Effect of Coridothymus capitatus Essential Oil on Chrysanthemum Aphid Behaviour and Survival: Phytochemical Analysis and Antioxidant Potential
Abstract
1. Introduction
2. Results
2.1. Effect of Essential Oil on Aphid Behaviour and Survival
2.2. Total Phenolic Content and Radical Scavenging Activity of the Extracts
2.3. Chemical Composition of Essential Oil
2.4. Profile of Phenolic Compounds
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Essential Oil Preparation
4.3. Preparation of Methanol Extracts
4.4. Insect Culture
4.5. Bioassays
4.5.1. Dual-Choice Test
4.5.2. No-Choice Test
4.6. Free Radical Scavenging Capacity
4.7. Determination of the Total Phenolic Content
4.8. Phytochemical Analysis
4.8.1. Gas Chromatography–Mass Spectrometry GC-MS Analysis
4.8.2. LC-LTQ/Orbitrap HRMS Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dudai, N.; Poljakoff-Mayber, A.; Mayer, A.M.; Putievsky, E.; Lerner, H.R. Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 1999, 25, 1079–1089. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappalà, L. Essential oils in stored product insect pest control. J. Food Qual. 2018, 2018, 6906105. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- Mossa, A.T.H. Green pesticides: Essential oils as biopesticides in insect-pest management. Environ. Sci. Technol. 2016, 9, 354. [Google Scholar] [CrossRef]
- Werrie, P.Y.; Durenne, B.; Delaplace, P.; Fauconnier, M.L. Phytotoxicity of essential oils: Opportunities and constraints for the development of biopesticides. A review. Foods 2020, 9, 1291. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S. Aphid-Plant Interactions: Implications for Pest Management. In Plant Communities and Their Environment; IntechOpen: London, UK, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Glacet, L.; Noël, G.; Ben Fekih, I.; Iannello, L.; Boullis, A.; Francis, F. Aphid honeydew in intraguild interactions: Enhancing predator mobility, foraging, and dynamics between Adalia bipunctata and Episyrphus balteatus. Arthropod-Plant Interact. 2024, 18, 703–712. [Google Scholar] [CrossRef]
- Nalam, V.; Louis, J.; Shah, J. Plant defense against aphids, the pest extraordinaire. Plant Sci. 2019, 279, 96–107. [Google Scholar] [CrossRef]
- Xiao, L.; Carrillo, J.; Siemann, E.; Ding, J. Herbivore-specific induction of indirect and direct defensive responses in leaves and roots. AoB PLANTS 2019, 11, plz003. [Google Scholar] [CrossRef]
- Kuang, C.L.; Lv, D.; Shen, G.H.; Li, S.S.; Luo, Q.Y.; Zhang, Z.Q. Chemical composition and antimicrobial activities of volatile oil extracted from Chrysanthemum morifolium Ramat. J. Food Sci. Technol. 2018, 55, 2786–2794. [Google Scholar] [CrossRef]
- Ohmiya, A. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers. Breed. Sci. 2018, 68, 119–127. [Google Scholar] [CrossRef]
- Zhou, L.; Li, C.; Zhang, Z.; Li, X.; Dong, Y.; Cao, H. Biological activity and safety evaluation of monoterpenes against the peach aphid (Myzus persicae Sulzer) (Hemiptera: Aphididae). Int. J. Trop. Insect Sci. 2021, 41, 2747–2754. [Google Scholar] [CrossRef]
- Mauck, K.E.; Kenney, J.; Chesnais, Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. Curr. Opin. Insect Sci. 2019, 33, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gao, T.; Li, P.; Tian, C.; Song, A.; Jiang, J.; Guan, Z.; Fang, W.; Chen, F.; Chen, S. Chrysanthemum CmWRKY53 negatively regulates the resistance of chrysanthemum to the aphid Macrosiphoniella sanborni. Hortic. Res. 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Benoutman, A.; Erbiai, E.H.; Edderdaki, F.Z.; Cherif, E.K.; Saidi, R.; Lamrani, Z.; Pintado, M.; Pinto, E.; da Silva, J.C.G.E.; Maouni, A. Phytochemical composition, antioxidant and antifungal Activity of Thymus capitatus, a medicinal plant collected from northern Morocco. Antibiotics 2022, 11, 681. [Google Scholar] [CrossRef]
- Khoury, M.; Stien, D.; Eparvier, V.; Ouaini, N.; El Beyrouthy, M. Report on the medicinal use of eleven Lamiaceae species in Lebanon and rationalization of their antimicrobial potential by examination of the chemical composition and antimicrobial activity of their essential oils. J. Evid. Based Complement. Altern. Med. 2016, 2016, 2547169. [Google Scholar] [CrossRef] [PubMed]
- Mouhoub, A.; Guendouz, A.; Belkamel, A.; El Alaoui Talibi, Z.; Ibnsouda Koraichi, S.; El Modafar, C.; Delattre, C. Assessment of the antioxidant, antimicrobial and antibiofilm activities of essential oils for potential application of active chitosan films in food preservation. World J. Microbiol. Biotechnol. 2022, 38, 1–16. [Google Scholar] [CrossRef]
- Castagna, A.; Aboudia, A.; Guendouz, A.; Scieuzo, C.; Falabella, P.; Matthes, J.; Schmid, M.; Drissner, D.; Allais, F.; Chadni, M.; et al. Transforming Agricultural Waste from Mediterranean Fruits into Renewable Materials and Products with a Circular and Digital Approach. Materials 2025, 18, 1464. [Google Scholar] [CrossRef]
- Alves-Silva, J.M.; Pedreiro, S.; Cavaleiro, C.; Cruz, M.T.; Figueirinha, A.; Salgueiro, L. Effect of Thymbra capitata (L.) Cav. on inflammation, senescence and cell migration. Nutrients 2023, 15, 1930. [Google Scholar] [CrossRef]
- Karpinski, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef]
- Maissa, B.J.; Walid, H. Antifungal activity of chemically different essential oils from wild Tunisian thymus spp. Nat. Prod. Res. 2015, 29, 869–873. [Google Scholar] [CrossRef]
- Bounatirou, S.; Smiti, S.; Miguel, M.G.; Faleiro, L.; Rejeb, M.N.; Neffati, M.; Costa, M.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem. 2007, 105, 146–155. [Google Scholar] [CrossRef]
- Mkaddem, M.G.; Romdhane, M.; Ibrahim, H.; Ennajar, M.; Lebrihi, A.; Mathieu, F.; Bouajila, J. Essential oil of Thymus capitatus Hoff. et Link. from Matmata, Tunisia: Gas chromatography-mass spectrometry analysis and antimicrobial and antioxidant activities. J. Med. Food 2010, 13, 1500–1504. [Google Scholar] [CrossRef]
- Tseliou, M.; Pirintsos, S.A.; Lionis, C.; Castanas, E.; Sourvinos, G. Antiviral effect of an essential oil combination derived from three aromatic plants (Coridothymus capitatus (L.) Rchb. f., Origanum dictamnus L. and Salvia fruticosa Mill.) against viruses causing infections of the upper respiratory tract. Herb. Med. J. 2019, 17, 100288. [Google Scholar] [CrossRef]
- Karpouhtsis, I.; Pardali, E.; Feggou, E.; Kokkini, S.; Scouras, Z.G.; Mavragani-Tsipidou, P. Insecticidal and genotoxic activities of oregano essential oils. J. Agric. Food Chem. 1998, 46, 1111–1115. [Google Scholar] [CrossRef]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. Former. Pestic. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Economou, G.; Panagopoulos, G.; Tarantilis, P.; Kalivas, D.; Kotoulas, V.; Travlos, I.S.; Polysiou, M.; Karamanos, A. Variability in essential oil content and composition of Origanum hirtum L., Origanum onites L., Coridothymus capitatus (L.) and Satureja thymbra L. populations from the Greek island Ikaria. Ind. Crops Prod. 2011, 33, 236–241. [Google Scholar] [CrossRef]
- Jaouadi, R.; Cardoso, S.M.; Silva, A.M.; Yahia, I.B.H.; Boussaid, M.; Zaouali, Y. Variation of phenolic constituents of Tunisian Thymus capitatus (L.) Hoff. et Link. populations. Biochem. Syst. Ecol. 2018, 77, 10–15. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Yfanti, P.; Lazaridou, P.; Boti, V.; Douma, D.; Lekka, M.E. Enrichment of olive oils with natural bioactive compounds from aromatic and medicinal herbs: Phytochemical analysis and antioxidant potential. Molecules 2024, 29, 1141. [Google Scholar] [CrossRef] [PubMed]
- Jemaa, M.B.; Falleh, H.; Serairi, R.; Neves, M.A.; Snoussi, M.; Isoda, H.; Nakajima, M.; Ksouri, R. Nanoencapsulated Thymus capitatus essential oil as natural preservative. Innov. Food Sci. Emerg. Technol. 2018, 45, 92–97. [Google Scholar] [CrossRef]
- Sampson, B.J.; Tabanca, N.; Kirimer, N.E.; Demirci, B.; Baser, K.H.C.; Khan, I.A.; Spiers, J.M.; Wedge, D.E. Insecticidal activity of 23 essential oils and their major compounds against adult Lipaphis pseudobrassicae (Davis) (Aphididae: Homoptera). Pest Manag. Sci. Former. Pestic. Sci. 2005, 61, 1122–1128. [Google Scholar] [CrossRef]
- Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr. 2015, 55, 304–318. [Google Scholar] [CrossRef]
- Bendre, R.; Bagul, S.; Rajput, J. Carvacrol: An excellent natural pest control agent. Nat. Prod. Chem. Res. 2018, 6, 1–3. [Google Scholar]
- Ocampo, A.B.; Cabinta, J.G.Z.; Padilla, H.V.J.; Yu, E.T.; Nellas, R.B. Specificity of Monoterpene Interactions with Insect Octopamine and Tyramine Receptors: Insights from in Silico Sequence and Structure Comparison. ACS Omega 2023, 8, 3861–3871. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, J.; Song, L.; Cao, X.; Yao, X.; Tang, F.; Yue, Y. GC× GC-TOFMS analysis of essential oils composition from leaves, twigs and seeds of Cinnamomum camphora L. Presl and their insecticidal and repellent activities. Molecules 2016, 21, 423. [Google Scholar] [CrossRef]
- Dardouri, T.; Gomez, L.; Schoeny, A.; Costagliola, G.; Gautier, H. Behavioural response of green peach aphid Myzus persicae (Sulzer) to volatiles from different rosemary (Rosmarinus officinalis L.) clones. Agric. For. Entomol. 2019, 21, 336–345. [Google Scholar] [CrossRef]
- Gutierrez, C.; Fereres, A.; Reina, M.; Cabrera, R.; Gonzalez- Coloma, A. Behavioural and sublethal effects of structurally related lower terpenes on Myzus persicae. J. Chem. Ecol. 1997, 23, 1641–1650. [Google Scholar] [CrossRef]
- Vasdekis, E.P.; Karkabounas, A.; Giannakopoulos, I.; Savvas, D.; Lekka, M.E. Screening of Mushrooms Bioactivity: Piceatannol Was Identified as a Bioactive Ingredient in the Order Cantharellales. Eur. Food Res. Technol. 2018, 244, 861–871. [Google Scholar] [CrossRef]
- Yfanti, P.; Patakioutas, G.; Douma, D.; Lekka, M.E. In vitro antifungal activity of Satureja horvatii ssp. macrophylla against three tomato phytopathogenic fungi. Nat. Prod. Commun. 2021, 16, 1934578X211025165. [Google Scholar] [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
Extracts/Standard | DPPH Assay IC50 (μg/mL) | Total Phenolic Contents (mg GAE/g dw) |
---|---|---|
Methanol extract | 285.82 ± 3.49 | 13.24 ± 0.17 |
Essential oil | 217.75 ± 5.45 | |
Ascorbic acid | 4.42 ± 0.09 |
S/N | RT | RILit | RIExp | Compound Name | Area % * | Identification Method |
---|---|---|---|---|---|---|
1 | 5.864 | 926 | 926 | α-Thujene | 0.10 | MS, RI |
2 | 6.100 | 934 | 934 | α-Pinene | 0.30 | MS, RI |
3 | 6.617 | 951 | 951 | Camphene | 0.12 | MS, RI |
4 | 7.464 | 980 | 980 | 1-Octen-3-ol | 0.24 | MS, RI |
5 | 7.732 | 989 | 989 | Myrcene | 0.73 | MS, RI |
6 | 8.030 | 999 | 999 | 3-Octanol | 0.08 | MS, RI |
7 | 8.402 | 1009 | 1009 | α-Phellandrene | 0.08 | MS, RI |
8 | 8.450 | 1010 | 1010 | δ-3-Carene | <0.05 | MS, RI |
9 | 8.760 | 1018 | 1018 | α-Terpinene | 0.56 | MS, RI |
10 | 9.075 | 1027 | 1027 | p-Cymene | 6.30 | MS, RI |
11 | 9.210 | 1030 | 1030 | Limonene | 0.18 | MS, RI |
12 | 9.306 | 1033 | 1033 | β-Phellandrene | 0.15 | MS, RI |
13 | 9.378 | 1035 | 1035 | 1,8-Cineole | <0.05 | MS, RI |
14 | 9.800 | 1046 | 1046 | trans-β-Ocimene | <0.05 | MS, RI |
15 | 10.307 | 1059 | 1059 | γ-Terpinene | 1.14 | MS, RI |
16 | 10.846 | 1073 | 1073 | cis-Sabinene hydrate | 0.25 | MS, RI |
17 | 11.376 | 1087 | 1087 | α-Terpinolen | 0.06 | MS, RI |
18 | 11.657 | 1094 | 1094 | p-Cymenene | <0.05 | MS, RI |
19 | 11.978 | 1102 | 1102 | Linalool | 0.65 | MS, RI |
20 | 12.113 | 1105 | 1105 | trans-Sabinene hydrate | 0.16 | MS, RI |
21 | 13.102 | 1128 | 1128 | cis-p-Menth-2-ene-1-ol | <0.05 | MS, RI |
22 | 13.872 | 1146 | 1146 | trans-p-Ment-2-en-1-ol | <0.05 | MS, RI |
23 | 15.198 | 1177 | 1177 | Borneol | 0.69 | MS, RI |
24 | 15.534 | 1184 | 1184 | Terpinen-4-ol | 0.54 | MS, RI |
25 | 15.892 | 1193 | 1193 | p-Cymen-8-ol | <0.05 | MS, RI |
26 | 16.204 | 1200 | 1200 | α-Terpineol | 0.10 | MS, RI |
27 | 18.662 | 1254 | 1245 | Carvone | 0.10 | MS, RI |
28 | 21.221 | 1292 | 1292 | Thymol | 0.43 | MS, RI |
29 | 21.976 | 1303 | 1303 | Carvacrol | 83.68 | MS, RI |
30 | 31.170 | 1416 | 1416 | β-Caryophyllene | 1.33 | MS, RI |
31 | 33.651 | 1453 | 1453 | α-Humulene | 0.05 | MS, RI |
32 | 37.028 | 1506 | 1506 | β-Bisabolene | 0.25 | MS, RI |
33 | 40.441 | 1584 | 1584 | Spathulenol | <0.05 | MS, RI |
34 | 40.586 | 1588 | 1588 | Caryophyllene oxide | 1.27 | MS, RI |
35 | 41.270 | 1610 | 1610 | Humulene epoxide II | 0.05 | MS, RI |
36 | 42.199 | 1679 | 1678 | Germacra-4(15),5,10(14)-trien-1α-ol | 0.12 | MS |
37 | 42.375 | 1691 | 1691 | α-Bisabolol | <0.05 | MS, RI |
Oxygenated monoterpenes | 86.73 | |||||
Sesquiterpene hydrocarbons | 2.90 | |||||
Oxygenated sesquiterpenes | 0.22 | |||||
Others | 0.32 | |||||
Monoterpenes | 86.73 | |||||
Sesquiterpenes | 3.12 |
Identified Compounds | Molecular Formula | ESI | Ion Form | Theoretical m/z | Mass Error (ppm) | MS/MS Fragments |
---|---|---|---|---|---|---|
Vanillic acid | C8H8O4 | - | [Μ-H]− | 167.0339 | 1.435 | 123.13/152.08/108.08 |
Salicylic acid/4-hydroxybenzoic acid | C7H6O3 | - | [Μ-H]− | 137.0244 | 1.669 | 93.05 |
Caffeic acid | C9H8O4 | - | [Μ-H]− | 179.0350 | 0.715 | 135.09 |
Salvianolic acid J | C27H22O12 | - | [Μ-H]− | 537.1038 | 0.638 | 339.05/493.11 |
Taxifolin | C15H12O7 | - | [Μ-H]− | 303.0499 | 1.446 | 285.06/177.12/125.02 |
Apigenin 8-C-glucoside | C21H20O10 | - | [Μ-H]− | 431.0984 | 0.807 | 311.07/341.14 |
Rosmarinic acid | C18H16O8 | - | [Μ-H]− | 359.0772 | 1.766 | 161.03/197.03/179.04 |
Salvianic acid A (Danshensu) | C9H10O5 | - | [Μ-H]− | 197.0445 | 1.220 | 179.01 |
Hesperidin | C28H34O15 | - | [Μ-H]− | 609.1814 | 0.063 | 301.09 |
Luteolin | C15H10O6 | - | [Μ-H]− | 285.0405 | 1.225 | 241.09/175.08/199.08 |
Quercetin | C15H10O7 | - | [Μ-H]− | 301.0354 | −0.019 | 179.01/151.09 |
Diosmetin | C16H12O6 | - | [Μ-H]− | 299.0561 | 1.225 | 284.09/285.04 |
Apigenin | C15H10O5 | - | [Μ-H]− | 269.0455 | 2.120 | 225.07/149.02/201.10 |
Naringenin | C15H12O5 | - | [Μ-H]− | 271.0612 | 1.240 | 151.00/177.09 |
Acacetin | C16H12O5 | - | [Μ-H]− | 283.0601 | 2.000 | 268.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yfanti, P.; Papavlasopoulos, A.; Lazaridou, P.; Douma, D.; Lekka, M.E. Effect of Coridothymus capitatus Essential Oil on Chrysanthemum Aphid Behaviour and Survival: Phytochemical Analysis and Antioxidant Potential. Molecules 2025, 30, 3437. https://doi.org/10.3390/molecules30163437
Yfanti P, Papavlasopoulos A, Lazaridou P, Douma D, Lekka ME. Effect of Coridothymus capitatus Essential Oil on Chrysanthemum Aphid Behaviour and Survival: Phytochemical Analysis and Antioxidant Potential. Molecules. 2025; 30(16):3437. https://doi.org/10.3390/molecules30163437
Chicago/Turabian StyleYfanti, Paraskevi, Andreas Papavlasopoulos, Polyxeni Lazaridou, Dimitra Douma, and Marilena E. Lekka. 2025. "Effect of Coridothymus capitatus Essential Oil on Chrysanthemum Aphid Behaviour and Survival: Phytochemical Analysis and Antioxidant Potential" Molecules 30, no. 16: 3437. https://doi.org/10.3390/molecules30163437
APA StyleYfanti, P., Papavlasopoulos, A., Lazaridou, P., Douma, D., & Lekka, M. E. (2025). Effect of Coridothymus capitatus Essential Oil on Chrysanthemum Aphid Behaviour and Survival: Phytochemical Analysis and Antioxidant Potential. Molecules, 30(16), 3437. https://doi.org/10.3390/molecules30163437