Provenance and Tectonic Controls in Eastern Junggar: Insights from Petrography and REE Geochemistry
Abstract
1. Introduction
2. Geological Setting
3. Results
3.1. Composition of Rock Fragments
3.2. Heavy Mineral Analysis Results
3.3. Geochemical Analysis
3.3.1. Rare Earth Element (REE) Geochemistry
REE Abundance and Characteristic Ratios
REE Normalized Distribution Patterns
3.3.2. Trace Element Geochemistry
Strata | Sample | La | Th | Sc | Co | Zr/10 | Sc/Cr | La/Y |
---|---|---|---|---|---|---|---|---|
CX2-J2s2 | C1-01 | 0.49 | 0.19 | 0.26 | 0.28 | 0.57 | 0.16 | 1.16 |
C1-02 | 0.48 | 0.19 | 0.29 | 0.32 | 0.55 | 0.19 | 1.18 | |
C1-03 | 0.48 | 0.19 | 0.27 | 0.27 | 0.54 | 0.18 | 1.19 | |
C1-04 | 0.50 | 0.20 | 0.23 | 0.27 | 0.47 | 0.17 | 1.26 | |
C1-05 | 0.47 | 0.20 | 0.30 | 0.33 | 0.51 | 0.12 | 1.24 | |
C1-06 | 0.52 | 0.20 | 0.30 | 0.28 | 0.51 | 0.16 | 1.32 | |
C1-07 | 0.47 | 0.19 | 0.26 | 0.28 | 0.52 | 0.14 | 1.21 | |
C1-08 | 0.48 | 0.20 | 0.25 | 0.27 | 0.52 | 0.16 | 1.12 | |
C1-09 | 0.50 | 0.20 | 0.24 | 0.34 | 0.53 | 0.15 | 1.15 | |
C1-10 | 0.46 | 0.19 | 0.29 | 0.29 | 0.51 | 0.18 | 1.28 | |
CX2-J2s2 | C1-11 | 0.49 | 0.20 | 0.27 | 0.28 | 0.55 | 0.13 | 1.29 |
C1-12 | 0.49 | 0.19 | 0.25 | 0.30 | 0.53 | 0.17 | 1.24 | |
C1-13 | 0.49 | 0.19 | 0.29 | 0.30 | 0.54 | 0.12 | 1.18 | |
C1-14 | 0.47 | 0.18 | 0.28 | 0.40 | 0.54 | 0.14 | 1.22 | |
C1-15 | 0.49 | 0.20 | 0.26 | 0.32 | 0.59 | 0.11 | 1.16 | |
C1-16 | 0.48 | 0.19 | 0.27 | 0.26 | 0.59 | 0.15 | 1.18 | |
C1-17 | 0.50 | 0.20 | 0.31 | 0.30 | 0.59 | 0.12 | 1.33 | |
C1-18 | 0.48 | 0.19 | 0.27 | 0.28 | 0.51 | 0.16 | 1.19 | |
C1-19 | 0.50 | 0.20 | 0.26 | 0.31 | 0.57 | 0.15 | 1.29 | |
C1-20 | 0.49 | 0.21 | 0.29 | 0.33 | 0.47 | 0.16 | 1.08 | |
C1-J2s3 | C3-01 | 0.49 | 0.18 | 0.27 | 0.32 | 0.51 | 0.17 | 1.21 |
C3-02 | 0.48 | 0.21 | 0.28 | 0.26 | 0.55 | 0.16 | 1.28 | |
C3-03 | 0.49 | 0.20 | 0.25 | 0.29 | 0.53 | 0.21 | 1.29 | |
C3-04 | 0.48 | 0.18 | 0.29 | 0.24 | 0.54 | 0.14 | 1.23 | |
C3-05 | 0.49 | 0.20 | 0.30 | 0.33 | 0.53 | 0.14 | 1.23 | |
C3-06 | 0.49 | 0.20 | 0.25 | 0.29 | 0.54 | 0.15 | 1.18 | |
C3-07 | 0.48 | 0.17 | 0.29 | 0.32 | 0.49 | 0.15 | 1.16 | |
C3-08 | 0.51 | 0.18 | 0.21 | 0.36 | 0.54 | 0.15 | 1.11 | |
C3-09 | 0.47 | 0.21 | 0.32 | 0.32 | 0.55 | 0.17 | 1.15 | |
C3-10 | 0.51 | 0.19 | 0.29 | 0.36 | 0.57 | 0.16 | 1.20 | |
C1-J2s1 | C3-01 | 0.49 | 0.19 | 0.24 | 0.30 | 0.52 | 0.13 | 1.18 |
C3-02 | 0.50 | 0.20 | 0.29 | 0.30 | 0.52 | 0.18 | 1.29 | |
C3-03 | 0.47 | 0.20 | 0.33 | 0.35 | 0.57 | 0.14 | 1.24 | |
C3-04 | 0.50 | 0.18 | 0.26 | 0.33 | 0.54 | 0.18 | 1.26 | |
C3-05 | 0.48 | 0.20 | 0.30 | 0.26 | 0.54 | 0.19 | 1.16 | |
C3-06 | 0.49 | 0.17 | 0.29 | 0.30 | 0.55 | 0.18 | 1.11 | |
C3-07 | 0.49 | 0.19 | 0.28 | 0.28 | 0.53 | 0.11 | 1.06 | |
C3-08 | 0.48 | 0.18 | 0.31 | 0.30 | 0.54 | 0.15 | 1.35 | |
C3-09 | 0.50 | 0.18 | 0.30 | 0.35 | 0.52 | 0.19 | 1.30 | |
C3-10 | 0.48 | 0.20 | 0.27 | 0.32 | 0.48 | 0.09 | 1.32 | |
Zh2-J2s | C3-01 | 0.49 | 0.20 | 0.33 | 0.29 | 0.48 | 0.15 | 1.21 |
C3-02 | 0.50 | 0.21 | 0.25 | 0.25 | 0.50 | 0.18 | 1.18 | |
C3-03 | 0.47 | 0.20 | 0.30 | 0.32 | 0.53 | 0.20 | 1.34 | |
C3-04 | 0.50 | 0.19 | 0.23 | 0.30 | 0.55 | 0.18 | 1.24 | |
C3-05 | 0.49 | 0.20 | 0.27 | 0.37 | 0.57 | 0.14 | 1.30 | |
C3-06 | 0.48 | 0.19 | 0.27 | 0.31 | 0.57 | 0.18 | 1.34 | |
C3-07 | 0.49 | 0.19 | 0.30 | 0.32 | 0.55 | 0.14 | 1.14 | |
C3-08 | 0.50 | 0.17 | 0.29 | 0.31 | 0.57 | 0.18 | 1.34 | |
C3-09 | 0.48 | 0.20 | 0.30 | 0.32 | 0.55 | 0.09 | 1.05 | |
C3-10 | 0.50 | 0.19 | 0.27 | 0.27 | 0.54 | 0.15 | 1.19 |
3.3.3. Multivariate Statistical Analysis Results
4. Discussion
4.1. Provenance Analysis from Comparison
4.2. Provenance Interpretation from Statistics
4.3. Tectono-Sedimentary Evolution of the Dongdaohaizi Region
5. Materials and Methods
5.1. Detrital Composition Analysis
5.2. Heavy Mineral Analysis
5.3. Whole-Rock Geochemical Analysis
5.4. Multivariate Statistical Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Strata | Sample | Quartz (%) | Feldspar (%) | Lithic Fragments (%) | Lava Rocks (%) | Metamorphic Rocks (%) | Sedimentary Rocks (%) | Maturity |
---|---|---|---|---|---|---|---|---|
J1s2 | C1-01 | 39.3 | 21.7 | 39.0 | 41.5 | 50.0 | 7.4 | 0.65 |
C1-02 | 43.3 | 19.6 | 37.2 | 41.5 | 45.0 | 13.5 | 0.76 | |
C1-03 | 43.3 | 17.6 | 39.1 | 41.5 | 45.0 | 13.5 | 0.76 | |
C1-04 | 47.6 | 17.6 | 34.8 | 45.7 | 49.5 | 4.9 | 0.91 | |
C1-05 | 47.6 | 19.4 | 33.1 | 45.7 | 44.5 | 9.8 | 0.91 | |
C1-06 | 52.3 | 21.3 | 26.4 | 41.1 | 49.0 | 9.9 | 1.10 | |
C1-07 | 47.1 | 19.2 | 33.7 | 41.1 | 44.1 | 14.8 | 0.89 | |
C1-08 | 47.1 | 17.3 | 35.6 | 45.2 | 44.1 | 10.7 | 0.89 | |
C1-09 | 51.8 | 15.5 | 32.7 | 40.7 | 44.1 | 15.2 | 1.08 | |
C1-10 | 51.8 | 17.1 | 31.1 | 36.6 | 48.5 | 14.9 | 1.08 | |
CX2-01 | 45.3 | 13.5 | 41.3 | 71.4 | 19.1 | 9.5 | 0.83 | |
CX2-02 | 49.8 | 13.5 | 36.7 | 78.6 | 17.1 | 4.3 | 0.99 | |
CX2-03 | 44.8 | 13.3 | 41.8 | 70.7 | 21.0 | 8.3 | 0.81 | |
CX2-04 | 44.8 | 13.3 | 41.8 | 63.6 | 21.0 | 15.4 | 0.81 | |
CX2-05 | 49.3 | 14.6 | 36.0 | 70.0 | 19.1 | 10.9 | 0.97 | |
CX2-06 | 44.4 | 16.1 | 39.5 | 77.0 | 19.1 | 3.9 | 0.80 | |
CX2-07 | 49.8 | 12.1 | 38.1 | 78.6 | 19.1 | 2.4 | 0.99 | |
CX2-08 | 49.3 | 14.8 | 35.9 | 70.0 | 17.1 | 12.8 | 0.97 | |
CX2-09 | 44.4 | 16.3 | 39.3 | 77.0 | 17.1 | 5.8 | 0.80 | |
CX2-10 | 39.9 | 13.2 | 46.9 | 52.1 | 21.0 | 27.0 | 0.67 | |
Zh2-01 | 55.0 | 11.4 | 33.7 | 73.5 | 17.7 | 8.8 | 1.22 | |
Zh2-02 | 49.5 | 12.5 | 38.0 | 80.9 | 17.7 | 1.5 | 0.98 | |
Zh2-03 | 60.4 | 12.5 | 27.0 | 73.5 | 19.4 | 7.1 | 1.53 | |
Zh2-04 | 55.0 | 10.3 | 34.8 | 73.5 | 19.4 | 7.1 | 1.22 | |
Zh2-05 | 55.0 | 10.3 | 34.8 | 80.9 | 19.4 | 0.3 | 1.22 | |
Zh2-06 | 60.4 | 12.5 | 27.0 | 80.9 | 15.9 | 3.2 | 1.53 | |
Zh2-07 | 60.4 | 11.4 | 28.2 | 66.2 | 19.4 | 14.4 | 1.53 | |
Zh2-08 | 60.4 | 12.5 | 27.0 | 80.9 | 19.4 | 0.3 | 1.53 | |
Zh2-09 | 60.4 | 10.3 | 29.3 | 66.2 | 19.4 | 14.4 | 1.53 | |
Zh2-10 | 60.4 | 11.4 | 28.2 | 66.2 | 15.9 | 17.9 | 1.53 | |
Zh2-11 | 34.3 | 18.4 | 47.3 | 64.4 | 22.0 | 13.6 | 0.52 | |
Zh2-12 | 37.7 | 20.3 | 42.0 | 58.0 | 24.2 | 17.8 | 0.61 | |
Zh2-13 | 30.8 | 18.4 | 50.7 | 58.0 | 22.0 | 20.0 | 0.45 | |
Zh2-14 | 34.3 | 20.3 | 45.4 | 70.9 | 19.8 | 9.4 | 0.52 | |
Zh2-15 | 37.7 | 16.6 | 45.7 | 58.0 | 19.8 | 22.2 | 0.61 | |
Zh2-16 | 37.7 | 20.3 | 42.0 | 58.0 | 24.2 | 17.8 | 0.61 | |
Zh2-17 | 30.8 | 20.3 | 48.9 | 70.9 | 19.8 | 9.4 | 0.45 | |
Zh2-18 | 34.3 | 20.3 | 45.4 | 70.9 | 24.2 | 5.0 | 0.52 | |
Zh2-19 | 34.3 | 20.3 | 45.4 | 70.9 | 22.0 | 7.2 | 0.52 | |
Zh2-20 | 34.3 | 16.6 | 49.1 | 58.0 | 22.0 | 20.0 | 0.52 |
Strata | Sample | Heavy Mineral (%) | GZi | ATi | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zircon | Garnet | Picotite | Tourmaline | Apatite | Rutile | Anatase | Leucoxene | Other | ||||
J1s2 | C1-01 | 30.29 | 28.65 | 19.78 | 4.17 | 0.34 | 0.87 | 5.95 | 1.44 | 8.51 | 48.61 | 7.54 |
C1-02 | 30.74 | 30.42 | 19.81 | 4.22 | 0.36 | 0.96 | 5.73 | 1.47 | 6.30 | 49.74 | 7.86 | |
C1-03 | 29.84 | 31.01 | 20.26 | 4.15 | 0.36 | 0.94 | 5.59 | 1.44 | 6.40 | 50.96 | 7.98 | |
C1-04 | 30.38 | 29.36 | 19.85 | 4.24 | 0.35 | 0.90 | 6.08 | 1.52 | 7.33 | 49.15 | 7.63 | |
C1-05 | 29.39 | 33.77 | 19.18 | 4.34 | 0.33 | 0.88 | 5.46 | 1.58 | 5.07 | 53.47 | 7.07 | |
C1-06 | 29.96 | 30.81 | 21.04 | 4.04 | 0.35 | 0.93 | 5.92 | 1.51 | 5.44 | 50.70 | 7.97 | |
C1-07 | 32.24 | 31.25 | 19.00 | 4.11 | 0.36 | 0.94 | 5.85 | 1.46 | 4.79 | 49.22 | 8.05 | |
C1-08 | 32.78 | 31.18 | 18.92 | 4.33 | 0.36 | 0.88 | 5.99 | 1.48 | 4.07 | 48.75 | 7.68 | |
C1-09 | 29.29 | 30.24 | 20.53 | 3.99 | 0.34 | 0.93 | 5.51 | 1.53 | 7.65 | 50.80 | 7.85 | |
C1-10 | 32.11 | 33.35 | 19.82 | 4.15 | 0.33 | 0.87 | 5.85 | 1.38 | 2.14 | 50.95 | 7.37 | |
AVE | 30.34 | 31.39 | 19.88 | 4.19 | 0.35 | 0.9 | 5.83 | 1.49 | 5.63 | 50.85 | 7.71 | |
CX2-01 | 34.85 | 28.88 | 9.30 | 0.25 | 0.54 | 0.80 | 0.85 | 0.17 | 24.36 | 45.32 | 68.35 | |
CX2-02 | 32.81 | 28.92 | 10.36 | 0.28 | 0.52 | 0.82 | 0.85 | 0.17 | 25.27 | 46.85 | 65.00 | |
CX2-03 | 32.30 | 28.61 | 9.67 | 0.26 | 0.57 | 0.83 | 0.76 | 0.18 | 26.82 | 46.97 | 68.67 | |
CX2-04 | 32.11 | 28.89 | 9.30 | 0.27 | 0.56 | 0.88 | 0.80 | 0.18 | 27.00 | 47.36 | 67.47 | |
CX2-05 | 32.32 | 27.01 | 10.35 | 0.27 | 0.57 | 0.80 | 0.77 | 0.18 | 27.74 | 45.53 | 67.86 | |
CX2-06 | 31.99 | 29.33 | 10.23 | 0.27 | 0.55 | 0.77 | 0.87 | 0.19 | 25.81 | 47.83 | 67.07 | |
CX2-07 | 32.40 | 28.72 | 9.56 | 0.27 | 0.53 | 0.83 | 0.77 | 0.18 | 26.74 | 46.99 | 66.25 | |
CX2-08 | 35.02 | 28.16 | 9.83 | 0.27 | 0.54 | 0.84 | 0.86 | 0.18 | 24.31 | 44.57 | 66.67 | |
CX2-09 | 33.80 | 28.73 | 10.07 | 0.28 | 0.53 | 0.82 | 0.79 | 0.18 | 24.80 | 45.95 | 65.43 | |
CX2-10 | 32.21 | 28.76 | 10.46 | 0.27 | 0.52 | 0.82 | 0.86 | 0.18 | 25.94 | 47.17 | 65.82 | |
AVE | 32.97 | 28.3 | 9.89 | 0.27 | 0.55 | 0.82 | 0.82 | 0.18 | 26.2 | 46.19 | 67.07 | |
Zh2-01 | 16.38 | 25.00 | 1.81 | 1.01 | 0.70 | 0.75 | 2.23 | 0.71 | 51.40 | 60.42 | 40.94 | |
Zh2-02 | 17.14 | 25.41 | 1.80 | 1.01 | 0.70 | 0.73 | 2.11 | 0.67 | 50.43 | 59.72 | 40.94 | |
Zh2-03 | 16.68 | 24.18 | 1.91 | 1.10 | 0.70 | 0.76 | 2.25 | 0.75 | 51.68 | 59.18 | 38.89 | |
Zh2-04 | 17.49 | 25.24 | 1.93 | 1.13 | 0.71 | 0.73 | 2.13 | 0.71 | 49.95 | 59.07 | 38.59 | |
Zh2-05 | 17.44 | 25.36 | 1.85 | 1.18 | 0.67 | 0.70 | 2.18 | 0.68 | 49.93 | 59.25 | 36.22 | |
Zh2-06 | 16.62 | 24.01 | 1.85 | 1.10 | 0.71 | 0.72 | 2.13 | 0.66 | 52.19 | 59.09 | 39.23 | |
Zh2-07 | 16.07 | 24.53 | 1.79 | 1.05 | 0.65 | 0.73 | 2.20 | 0.72 | 52.27 | 60.42 | 38.24 | |
Zh2-08 | 17.09 | 25.56 | 1.70 | 1.04 | 0.71 | 0.77 | 2.28 | 0.77 | 50.10 | 59.93 | 40.57 | |
Zh2-09 | 17.65 | 23.90 | 1.94 | 1.05 | 0.66 | 0.73 | 2.23 | 0.74 | 51.10 | 57.52 | 38.60 | |
Zh2-10 | 15.95 | 24.56 | 1.81 | 1.07 | 0.65 | 0.73 | 2.10 | 0.71 | 52.42 | 60.63 | 37.79 | |
AVE | 16.66 | 25.37 | 1.83 | 1.08 | 0.68 | 0.72 | 2.18 | 0.72 | 50.76 | 60.36 | 38.64 |
Strata | Sample | Element (μg/g) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ||
Cx2-J1s2-3 | CX2-01 | 49.86 | 81.24 | 9.19 | 34.27 | 5.48 | 1.03 | 3.53 | 0.61 | 3.57 | 0.69 | 2.29 | 0.35 | 2.34 | 4.77 |
CX2-02 | 49.61 | 81.88 | 9.25 | 35.10 | 5.27 | 1.00 | 3.23 | 0.58 | 3.71 | 0.72 | 2.29 | 0.33 | 2.28 | 4.88 | |
CX2-03 | 49.18 | 76.41 | 8.99 | 32.79 | 5.18 | 0.98 | 3.14 | 0.55 | 3.47 | 0.71 | 2.31 | 0.33 | 2.24 | 4.64 | |
CX2-04 | 48.02 | 80.77 | 9.30 | 32.72 | 5.44 | 1.01 | 3.31 | 0.56 | 3.72 | 0.73 | 2.10 | 0.32 | 2.35 | 4.93 | |
CX2-05 | 47.74 | 80.32 | 9.66 | 33.37 | 5.44 | 0.99 | 3.22 | 0.56 | 3.59 | 0.79 | 2.23 | 0.35 | 2.36 | 4.76 | |
CX2-06 | 47.04 | 84.26 | 9.39 | 34.43 | 5.28 | 0.97 | 3.26 | 0.59 | 3.70 | 0.72 | 2.30 | 0.34 | 2.34 | 4.97 | |
CX2-07 | 50.84 | 80.58 | 9.11 | 33.42 | 5.71 | 1.02 | 3.35 | 0.58 | 3.84 | 0.69 | 2.31 | 0.37 | 2.26 | 5.03 | |
CX2-08 | 50.70 | 85.17 | 9.12 | 33.92 | 5.33 | 1.01 | 3.25 | 0.59 | 3.54 | 0.71 | 2.31 | 0.34 | 2.35 | 5.02 | |
CX2-09 | 48.17 | 80.28 | 9.20 | 31.09 | 4.98 | 0.98 | 3.36 | 0.57 | 3.63 | 0.71 | 2.24 | 0.34 | 2.26 | 4.77 | |
CX2-10 | 47.25 | 82.92 | 9.04 | 34.23 | 4.98 | 0.99 | 3.18 | 0.56 | 3.62 | 0.73 | 2.18 | 0.33 | 2.35 | 4.80 | |
AVE | 49.20 | 81.10 | 9.25 | 33.30 | 5.22 | 0.98 | 3.33 | 0.56 | 3.63 | 0.73 | 2.28 | 0.34 | 2.30 | 4.92 | |
Cx2-J1s2-2 | CX2-11 | 49.16 | 80.38 | 9.82 | 31.85 | 5.28 | 1.02 | 3.33 | 0.58 | 3.80 | 0.68 | 2.23 | 0.36 | 2.28 | 4.90 |
CX2-12 | 49.57 | 81.00 | 9.35 | 31.98 | 4.87 | 1.01 | 3.66 | 0.59 | 3.87 | 0.73 | 2.19 | 0.34 | 2.18 | 4.85 | |
CX2-13 | 45.78 | 80.43 | 9.35 | 29.83 | 4.92 | 1.01 | 3.33 | 0.57 | 3.75 | 0.72 | 2.30 | 0.35 | 2.30 | 4.53 | |
CX2-14 | 50.48 | 81.70 | 9.09 | 32.93 | 4.97 | 1.01 | 3.36 | 0.59 | 3.92 | 0.69 | 2.17 | 0.34 | 2.36 | 4.88 | |
CX2-15 | 48.50 | 81.21 | 9.48 | 32.44 | 5.21 | 1.02 | 3.49 | 0.54 | 3.88 | 0.72 | 2.28 | 0.35 | 2.40 | 4.90 | |
CX2-16 | 50.40 | 78.77 | 9.55 | 32.14 | 5.12 | 1.04 | 3.38 | 0.58 | 3.59 | 0.68 | 2.25 | 0.32 | 2.36 | 5.05 | |
CX2-17 | 48.69 | 78.14 | 9.00 | 33.59 | 5.08 | 1.02 | 3.35 | 0.55 | 3.66 | 0.71 | 2.11 | 0.34 | 2.26 | 4.92 | |
CX2-18 | 48.03 | 80.83 | 9.10 | 32.09 | 5.20 | 0.98 | 3.31 | 0.61 | 3.76 | 0.72 | 2.08 | 0.34 | 2.21 | 5.08 | |
CX2-19 | 47.51 | 78.04 | 8.89 | 31.39 | 5.00 | 0.95 | 3.28 | 0.56 | 3.72 | 0.69 | 2.30 | 0.32 | 2.36 | 4.80 | |
CX2-20 | 45.79 | 80.45 | 8.67 | 31.76 | 5.02 | 0.99 | 3.09 | 0.56 | 3.75 | 0.73 | 2.27 | 0.32 | 2.36 | 5.00 | |
AVE | 48.80 | 80.80 | 9.16 | 32.40 | 5.17 | 0.99 | 3.41 | 0.57 | 3.70 | 0.73 | 2.20 | 0.34 | 2.29 | 4.88 | |
C1-J1s3 | C1-11 | 36.84 | 79.61 | 8.85 | 33.73 | 7.16 | 1.50 | 6.07 | 0.98 | 6.30 | 1.20 | 3.53 | 0.55 | 3.78 | 3.87 |
C1-12 | 39.67 | 76.50 | 9.10 | 33.92 | 7.04 | 1.60 | 6.52 | 0.98 | 6.09 | 1.16 | 3.42 | 0.54 | 3.73 | 4.01 | |
C1-13 | 37.00 | 76.88 | 9.86 | 34.30 | 7.22 | 1.57 | 6.38 | 0.96 | 6.04 | 1.20 | 3.47 | 0.53 | 3.72 | 3.98 | |
C1-14 | 37.62 | 80.14 | 8.90 | 33.32 | 7.06 | 1.65 | 6.19 | 0.90 | 5.91 | 1.24 | 3.45 | 0.53 | 3.79 | 4.19 | |
C1-15 | 36.78 | 79.63 | 9.24 | 34.51 | 6.86 | 1.62 | 6.40 | 0.96 | 6.01 | 1.16 | 3.58 | 0.53 | 3.50 | 3.76 | |
C1-16 | 36.84 | 77.75 | 9.19 | 35.51 | 7.07 | 1.54 | 6.31 | 0.95 | 6.09 | 1.24 | 3.47 | 0.50 | 3.76 | 3.92 | |
C1-17 | 39.86 | 76.69 | 9.74 | 36.89 | 7.07 | 1.59 | 5.85 | 0.96 | 6.10 | 1.21 | 3.72 | 0.55 | 3.68 | 3.91 | |
C1-18 | 41.54 | 75.99 | 9.48 | 34.38 | 6.95 | 1.50 | 6.10 | 0.91 | 5.96 | 1.22 | 3.49 | 0.59 | 3.95 | 3.80 | |
C1-19 | 39.84 | 77.67 | 9.05 | 36.66 | 7.02 | 1.59 | 6.78 | 0.98 | 5.61 | 1.22 | 3.62 | 0.54 | 3.86 | 3.72 | |
C1-20 | 38.38 | 76.42 | 8.95 | 34.63 | 7.39 | 1.57 | 6.12 | 0.95 | 5.90 | 1.25 | 3.50 | 0.50 | 3.70 | 3.99 | |
AVE | 38.60 | 77.00 | 9.29 | 34.80 | 7.15 | 1.53 | 6.24 | 0.96 | 6.07 | 1.20 | 3.55 | 0.54 | 3.71 | 3.86 | |
C1-J1s2-3 | C1-01 | 34.51 | 68.05 | 7.63 | 30.34 | 6.87 | 1.48 | 5.98 | 0.87 | 6.14 | 1.16 | 3.59 | 0.52 | 3.63 | 3.52 |
C1-02 | 32.69 | 63.69 | 7.79 | 30.80 | 6.81 | 1.53 | 5.70 | 0.92 | 6.00 | 1.24 | 3.74 | 0.59 | 3.81 | 3.30 | |
C1-03 | 34.04 | 69.37 | 8.11 | 32.07 | 6.21 | 1.57 | 5.91 | 0.90 | 5.92 | 1.14 | 3.69 | 0.56 | 3.72 | 3.46 | |
C1-04 | 33.29 | 62.86 | 7.79 | 29.09 | 6.42 | 1.47 | 6.04 | 0.92 | 6.67 | 1.16 | 3.80 | 0.55 | 3.68 | 3.42 | |
C1-05 | 33.64 | 62.64 | 8.03 | 31.48 | 6.20 | 1.55 | 6.13 | 0.92 | 6.19 | 1.20 | 3.73 | 0.58 | 3.90 | 3.45 | |
C1-06 | 33.70 | 66.69 | 8.05 | 30.28 | 6.31 | 1.45 | 6.26 | 0.95 | 6.48 | 1.23 | 3.83 | 0.58 | 3.87 | 3.33 | |
C1-07 | 34.26 | 68.53 | 8.20 | 29.76 | 6.22 | 1.38 | 6.06 | 0.91 | 6.30 | 1.20 | 3.75 | 0.54 | 3.91 | 3.56 | |
C1-08 | 32.68 | 66.94 | 8.40 | 31.28 | 6.67 | 1.56 | 5.98 | 0.90 | 6.28 | 1.23 | 3.69 | 0.55 | 3.88 | 3.38 | |
C1-09 | 35.47 | 67.66 | 7.46 | 31.29 | 6.30 | 1.41 | 5.88 | 0.96 | 6.23 | 1.24 | 3.94 | 0.56 | 3.98 | 3.34 | |
C1-10 | 34.04 | 65.77 | 8.23 | 31.30 | 6.97 | 1.49 | 6.45 | 0.93 | 5.84 | 1.15 | 3.82 | 0.54 | 3.78 | 3.31 | |
AVE | 33.60 | 66.90 | 8.05 | 30.70 | 6.46 | 1.51 | 6.05 | 0.94 | 6.14 | 1.21 | 3.70 | 0.55 | 3.86 | 3.36 | |
C1-J1s1 | C1-21 | 40.28 | 73.08 | 8.73 | 35.10 | 7.17 | 1.32 | 5.25 | 0.78 | 5.33 | 1.10 | 3.69 | 0.51 | 3.92 | 3.95 |
C1-22 | 38.62 | 76.45 | 9.31 | 34.24 | 6.86 | 1.24 | 5.23 | 0.85 | 5.42 | 1.12 | 3.70 | 0.51 | 3.89 | 3.84 | |
C1-23 | 38.95 | 78.99 | 9.29 | 35.78 | 6.53 | 1.33 | 5.10 | 0.81 | 5.30 | 1.15 | 3.59 | 0.53 | 3.68 | 3.88 | |
C1-24 | 39.53 | 77.17 | 8.62 | 33.36 | 6.60 | 1.24 | 5.39 | 0.83 | 5.04 | 1.11 | 3.78 | 0.52 | 3.67 | 3.85 | |
C1-25 | 39.09 | 80.57 | 8.95 | 35.51 | 6.90 | 1.18 | 5.01 | 0.84 | 5.47 | 1.07 | 3.53 | 0.54 | 3.60 | 3.79 | |
C1-26 | 41.79 | 76.58 | 8.87 | 36.49 | 6.79 | 1.29 | 5.06 | 0.84 | 5.78 | 1.15 | 3.62 | 0.53 | 3.74 | 3.83 | |
C1-27 | 39.09 | 74.61 | 9.40 | 32.75 | 6.69 | 1.30 | 5.12 | 0.78 | 5.48 | 1.21 | 3.59 | 0.52 | 3.96 | 3.86 | |
C1-28 | 38.56 | 72.58 | 9.18 | 34.60 | 6.83 | 1.30 | 5.23 | 0.82 | 5.71 | 1.13 | 3.72 | 0.53 | 3.66 | 3.72 | |
C1-29 | 39.26 | 71.20 | 9.07 | 33.32 | 6.69 | 1.36 | 4.91 | 0.82 | 5.35 | 1.18 | 3.58 | 0.53 | 3.51 | 3.70 | |
C1-30 | 36.40 | 74.94 | 9.45 | 36.20 | 6.41 | 1.30 | 4.89 | 0.84 | 5.04 | 1.14 | 3.46 | 0.53 | 3.58 | 3.84 | |
AVE | 38.70 | 76.30 | 9.18 | 34.70 | 6.72 | 1.27 | 5.14 | 0.81 | 5.51 | 1.14 | 3.57 | 0.53 | 3.72 | 3.87 | |
Zh2-J1s | Zh2-01 | 19.31 | 36.54 | 4.32 | 17.05 | 3.48 | 0.80 | 3.65 | 0.49 | 3.22 | 0.69 | 2.10 | 0.30 | 1.92 | 0.32 |
Zh2-02 | 18.51 | 37.53 | 4.18 | 15.94 | 3.53 | 0.79 | 3.46 | 0.51 | 3.37 | 0.72 | 2.04 | 0.28 | 2.01 | 0.33 | |
Zh2-03 | 19.30 | 36.20 | 4.45 | 16.22 | 3.41 | 0.82 | 3.63 | 0.51 | 3.45 | 0.68 | 2.02 | 0.28 | 2.16 | 0.34 | |
Zh2-04 | 18.67 | 33.79 | 4.30 | 16.69 | 3.43 | 0.80 | 3.47 | 0.52 | 3.35 | 0.68 | 1.92 | 0.29 | 2.01 | 0.32 | |
Zh2-05 | 19.19 | 37.59 | 4.12 | 16.75 | 3.57 | 0.75 | 3.41 | 0.53 | 3.10 | 0.73 | 2.05 | 0.28 | 1.99 | 0.32 | |
Zh2-06 | 20.10 | 35.10 | 4.34 | 16.88 | 3.25 | 0.75 | 3.35 | 0.50 | 3.34 | 0.70 | 1.96 | 0.31 | 1.99 | 0.34 | |
Zh2-07 | 20.18 | 34.57 | 4.46 | 16.07 | 3.33 | 0.79 | 3.56 | 0.53 | 3.34 | 0.69 | 2.11 | 0.29 | 2.02 | 0.31 | |
Zh2-08 | 19.20 | 36.76 | 4.37 | 16.13 | 3.47 | 0.75 | 3.52 | 0.53 | 3.29 | 0.72 | 2.01 | 0.27 | 1.93 | 0.31 | |
Zh2-09 | 18.73 | 38.33 | 4.36 | 15.51 | 3.22 | 0.79 | 3.52 | 0.53 | 3.20 | 0.70 | 2.04 | 0.31 | 2.08 | 0.30 | |
Zh2-10 | 19.42 | 35.29 | 4.39 | 17.11 | 3.42 | 0.79 | 3.65 | 0.55 | 3.25 | 0.71 | 2.00 | 0.28 | 1.97 | 0.32 | |
AVE | 19.10 | 36.40 | 4.34 | 16.80 | 3.44 | 0.78 | 3.46 | 0.51 | 3.25 | 0.70 | 2.00 | 0.29 | 2.01 | 0.31 |
Sample ID | Zr | Grt | Rt | Ap | Tur | GZi | ATi | Q | F | L | ∑REE | (La/Yb)_N | δEu | Th/Sc | Zr/Sc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1AVE | 30.34 | 31.39 | 0.90 | 0.35 | 4.19 | 50.85 | 7.71 | 47.12 | 18.63 | 34.27 | 182.73 | 0.96 | 1.12 | 0.71 | 19.93 |
CX2AVE | 32.97 | 28.30 | 0.82 | 0.55 | 0.27 | 46.19 | 67.07 | 39.90 | 13.20 | 46.90 | 190.89 | 2.01 | 1.10 | 0.72 | 19.44 |
Zh2AVE | 16.66 | 25.37 | 0.72 | 0.68 | 1.08 | 60.36 | 38.64 | 34.30 | 16.60 | 49.10 | 224.19 | 1.30 | 1.10 | 0.69 | 19.25 |
Principal Component | Eigenvalue | Variance Explained (%) | Cumulative Variance (%) |
---|---|---|---|
PC1 | 7.94 | 49.64 | 49.64 |
PC2 | 5.63 | 35.17 | 84.81 |
PC3 | 1.43 | 8.96 | 93.77 |
Quartz (%) | Feldspar (%) | Lithic Fragments (%) | |
---|---|---|---|
A (Kalamaili Mountains) | 39.3 | 21.7 | 39.0 |
B (Zhayier Mountains) | 43.3 | 19.6 | 37.2 |
C (Tianshan Mountains) | 43.3 | 17.6 | 39.1 |
Sample | λA | λB | λC |
---|---|---|---|
C1-01 | 0.5512 | 0.3917 | 0.0571 |
C1-02 | 0.598 | 0.3484 | 0.0536 |
C1-03 | 0.6183 | 0.3234 | 0.0583 |
C1-04 | 0.6443 | 0.3066 | 0.0492 |
C1-05 | 0.6261 | 0.3284 | 0.0455 |
C1-06 | 0.6342 | 0.3324 | 0.0334 |
C1-07 | 0.6253 | 0.328 | 0.0467 |
C1-08 | 0.6445 | 0.3047 | 0.0509 |
C1-09 | 0.6892 | 0.2654 | 0.0454 |
C1-10 | 0.6723 | 0.2856 | 0.0421 |
CX2-01 | 0.6763 | 0.2594 | 0.0644 |
CX2-02 | 0.7014 | 0.2447 | 0.054 |
CX2-03 | 0.6759 | 0.2582 | 0.0658 |
CX2-04 | 0.6759 | 0.2582 | 0.0658 |
CX2-05 | 0.6862 | 0.2615 | 0.0523 |
CX2-06 | 0.6412 | 0.2992 | 0.0596 |
CX2-07 | 0.7181 | 0.2245 | 0.0574 |
CX2-08 | 0.6838 | 0.2642 | 0.052 |
CX2-09 | 0.639 | 0.3019 | 0.0591 |
CX2-10 | 0.6458 | 0.275 | 0.0793 |
Zh2-01 | 0.7515 | 0.2005 | 0.0481 |
Zh2-02 | 0.7117 | 0.2313 | 0.057 |
Zh2-03 | 0.7616 | 0.2028 | 0.0355 |
Zh2-04 | 0.7651 | 0.1844 | 0.0505 |
Zh2-05 | 0.7651 | 0.1844 | 0.0505 |
Zh2-06 | 0.7616 | 0.2028 | 0.0355 |
Zh2-07 | 0.7742 | 0.1881 | 0.0377 |
Zh2-08 | 0.7616 | 0.2028 | 0.0355 |
Zh2-09 | 0.7873 | 0.1728 | 0.0399 |
Zh2-10 | 0.7742 | 0.1881 | 0.0377 |
Heavy Mineral (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Zircon | Garnet | Picotite | Tourmaline | Apatite | Rutile | Anatase | Leucoxene | Other | |
A (Kalamaili Mountains) | 30 | 30 | 20 | 5 | 1 | 1 | 6 | 3 | 4 |
B (Zhayier Mountains) | 33 | 28 | 10 | 1 | 1 | 1 | 1 | 1 | 24 |
C (Tianshan Mountains) | 17 | 25 | 2 | 1 | 1 | 1 | 2 | 1 | 50 |
Sample | λA | λB | λC |
---|---|---|---|
C1AVE | 0.9926 | 0.0061 | 0.0013 |
CX2AVE | 0.3159 | 0.5926 | 0.0915 |
Zh2AVE | 0.0507 | 0.0386 | 0.9107 |
La | Ce | Pr | Nd | |
---|---|---|---|---|
A (Kalamaili Mountains) | 33.57 | 54.18 | 6.74 | 26.12 |
B (Zhayier Mountains) | 35.42 | 83.66 | 9.15 | 31.89 |
C (Tianshan Mountains) | 13.08 | 30.31 | 2.39 | 11.44 |
Sample | λA | λB | λC |
---|---|---|---|
CX2AVE | 0.59 | 0.40 | 0.01 |
C1AVE | 0.47 | 0.25 | 0.28 |
Zh2AVE | 0.70 | 0.17 | 0.28 |
References
- Weltje, G.J.; von Eynatten, H. Quantitative provenance analysis of sediments: Review and outlook. Sediment. Geol. 2004, 171, 1–11. [Google Scholar] [CrossRef]
- Garzanti, E. From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sediment. Geol. 2016, 336, 3–13. [Google Scholar] [CrossRef]
- Vermeesch, P.; Resentini, A.; Garzanti, E. An R package for statistical provenance analysis. Sediment. Geol. 2016, 336, 14–25. [Google Scholar] [CrossRef]
- Caracciolo, L. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: Review, application and future development. Earth-Sci. Rev. 2020, 209, 103226. [Google Scholar] [CrossRef]
- Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N. Determining the provenance and authenticity of seafood: A review of current methodologies. Trends Food Sci. Technol. 2019, 91, 294–304. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Ireland, T.R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 2000, 28, 627–630. [Google Scholar] [CrossRef]
- Blake, J.M.; Peters, S.C.; Johannesson, K.H. Application of REE geochemical signatures for Mesozoic sediment provenance to the Gettysburg Basin, Pennsylvania. Sediment. Geol. 2017, 349, 103–111. [Google Scholar] [CrossRef]
- Singh, P. Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes. Chem. Geol. 2009, 266, 242–255. [Google Scholar] [CrossRef]
- Tomassi, A.; Falegnami, A.; Romano, E. Unveiling simplexity: A new paradigm for understanding complex adaptive systems and driving technological innovation. Innovation 2025, in press. [Google Scholar] [CrossRef]
- Akinlua, A.; Olise, F.S.; Akomolafe, A.O.; McCrindle, R.I. Rare earth element geochemistry of petroleum source rocks from northwestern Niger Delta. Mar. Pet. Geol. 2016, 77, 409–417. [Google Scholar] [CrossRef]
- Dia, A.; Gruau, G.; Olivié-Lauquet, G.; Riou, C.; Molénat, J.; Curmi, P. The distribution of rare earth elements in groundwaters: Assessing the role of source-rock composition, redox changes and colloidal particles. Geochim. Cosmochim. Acta 2000, 64, 4131–4151. [Google Scholar] [CrossRef]
- Gao, S.; Wedepohl, K.H. The negative Eu anomaly in Archean sedimentary rocks: Implications for decomposition, age and importance of their granitic sources. Earth Planet. Sci. Lett. 1995, 133, 81–94. [Google Scholar] [CrossRef]
- Terekhov, E.N.; Shcherbakova, T.F. Genesis of positive Eu anomalies in acid rocks from the Eastern Baltic Shield. Geochem. Int. 2006, 44, 439–455. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, G. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean. Earth-Sci. Rev. 2018, 186, 129–152. [Google Scholar] [CrossRef]
- Liu, B.; Han, B.-F.; Xu, Z.; Ren, R.; Zhang, J.-R.; Zhou, J.; Su, L.; Li, Q.-L. The Cambrian initiation of intra-oceanic subduction in the southern Paleo-Asian Ocean: Further evidence from the Barleik subduction-related metamorphic complex in the West Junggar region, NW China. J. Asian Earth Sci. 2016, 123, 1–21. [Google Scholar] [CrossRef]
- Zong, R.; Wang, Z.; Jiang, T.; Gong, Y. Late Devonian radiolarian-bearing siliceous rocks from the Karamay ophiolitic mélange in western Junggar: Implications for the evolution of the Paleo-Asian Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 448, 266–278. [Google Scholar] [CrossRef]
- Feng, Y.; Coleman, R.G.; Tilton, G.; Xiao, X. Tectonic evolution of the west Junggar region, Xinjiang, China. Tectonics 1989, 8, 729–752. [Google Scholar] [CrossRef]
- Li, D.; He, D.; Santosh, M.; Ma, D. Tectonic framework of the northern Junggar Basin Part II: The island arc basin system of the western Luliang Uplift and its link with the West Junggar terrane. Gondwana Res. 2015, 27, 1110–1130. [Google Scholar] [CrossRef]
- Li, D.; He, D.; Santosh, M.; Ma, D.; Tang, J. Tectonic framework of the northern Junggar Basin part I: The eastern Luliang Uplift and its link with the East Junggar terrane. Gondwana Res. 2015, 27, 1089–1109. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Y.; Lu, J.; Wu, X.; Zou, H.; Hu, Z.; Li, Y.; Han, M. Origin and genesis of the Permain hydrocarbon in the Northeast of the Dongdaohaizi Depression, Junggar Basin, China. ACS Omega 2022, 7, 24157–24173. [Google Scholar] [CrossRef]
- Yanping, L.I.; Hongliang, Z.O.U.; Lei, L.I.; Jiyou, F.U.; Yu, X.I.A.; Junyang, X.I.E. Petroleum exploration ideas and discoveries in Upper Wuerhe Formation, Dongdaohaizi Sag, Junggar Basin. Xinjiang Pet. Geol. 2022, 43, 127. [Google Scholar]
- Hu, X.; Zhang, X.; Xie, J.; Cao, H.; Zheng, X.; Zhao, Z.; Cao, J.; Pu, Q.; Li, Z.; Zhou, L. Sedimentary characteristics and hydrocarbon-generation potential of the Permian Pingdiquan Formation in Dongdaohaizi Sag, Junggar Basin, northwest China. ACS Omega 2023, 8, 35653–35669. [Google Scholar] [CrossRef]
- Fang, Y.; Wu, C.; Guo, Z.; Hou, K.; Dong, L.; Wang, L.; Li, L. Provenance of the southern Junggar Basin in the Jurassic: Evidence from detrital zircon geochronology and depositional environments. Sediment. Geol. 2015, 315, 47–63. [Google Scholar] [CrossRef]
- Lianhua, H.O.U.; Jinghong, W.; Kuang, L.; Zhang, G.; Lei, L.I.U.; Kuang, J. Provenance sediments and its exploration significance—A case from Member 1 of Qingshuihe Formation of Lower Cretaceous in Junggar Basin. Earth Sci. Front. 2009, 16, 337–348. [Google Scholar] [CrossRef]
- Li, D.; Han, Y.; Zhao, G.; Zhou, M.-F.; He, D.; Hou, S.; Zhen, Y.; Fan, D.; Yang, H. Sedimentary provenance supports a mid-paleozoic tectonic connection between the Junggar and Altai terranes in central Asia. Sci. Rep. 2024, 14, 22502. [Google Scholar] [CrossRef]
- Feng, Y.; Jiang, S.; Wang, C. Sequence stratigraphy, sedimentary systems and petroleum plays in a low-accommodation basin: Middle to upper members of the Lower Jurassic Sangonghe Formation, Central Junggar Basin, Northwestern China. J. Asian Earth Sci. 2015, 105, 85–103. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Z.; Zhao, C.; Han, J.; Liu, J.; Guo, Y.; Tang, X.; Su, C.; Chang, X.; Wu, T. Petrography and Geochemistry of Lower Jurassic Sandstones in the Eastern Junggar Basin: Implications for Provenance and Tectonic Setting. Minerals 2025, 15, 279. [Google Scholar] [CrossRef]
- Qiu, Z.; He, N.; Wang, H.; Li, X.; Li, T.; Zhou, Q.; Wu, X.; Shi, L. The sedimentological reservoir characteristics of the jurassic Sangonghe formation, southern mahu slope, Junggar Basin, northwestern China. Geol. J. 2021, 56, 1478–1495. [Google Scholar] [CrossRef]
- Shan, X.; Guo, H.; He, W.; Chen, X.; Si, X.; Xu, Y. Impact of diagenesis on the sandstone reservoir quality: A case study from the Lower Jurassic Sangonghe Formation, Junggar Basin, China. Arab. J. Geosci. 2021, 14, 2022. [Google Scholar] [CrossRef]
- Li, J.; Fang, Y.; Jarzembowski, E.A.; Li, T.; Teng, X.; Zhang, Q.; Peng, J.; Sha, J. The Sangonghe biota in the Junggar Basin, NW China: Age constraints and climate implications. Hist. Biol. 2024, 36, 1655–1662. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, Y.; Jiao, X.; Zhou, D.; Meng, Z.; Yang, Y. Major, trace and rare earth element geochemistry of the Permian Lucaogou oil shales, eastern Junggar Basin, NW China: Implications for weathering, provenance and tectonic setting. Aust. J. Earth Sci. 2023, 70, 585–602. [Google Scholar] [CrossRef]
- Yao, Z.; Yu, H.; Yang, F.; Jianatayi, D.; Zhang, B.; Li, T.; Jia, C.; Pan, T.; Zhang, Z.; Aibibuli, N. Provenance, depositional environment, and paleoclimatic conditions of a Near-Source fan delta: A case study of the permian Jiamuhe formation in the Shawan sag, Junggar basin. Minerals 2023, 13, 1251. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, G.; Sun, M.; Eizenhöfer, P.R.; Han, Y.; Hou, W.; Liu, D.; Wang, B.; Liu, Q.; Xu, B. Tectonic evolution from subduction to arc-continent collision of the Junggar ocean: Constraints from U-Pb dating and Hf isotopes of detrital zircons from the North Tianshan belt, NW China. Bulletin 2016, 128, 644–660. [Google Scholar] [CrossRef]
- Yang, W.; Jolivet, M.; Dupont-Nivet, G.; Guo, Z.; Zhang, Z.; Wu, C. Source to sink relations between the Tian Shan and Junggar Basin (northwest China) from Late Palaeozoic to Quaternary: Evidence from detrital U-Pb zircon geochronology. Basin Res. 2013, 25, 219–240. [Google Scholar] [CrossRef]
- Wang, F.; Luo, M.; He, Z.; Ge, R.; Cao, Y.; Grave, J.D.; Zhu, W. Late Mesozoic intracontinental deformation and magmatism in the Chinese Tianshan and adjacent areas, Central Asia. Bulletin 2022, 134, 3003–3021. [Google Scholar] [CrossRef]
- Guan, X.; Wu, C.; Wang, B.; Zhou, T.; Xu, Y.; Tang, X.; Xie, L. Sediment provenances of a Mesozoic intracontinental basin enclosed by multiple orogenic belts, Junggar Basin, NW China: Insights from detrital ilmenite, Cr-spinel geochemistry, and zircon U–Pb geochronology. Int. Geol. Rev. 2023, 65, 2067–2092. [Google Scholar] [CrossRef]
- Chen, X.; Lu, H.F.; Shu, L.S.; Wang, H.M.; Zhang, G.Q. Study on tectonic evolution of Junggar Basin. Geol. J. China Univ. 2002, 8, 257. [Google Scholar]
- Gao, Y.; Zhang, S.; Zhao, H.; Ren, Q.; Yang, T.; Wu, H.; Li, H. North China block underwent simultaneous true polar wander and tectonic convergence in late Jurassic: New paleomagnetic constraints. Earth Planet. Sci. Lett. 2021, 567, 117012. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Wu, C.; Li, J.; Haproff, P.J.; Geng, M.; Wu, S.; Xu, S.; Li, Z.; Yang, D. Tectono-stratigraphic framework and evolution of East Junggar Basin, Central Asia. Tectonophysics 2023, 851, 229758. [Google Scholar] [CrossRef]
- Kwon, S.T.; Tilton, G.R.; Coleman, R.G.; Feng, Y. Isotopic studies bearing on the tectonics of the west Junggar region, Xinjiang, China. Tectonics 1989, 8, 719–727. [Google Scholar] [CrossRef]
- Zhi, D.; Zhang, J.; Wu, T.; Wu, A.; Tang, Y.; Liu, Y.; Cao, J. Yanshanian–Himalayan geodynamic transformation of the northwestern Junggar Basin, southwestern Central Asian Orogenic Belt (CAOB), and its significance for petroleum accumulation. Geosci. Front. 2023, 14, 101565. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Fan, Y.; Yu, L.; Zhang, S.; Li, X. Fission-track thermochronological evidence for the Yanshanian tectonic evolution of the northern Junggar Basin, northwest China. Front. Earth Sci. 2023, 11, 1023655. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Zhang, L.; Lei, Y.; Hu, C.; Yu, L.; Zheng, Z.; Xu, B.; Liu, N.; Jia, Y. Genesis of the Upper Jurassic Continental Red Sandstones in the Yongjin Area of the Central Junggar Basin: Evidence from Petrology and Geochemistry. Minerals 2025, 15, 347. [Google Scholar] [CrossRef]
- Garzanti, E. Petrographic classification of sand and sandstone. Earth-Sci. Rev. 2019, 192, 545–563. [Google Scholar] [CrossRef]
- Rocks, S. Petrology of Sedimentary Rocks; Cambridge University Press: Cambridge, UK, 1968. [Google Scholar]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Jian, X.; Guan, P.; Zhang, D.W.; Zhang, W.; Feng, F.; Liu, R.J.; Lin, S.D. Provenance of Tertiary sandstone in the northern Qaidam basin, northeastern Tibetan Plateau: Integration of framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol. 2013, 290, 109–125. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. Chem. Geol. 2002, 184, 123–138. [Google Scholar] [CrossRef]
- Martin, L.; Duchêne, S.; Deloule, E.; Vanderhaeghe, O. The isotopic composition of zircon and garnet: A record of the metamorphic history of Naxos, Greece. Lithos 2006, 87, 174–192. [Google Scholar] [CrossRef]
- Degeling, H.; Eggins, S.; Ellis, D.J. Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral. Mag. 2001, 65, 749–758. [Google Scholar] [CrossRef]
- Pattan, J.N.; Pearce, N.J.G.; Mislankar, P.G. Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: A case study from the Central Indian Ocean Basin. Chem. Geol. 2005, 221, 260–278. [Google Scholar] [CrossRef]
- Shields, G.; Stille, P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chem. Geol. 2001, 175, 29–48. [Google Scholar] [CrossRef]
- de Baar, H.J.W.; German, C.R.; Elderfield, H.; Van Gaans, P. Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim. Cosmochim. Acta 1988, 52, 1203–1219. [Google Scholar] [CrossRef]
- Bhatia, M.R. Plate tectonics and geochemical composition of sandstones. J. Geol. 1983, 91, 611–627. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Crook, K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Ge, X.; Mou, C.; Yu, Q.; Liu, W.; Men, X.; He, J. The geochemistry of the sedimentary rocks from the Huadi No. 1 well in the Wufeng-Longmaxi formations (Upper Ordovician-Lower Silurian), South China, with implications for paleoweathering, provenance, tectonic setting and paleoclimate. Mar. Pet. Geol. 2019, 103, 646–660. [Google Scholar] [CrossRef]
- Malik, N.K.; Alvi, S.H. Provenance and depositional setting of black shales from the dhalbhum formation, North singhbhum mobile belt, eastern India. J. Geol. Soc. India 2021, 97, 735–743. [Google Scholar] [CrossRef]
- Zheng, B.; Han, B.-F.; Liu, B.; Wang, Z.-Z. Ediacaran to paleozoic magmatism in west Junggar orogenic belt, NW China, and implications for evolution of central Asian orogenic belt. Lithos 2019, 338, 111–127. [Google Scholar] [CrossRef]
- Junmeng, Z.; Guodong, L.; Zaoxun, L.; Xiankang, Z.; Guoze, Z. Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar basin. Tectonophysics 2003, 376, 199–239. [Google Scholar] [CrossRef]
- Xiao, W.; Sun, M.; Santosh, M. Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt. Geosci. Front. 2014, 6, 137–140. [Google Scholar] [CrossRef]
- Tang, G.; Wang, Q.; Wyman, D.A.; Li, Z.-X.; Zhao, Z.-H.; Jia, X.-H.; Jiang, Z.-Q. Ridge subduction and crustal growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang (west China). Chem. Geol. 2010, 277, 281–300. [Google Scholar] [CrossRef]
- Yang, Y.T.; Song, C.C.; He, S. Jurassic tectonostratigraphic evolution of the Junggar basin, NW China: A record of Mesozoic intraplate deformation in Central Asia. Tectonics 2015, 34, 86–115. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, D.; Pan, J.; Wei, D.; Tang, Y.; Wang, G.; Wei, C.; Ma, D. Multiple-phase tectonic superposition and reworking in the Junggar Basin of northwestern China—Implications for deep-seated petroleum exploration. AAPG Bull. 2018, 102, 1489–1521. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, F.; Zhang, Y.; Lu, H.; Zhang, H.; Huang, R.; Liu, Z.; Chen, J. An updated terrestrial heat flow data set for the Junggar basin, northwest China: Implications for geothermal resources. Geophys. J. Int. 2024, 239, 1103–1116. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Y.; Ge, Z.; Chen, W. Mineralization and genesis of the orogenic gold system in the Kalamaili area, East Junggar, Xinjiang, northwestern China. Bulletin 2024, 136, 461–486. [Google Scholar] [CrossRef]
- Song, P.; Wang, T.; Tong, Y.; Zhang, J.; Huang, H. Late Carboniferous intrusions along the Kalamaili suture zone, southwestern Central Asian Orogenic Belt (CAOB): Implications for a tectonic switch from subduction to collision. Int. Geol. Rev. 2023, 65, 1601–1621. [Google Scholar] [CrossRef]
- Gao, F.; Cheng, Y.; Guo, R.; Liu, X.; Li, Z.; Chen, Y.; Wang, M.; Liu, Z.; Cai, H. Slab break-off of the Kalamaili oceanic slab revealed by the latest Carboniferous mafic–ultramafic rocks in eastern North Tianshan (NW China). J. Asian Earth Sci. 2024, 273, 106274. [Google Scholar] [CrossRef]
- Chen, J.; He, N.; Wang, Y.; Fu, L.; Yu, C.; Liu, Y. The sedimentary characteristics and depositional evolution in the Middle Jurassic Xishanyao Formation, Southeastern Xiayan Rise, Junggar Basin, NW China. Geol. J. 2022, 57, 2221–2234. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, J.; Hao, X.; Pu, Q.; Gao, R.; Li, X. Sedimentary Characteristics and Models of Gravelly Braided River-Type Alluvial Fans: A Case Study on the Northwestern Margin of the Junggar Basin, China. ACS Omega 2025, 10, 3754–3770. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, Z.; Wang, J.; Li, Z. Subtle reservoirs and implications for hydrocarbon exploration in terrestrial lacustrine fan-delta deposits: Insights from the Triassic Baikouquan Formation, Mahu Sag, Junggar Basin, western China. Mar. Pet. Geol. 2022, 142, 105730. [Google Scholar] [CrossRef]
- Ye, C.; Feng, Y.; Lei, R.; Yang, G. Compositional variation of amphiboles during magma mixing: A case study of Huangyangshan A-type granite in Kalamaili metallogenic belt, East Junggar, China. Front. Earth Sci. 2021, 9, 650014. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, L.; Niu, B.; Zheng, R.; Yang, Y.; Liu, J. Early Paleozoic arc magmatism in the Kalamaili orogenic belt, Northern Xinjiang, NW China: Implications for the tectonic evolution of the East Junggar terrane. J. Asian Earth Sci. 2020, 194, 104072. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, J.; Hu, W.; Zhi, D.; Guo, X.; Bian, B. Insights into Carboniferous subduction-related petroleum systems in the Central Asian Orogenic Belt (CAOB) from hydrocarbons in vein calcite cements, West Junggar, northwest China. Mar. Pet. Geol. 2021, 124, 104796. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Wang, Z.; Chen, W.; Li, C.; Huang, P. Late Palaeozoic mineralization and tectonic evolution of the West Junggar metallogenic belt, Central Asia: Constraints from Re–Os and 40Ar/39Ar geochronology. Int. Geol. Rev. 2017, 59, 1131–1153. [Google Scholar] [CrossRef]
- Wu, K.; Pei, Y.; Li, T.; Wang, X.; Liu, Y.; Liu, B.; Ma, C.; Hong, M. Structural characteristics and implication on tectonic evolution of the Daerbute strike-slip fault in West Junggar area, NW China. Front. Earth Sci. 2018, 12, 555–568. [Google Scholar] [CrossRef]
- Huang, P.; Chen, X.; Wang, Z.; Ye, B.; Li, X.; Yi, Y. Late Paleozoic Granitic Magmatism in West Junggar Metallogenic Belt (Xinjiang), Central Asia, and Its Tectonic Implication. Geotecton. Metallog. 2016, 40, 16. [Google Scholar]
- Su, Y.-P.; Tang, H.-F.; Liu, C.-Q.; Hou, G.-S.; Liang, L.-L. The determination and a preliminary study of sujiquan aluminous a-type granites in east junggar, xinjiang. Acta Petrol. Mineralogica. 2006, 25, 10. [Google Scholar]
- Hu, Y.; Wu, J.; Wang, J.; Yang, M.; Yuan, P.; Ling, W. Geochemistry and geochronology of the Miaoergou granite pluton in West Junggar, Xinjiang. Acta Petrol. Sin. 2015, 31, 505–522. [Google Scholar]
- Geng, H.; Sun, M.; Yuan, C.; Xiao, W.; Xian, W.; Zhao, G.; Zhang, L.; Wong, K.; Wu, F. Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: Implications for ridge subduction? Chem. Geol. 2009, 266, 364–389. [Google Scholar] [CrossRef]
- Chen, J.-F.; Han, B.-F.; Ji, J.-Q.; Zhang, L.; Xu, Z.; He, G.-Q.; Wang, T. Zircon U–Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China. Lithos 2010, 115, 137–152. [Google Scholar] [CrossRef]
- Zhijun, Q.I.N.; Shengyu, Y.I.N.; Yingchang, C.A.O.; Chuanmin, Z.; Kaikai, L.I.; Deyu, G. Geochemical characteristics of the Middle Permian Pingdiquan Formation source rocks in the Dongdaohaizi Sag and its periphery, Junggar Basin. Nat. Gas Geosci. 2024, 35, 1910–1922. [Google Scholar]
- Guo, S.; Zhang, X.; Wang, J.; Wang, S.; Liu, K.; Wang, J. Deeply buried clastic rock diagenesis evolution mechanism of Dongdaohaizi sag in the center of Junggar fault basin, Northwest China. Open Geosci. 2024, 16, 20220711. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, G.; Li, S.; Guo, R.; Zeng, Z.; Cheng, S.; Xue, Z.; Li, L.; Zhou, H.; Liu, S. Provenance of the Lower Jurassic Badaowan and Sangonghe Formations in Dongdaohaizi Depression, Junggar Basin, and Its Constraint on the Karamaili Ocean. J. Mar. Sci. Eng. 2023, 11, 1375. [Google Scholar] [CrossRef]
- Garzanti, E. The maturity myth in sedimentology and provenance analysis. J. Sediment. Res. 2017, 87, 353–365. [Google Scholar] [CrossRef]
- Bustin, R.M. Organic maturity in the western Canada sedimentary basin. Int. J. Coal Geol. 1991, 19, 319–358. [Google Scholar] [CrossRef]
- Larcher, A.V.; Alexander, R.; Kagi, R.I. Changes in configuration of extended moretanes with increasing sediment maturity. Org. Geochem. 1987, 11, 59–63. [Google Scholar] [CrossRef]
- Critelli, S.; Arribas, J.; Le Pera, E.; Tortosa, A.; Marsaglia, K.M.; Latter, K.K. The recycled orogenic sand provenance from an uplifted thrust belt, Betic Cordillera, southern Spain. J. Sediment. Res. 2003, 73, 72–81. [Google Scholar] [CrossRef]
- Thomas, W.A.; Becker, T.P.; Samson, S.D.; Hamilton, M.A. Detrital zircon evidence of a recycled orogenic foreland provenance for Alleghanian clastic-wedge sandstones. J. Geol. 2004, 112, 23–37. [Google Scholar] [CrossRef]
- Ugidos, J.M.; Armenteros, I.; Barba, P.; Valladares, M.I.; Colmenero, J.R. Geochemistry and petrology of recycled orogen-derived sediments: A case study from Upper Precambrian siliciclastic rocks of the Central Iberian Zone, Iberian Massif, Spain. Precambrian Res. 1997, 84, 163–180. [Google Scholar] [CrossRef]
- Song, S.; Niu, Y.; Su, L.; Zhang, C.; Zhang, L. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth-Sci. Rev. 2014, 129, 59–84. [Google Scholar] [CrossRef]
- Zhou, J.-B.; Wilde, S.A.; Zhao, G.-C.; Han, J. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth-Sci. Rev. 2018, 186, 76–93. [Google Scholar] [CrossRef]
- Li, J.Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 2006, 26, 207–224. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Berzin, N.A.; Buslov, M.M. Opening and tectonic evolution of the Paleo-Asian Ocean. Int. Geol. Rev. 1995, 37, 335–360. [Google Scholar] [CrossRef]
- Liu, B.-C.; Wang, K.; Zong, R.-W.; Bai, J.; Wang, Y.; Yang, N.; Wang, Y.; Xu, H.-H. A new Late Devonian plant assemblage in West Junggar, Xinjiang, China and its floral evolution during the Devonian. Rev. Palaeobot. Palynol. 2024, 325, 105112. [Google Scholar] [CrossRef]
- Zhang, J.e.; Chen, Y.; Xiao, W.; Wakabayashi, J.; Windley, B.F.; Yin, J. Sub-parallel ridge-trench interaction and an alternative model for the Silurian-Devonian archipelago in Western Junggar and North-Central Tianshan in NW China. Earth-Sci. Rev. 2021, 217, 103648. [Google Scholar] [CrossRef]
- Zhang, J.e.; Xiao, W.; Han, C.; Mao, Q.; Ao, S.; Guo, Q.; Ma, C. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China. Lithos 2011, 125, 592–606. [Google Scholar] [CrossRef]
- Guan, X.; Wu, C.; Saylor, J.; Jia, W.; Tang, X.; Wang, Y.; Lin, C. Transition from a hydrologically partitioned to an integrated lake in the Cretaceous Junggar Basin, Central Asia. J. Asian Earth Sci. 2024, 267, 106116. [Google Scholar] [CrossRef]
- Guan, X.; Wu, C.; Zhou, T.; Tang, X.; Ma, J.; Fang, Y. Jurassic–Lower Cretaceous sequence stratigraphy and allogenic controls in proximal terrestrial environments (Southern Junggar Basin, NW China). Geol. J. 2021, 56, 4038–4062. [Google Scholar] [CrossRef]
- Zhu, X.; Li, S.; Wu, D.; Zhu, S.; Dong, Y.; Zhao, D.; Wang, X.; Zhang, Q. Sedimentary characteristics of shallow-water braided delta of the Jurassic, Junggar basin, Western China. J. Pet. Sci. Eng. 2017, 149, 591–602. [Google Scholar] [CrossRef]
- He, D.; Chen, X.; Kuang, J.; Zhou, L.; Tang, Y.; Liu, D. Development and genetic mechanism of Chepaizi-Mosuowan uplift in Junggar Basin, China. Earth Sci. Front. 2008, 15, 42–55. [Google Scholar] [CrossRef]
- He, D.; Kuang, J.; Wu, X.; Zhou, L.; Tang, Y.; Liu, B. Dynamics for Mosuowan uplift structural development in Junggar basin. China Pet. Explor. 2005, 10, 22. [Google Scholar]
- Zhou, L.; Zhang, Y.; Lei, D.; He, D.; Zhang, Y.; Tang, Y.; Li, B. Structural characteristics of Mosuowan uplift in Junggar Basin. China Pet. Explor. 2005, 10, 16. [Google Scholar]
- Li, Y.-N.; Shao, L.; Hou, H.; Tang, Y.; Yuan, Y.; Zhang, J.; Shang, X.; Lu, J. Sequence stratigraphy, palaeogeography, and coal accumulation of the fluvio-lacustrine Middle Jurassic Xishanyao Formation in central segment of southern Junggar Basin, NW China. Int. J. Coal Geol. 2018, 192, 14–38. [Google Scholar] [CrossRef]
- Ju, W.; Hou, G.; Li, L.; Xiao, F. End Late Paleozoic tectonic stress field in the southern edge of Junggar Basin. Geosci. Front. 2012, 3, 707–715. [Google Scholar] [CrossRef]
- Allen, M.B.; Vincent, S.J. Fault reactivation in the Junggar region, northwest China: The role of basement structures during Mesozoic-Cenozoic compression. J. Geol. Soc. 1997, 154, 151–155. [Google Scholar] [CrossRef]
- Tang, J.; He, D.; Li, D.; Ma, D. Large-scale thrusting at the northern Junggar Basin since Cretaceous and its implications for the rejuvenation of the Central Asian Orogenic Belt. Geosci. Front. 2015, 6, 227–246. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, X.; Rao, G.; Wang, R. Mesozoic reactivated transpressional structures and multi-stage tectonic deformation along the Hong-Che fault zone in the northwestern Junggar Basin, NW China. Tectonophysics 2016, 679, 156–168. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, Z.; Wang, T.; Yan, Q.; Xiao, W. Provenance and Tectonic Setting of Clastic Deposits in the Devonian Xicheng Basin, Qinling Orogen, Central China. J. Sediment. Res. 2006, 76, 557–574. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, Z.; Yan, Q.; Wang, T.; Guo, X. Geochemical Constraints on the Provenance and Depositional Setting of the Devonian Liuling Group, East Qinling Mountains, Central China: Implications for the Tectonic Evolution of the Qinling Orogenic Belt. J. Sediment. Res. 2012, 82, 9–24. [Google Scholar] [CrossRef]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. J. Sediment. Res. 1984, 54, 103–116. [Google Scholar]
- Haughton, P.D.; Todd, S.P.; Morton, A.C. Sedimentary provenance studies. Geol. Soc. Lond. Spec. Publ. 1991, 57, 1–11. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Suczek, C.A. Plate tectonics and sandstone compositions. AAPG Bull. 1979, 63, 2164–2182. [Google Scholar] [CrossRef]
- Morton, A.; Hurst, A. Correlation of sandstones using heavy minerals: An example from the Statfjord Formation of the Snorre Field, northern North Sea. Geol. Soc. Lond. Spec. Publ. 1995, 89, 3–22. [Google Scholar] [CrossRef]
- Hallsworth, M.C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29. [Google Scholar] [CrossRef]
- Hubert, J.F. A Zircon-Tourmaline-Rutile Maturity Index and the Interdependence of the Composition of Heavy Mineral Assemblages with the Gross Composition and Texture of Sandstones. J. Sediment. Res. 1962, 32, 440–450. [Google Scholar]
- Mange, M.A.; Wright, D.T. Heavy Minerals in Use; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58. [Google Scholar]
- Garzanti, E.; Andò, S. Plate tectonics and heavy mineral suites of modern sands. Dev. Sedimentol. 2007, 58, 741–763. [Google Scholar]
- Morton, A.C. Geochemical studies of detrital heavy minerals and their application to provenance research. Geol. Soc. Lond. Spec. Publ. 1991, 57, 31–45. [Google Scholar] [CrossRef]
- McCarty, R.; Congleton, J. Heavy liquids: Their use and methods in paleontology. Vertebr. Paleontol. Tech. Vol. One 1994, 1, 187–204. [Google Scholar]
- Banerji, U.S.; Dubey, C.P.; Goswami, V.; Joshi, K.B. Geochemical indicators in provenance estimation. In Geochemical Treasures and Petrogenetic Processes; Springer: Berlin/Heidelberg, Germany, 2022; pp. 95–121. [Google Scholar]
- Mondillo, N.; Chelle-Michou, C.; Putzolu, F.; Balassone, G.; Mormone, A.; Santoro, L.; Cretella, S.; Scognamiglio, G.; Tarallo, M.; Tavani, S. The mid-Cretaceous bauxites of SE France: Geochemistry, U-Pb zircon dating and their implications for the paleogeography at the junction between Alpine Tethys and Pyrenean Rift. Gondwana Res. 2025, 137, 145–170. [Google Scholar] [CrossRef]
- Bhatia, M.R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sediment. Geol. 1985, 45, 97–113. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol. 1986, 94, 635–650. [Google Scholar] [CrossRef]
- Gao, Y.; Li, F.; Shi, S.; Chen, Y. Determination of paleocurrent directions based on well logging technology aiming at the lower third member of the Shahejie Formation in the Chezhen Depression and its implications. Water 2021, 13, 408. [Google Scholar] [CrossRef]
- Gromet, L.P.; Haskin, L.A.; Korotev, R.L.; Dymek, R.F. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta 1984, 48, 2469–2482. [Google Scholar] [CrossRef]
- Borrego, J.; López-González, N.; Carro, B.; Lozano-Soria, O. Origin of the anomalies in light and middle REE in sediments of an estuary affected by phosphogypsum wastes (south-western Spain). Mar. Pollut. Bull. 2004, 49, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Leybourne, M.I.; Johannesson, K.H. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe–Mn oxyhydroxides: Fractionation, speciation, and controls over REE+ Y patterns in the surface environment. Geochim. Cosmochim. Acta 2008, 72, 5962–5983. [Google Scholar] [CrossRef]
Sample and Strata | ΣREE | LREE | HREE | LREE/HREE | LaN/YbN | δEu | δCe | LaN/SmN | GdN/YbN | Ceanom |
---|---|---|---|---|---|---|---|---|---|---|
C1-J2s3 | 191.30 | 168.45 | 22.85 | 7.37 | 0.98 | 1.08 | 0.96 | 1.01 | 0.96 | −0.03 |
C1-J2s2 | 182.73 | 159.56 | 23.18 | 6.88 | 0.96 | 1.12 | 0.96 | 1.07 | 0.94 | −0.01 |
C1-J2s1 | 187.88 | 166.90 | 20.99 | 7.95 | 0.98 | 1.01 | 0.96 | 1.08 | 0.79 | −0.04 |
Cx2-J2s2 | 190.89 | 177.30 | 13.59 | 13.05 | 2.01 | 1.10 | 0.90 | 1.77 | 0.85 | −0.07 |
Zh2-J2s2 | 224.19 | 203.51 | 20.68 | 9.84 | 1.30 | 1.10 | 1.01 | 0.87 | 1.15 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Yu, H.; Li, B.; Han, J.; Zhao, C.; Guo, Y.; Liu, J.; Su, C.; Chang, X.; Wu, T.; et al. Provenance and Tectonic Controls in Eastern Junggar: Insights from Petrography and REE Geochemistry. Molecules 2025, 30, 3399. https://doi.org/10.3390/molecules30163399
Wang S, Yu H, Li B, Han J, Zhao C, Guo Y, Liu J, Su C, Chang X, Wu T, et al. Provenance and Tectonic Controls in Eastern Junggar: Insights from Petrography and REE Geochemistry. Molecules. 2025; 30(16):3399. https://doi.org/10.3390/molecules30163399
Chicago/Turabian StyleWang, Shengzhu, Hongzhou Yu, Baosheng Li, Jinqi Han, Can Zhao, Yaoyun Guo, Jiaye Liu, Chang Su, Xu Chang, Tong Wu, and et al. 2025. "Provenance and Tectonic Controls in Eastern Junggar: Insights from Petrography and REE Geochemistry" Molecules 30, no. 16: 3399. https://doi.org/10.3390/molecules30163399
APA StyleWang, S., Yu, H., Li, B., Han, J., Zhao, C., Guo, Y., Liu, J., Su, C., Chang, X., Wu, T., & Huang, H. (2025). Provenance and Tectonic Controls in Eastern Junggar: Insights from Petrography and REE Geochemistry. Molecules, 30(16), 3399. https://doi.org/10.3390/molecules30163399