, F.; Yu, H.; Chen, C. S-allyl-l-cysteine (SAC) protects hepatocytes from alcohol-induced apoptosis. FEBS Open Bio 2019, 9, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Kalayarasan, S.; Sriram, N.; Sureshkumar, A.; Sudhandiran, G. Chromium (VI)-induced oxidative stress and apoptosis is reduced by garlic and its derivative S-allylcysteine through the activation of Nrf2 in the hepatocytes of Wistar rats. J. Appl. Toxicol. 2008, 28, 908–919. [Google Scholar] [CrossRef]
- Orozco-Ibarra, M.; Muñoz-Sánchez, J.; Zavala-Medina, M.E.; Pineda, B.; Magaña-Maldonado, R.; Vázquez-Contreras, E.; Maldonado, P.D.; Pedraza-Chaverri, J.; Chánez-Cárdenas, M.E. Aged garlic extract and S-allylcysteine prevent apoptotic cell death in a chemical hypoxia model. Biol Res. 2016, 49, 7. [Google Scholar] [CrossRef]
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicine 2023, 11, 2925. [Google Scholar] [CrossRef]
- Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and Nutritional Antioxidants in Human Diseases. Front. Physiol. 2018, 9, 477. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Dutt, V.; Kaur, N.; Kalra, P.; Gupta, S.; Dua, A.; Dabur, R.; Saini, V.; Mittal, A. S-allyl cysteine: A potential compound against skeletal muscle atrophy. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129676. [Google Scholar] [CrossRef]
- He, Y.; Xiao, L.; Zhang, J.; Zhu, Y.; Guo, Y.; Xia, Y.; Zhao, H.; Wei, Z.; Dai, Y. Diallyl trisulfide alleviates dextran sulphate sodium-induced colitis in mice by inhibiting NLRP3 inflammasome activation via ROS/Trx-1 pathway. Basic Clin. Pharmacol. Toxicol. 2024, 135, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, H.L.; Xing, G.D.; Qian, Y.; Zhong, J.F.; Chen, K.L. S-allyl cysteine ameliorates heat stress-induced oxidative stress by activating Nrf2/HO-1 signaling pathway in BMECs. Toxicol. Appl. Pharmacol. 2021, 416, 115469. [Google Scholar] [CrossRef]
- Ruiz-Sánchez, E.; Pedraza-Chaverri, J.; Medina-Campos, O.N.; Maldonado, P.D.; Rojas, P. S-allyl Cysteine, a Garlic Compound, Produces an Antidepressant-Like Effect and Exhibits Antioxidant Properties in Mice. Brain Sci. 2020, 10, 592. [Google Scholar] [CrossRef]
- Xu, C.; Mathews, A.E.; Rodrigues, C.; Eudy, B.J.; Rowe, C.A.; O’Donoughue, A.; Percival, S.S. Aged garlic extract supplementation modifies inflammation and immunity of adults with obesity: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. ESPEN 2018, 24, 148–155. [Google Scholar] [CrossRef]
- Budoff, M.J.; Ahmadi, N.; Gul, K.M.; Liu, S.T.; Flores, F.R.; Tiano, J.; Takasu, J.; Miller, E.; Tsimikas, S. Aged garlic extract supplemented with B vitamins, folic acid and L-arginine retards the progression of subclinical atherosclerosis: A randomized clinical trial. Prev. Med. 2009, 49, 101–107. [Google Scholar] [CrossRef]
- Wlosinska, M.; Nilsson, A.C.; Hlebowicz, J.; Fakhro, M.; Malmsjö, M.; Lindstedt, S. Aged Garlic Extract Reduces IL-6: A Double-Blind Placebo-Controlled Trial in Females with a Low Risk of Cardiovascular Disease. Evid. Based Complement. Altern. Med. 2021, 2021, 6636875. [Google Scholar] [CrossRef]
- Gambari, R.; Papi, C.; Gasparello, J.; Agostinelli, E.; Finotti, A. Preliminary results and a theoretical perspective of co-treatment using a miR-93-5p mimic and aged garlic extract to inhibit the expression of the pro-inflammatory interleukin-8 gene. Exp. Ther. Med. 2025, 29, 85. [Google Scholar] [CrossRef] [PubMed]
- Onwuzo, C.N.; Olukorode, J.; Sange, W.; Orimoloye, D.A.; Udojike, C.; Omoragbon, L.; Hassan, A.E.; Falade, D.M.; Omiko, R.; Odunaike, O.S.; et al. A Review of Smoking Cessation Interventions: Efficacy, Strategies for Implementation, and Future Directions. Cureus 2024, 16, e52102. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambari, R.; Finotti, A. Aged Garlic Extract and Its Bioactive Molecules S-Allyl-Cysteine and S1-Propenyl-Cysteine: A Review Focusing on Evidences Supporting Their Use for Mitigating the Effects of Cigarette Smoking. Molecules 2025, 30, 3496. https://doi.org/10.3390/molecules30173496
Gambari R, Finotti A. Aged Garlic Extract and Its Bioactive Molecules S-Allyl-Cysteine and S1-Propenyl-Cysteine: A Review Focusing on Evidences Supporting Their Use for Mitigating the Effects of Cigarette Smoking. Molecules. 2025; 30(17):3496. https://doi.org/10.3390/molecules30173496
Chicago/Turabian StyleGambari, Roberto, and Alessia Finotti. 2025. "Aged Garlic Extract and Its Bioactive Molecules S-Allyl-Cysteine and S1-Propenyl-Cysteine: A Review Focusing on Evidences Supporting Their Use for Mitigating the Effects of Cigarette Smoking" Molecules 30, no. 17: 3496. https://doi.org/10.3390/molecules30173496
APA StyleGambari, R., & Finotti, A. (2025). Aged Garlic Extract and Its Bioactive Molecules S-Allyl-Cysteine and S1-Propenyl-Cysteine: A Review Focusing on Evidences Supporting Their Use for Mitigating the Effects of Cigarette Smoking. Molecules, 30(17), 3496. https://doi.org/10.3390/molecules30173496