Design, Synthesis, and Pharmacological Activity of the N-(4-(1H-1,2,4-Triazol-1-yl)phenyl)-substituted-amide Derivatives
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Pharmacology
2.2.1. MES and scPTZ
2.2.2. ROT
2.2.3. ED50/TD50 Determination
2.2.4. Radioreceptor Binding Assay
2.2.5. GABA Estimation
2.2.6. EPM Test
2.2.7. Structure-Activity Relationships
2.2.8. Docking Study
2.2.9. Prediction of Physicochemical and Pharmacokinetic Properties
3. Materials and Methods
3.1. Chemistry
3.1.1. Synthesis of Intermediates 5 and 8
3.1.2. Synthesis of Intermediate 3
3.1.3. General Procedure for the Synthesis of Target Compounds 6a–m and 9a–g
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)benzamide (6a): White solid, Yield 54%, Mp 235–236 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.47 (s, 1H, NH), 9.25 (s, 1H, Triazole-H), 8.23 (s, 1H, Triazole-H), 8.00–7.54 (m, 9H, Ar-H). 13C NMR (125 MHz, DMSOd6) δ: 166.17, 152.72, 142.47, 139.22, 135.18, 132.82, 132.21, 128.91, 128.17, 121.57, 120.34. ESI-HRMS calcd for C15H13N4O+ ([M + H]+): 265.1084; found: 265.1090.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-2-chlorobenzamide (6b): White solid, Yield 63%, Mp 247–248 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.47 (s, 1H, NH), 9.25 (s, 1H, Triazole-H), 8.23 (s, 1H, Triazole-H), 8.08–7.38 (m, 8H, Ar-H). 13C NMR (125 MHz, DMSOd6) δ: 165.64, 165.04, 163.65, 152.72, 142.48, 139.10, 132.87, 131.60, 130.97, 130.90, 121.62, 120.34, 115.96, 115.79. ESI-HRMS calcd for C15H12ClN4O+ ([M + H]+): 299.0694; found: 299.0703.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-3-chlorobenzamide (6c): White solid, Yield 62%, Mp 209–210 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.55 (s, 1H, NH), 9.25 (s, 1H, Triazole-H), 8.23 (s, 1H, Triazole-H), 8.05–7.60 (m, 8H, Ar-H). 13C NMR (125 MHz, DMSOd6) δ: 164.69, 152.75, 142.51, 138.90, 137.13, 133.75, 133.03, 132.05, 130.95, 127.93, 127.03, 121.70, 120.36. ESI-HRMS calcd for C15H12ClN4O+ ([M + H]+): 299.0694; found: 299.0705.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-4-chlorobenzamide (6d): White solid, Yield 57%, Mp 259–261 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.52 (s, 1H, NH), 9.24 (s, 1H, Triazole-H), 8.24 (s, 1H, Triazole-H), 7.92–7.35 (m, 8H, Ar-H). 13C NMR (125 MHz, DMSOd6) δ: 165.03, 152.73, 142.48, 138.99, 137.07, 133.84, 132.95, 130.15, 129.00, 121.65, 120.35. ESI-HRMS calcd for C15H12ClN4O+ ([M + H]+): 299.0694; found: 299.0702.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-2-fluorobenzamide (6e): White solid, Yield 53%, Mp 195–196 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.65 (s, 1H, NH), 9.24 (s, 1H, Triazole-H), 8.24 (s, 1H, Triazole-H), 7.92–7.35 (m, 8H, Ar-H). 13C NMR (125 MHz, DMSOd6) δ: 163.46, 160.35, 158.37, 152.71, 142.47, 138.80, 133.25, 132.96, 130.39, 125.13, 121.10, 120.51, 116.77, 116.60. ESI-HRMS calcd for C15H12FN4O+ ([M + H]+): 283.0990; found: 283.0999.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-3-fluorobenzamide (6f): White solid, Yield 48%, Mp 223–224 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.52 (s, 1H, NH), 9.25 (s, 1H, Triazole-H), 8.23 (s, 1H, Triazole-H), 7.98–7.47 (m, 8H, Ar-H). 13C NMR (125 MHz, DMSOd6) δ: 164.74, 163.38, 161.44, 152.74, 142.50, 138.90, 137.42, 133.01, 131.16, 124.42, 124.40, 121.69, 120.35, 119.04, 114.92. ESI-HRMS calcd for C15H12FN4O+ ([M + H]+): 283.0990; found: 283.0998.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-4-fluorobenzamide (6g): White solid, Yield 41%, Mp 247–248 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.73 (s, 1H, NH), 9.24 (s, 1H, Triazole-H), 8.23 (s, 1H, Triazole-H), 7.91–7.48 (m, 8H, Ar-H). 13C NMR (125 MHz, DMSOd6) δ: 165.53, 152.74, 142.50, 138.89, 137.19, 132.97, 131.73, 130.42, 130.18, 129.44, 127.78, 120.86, 120.52.ESI-HRMS calcd for C15H12FN4O+ ([M + H]+): 283.0990; found: 283.1000.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-2-(trifluoromethyl)benzamide (6h): White solid, Yield 56%, Mp 219–220 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.79 (s, 1H, NH), 9.24 (s, 1H, Triazole-H), 8.23 (s, 1H, Triazole-H), 7.88–7.74 (m, 8H, Ar-H). 13C NMR (125 MHz, DMSOd6) δ: 166.18, 152.75, 142.53, 138.87, 136.40, 133.15, 133.03, 130.68, 129.02, 126.88, 125.34, 123.16, 120.92, 120.57. ESI-HRMS calcd for C16H12F3N4O+ ([M + H]+): 333.0958; found: 333.0967.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-3-(trifluoromethyl)benzamide (6i): White solid, Yield 66%, Mp 190–191 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.67 (s, 1H, NH), 9.26 (s, 1H, Triazole-H), 8.24 (s, 1H, Triazole-H), 8.33–7.80 (m, 8H, Ar-H). 13C NMR (125 MHz, DMSOd6) δ:164.65, 152.75, 142.51, 138.80, 136.03, 133.11, 132.37, 130.27, 129.57, 128.79, 125.53, 124.75, 123.36, 121.83, 120.37. ESI-HRMS calcd for C16H12F3N4O+ ([M + H]+): 333.0958; found: 333.0966.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-4-(trifluoromethyl)benzamide (6j): White solid, Yield 76%, Mp 293–294 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.68(s, 1H, NH), 9.26 (s, 1H, Triazole-H), 8.24 (s, 1H, Triazole-H), 8.19–7.87 (m, 8H, Ar-H). 13C NMR (125 MHz, DMSOd6) δ: 164.99, 152.75, 142.51, 138.97, 138.82, 133.10, 131.85, 129.12, 125.93, 121.72, 120.37. ESI-HRMS calcd for C16H12F3N4O+ ([M + H]+): 333.0958; found: 333.0962.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-2-methylbenzamide (6k): White solid, Yield 58%, Mp 197–198 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.51 (s, 1H, NH), 9.23 (s, 1H, Triazole-H), 8.22 (s, 1H, Triazole-H), 7.94–7.32 (m, 8H, Ar-H), 2.41 (s, 3H, CH3). 13C NMR (125 MHz, DMSOd6) δ: 168.45, 152.70, 142.46, 139.30, 137.41, 135.78, 132.73, 131.05, 130.26, 127.72, 126.15, 120.88, 120.43, 19.78. ESI-HRMS calcd for C16H15N4O+ ([M + H]+): 279.1240; found: 279.1248.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-3-methylbenzamide (6l): White solid, Yield 55%, Mp 183–184 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.42 (s, 1H, NH), 9.24 (s, 1H, Triazole-H), 8.23 (s, 1H, Triazole-H), 7.98–7.43 (m, 8H, Ar-H), 2.42 (s, 3H, CH3). 13C NMR (125 MHz, DMSOd6) δ: 166.27, 152.71, 142.46, 139.26, 138.24, 135.18, 132.78, 128.82, 128.63, 125.34, 121.53, 120.33, 21.44. ESI-HRMS calcd for C16H15N4O+ ([M + H]+): 279.1240; found: 279.1251.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)-4-methylbenzamide (6m): White solid, Yield 63%, Mp 255–256 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.36 (s, 1H, NH), 9.23 (s, 1H, Triazole-H), 8.22 (s, 1H, Triazole-H), 7.98–7.35 (m, 8H, Ar-H), 2.40 (s, 3H, CH3). 13C NMR (125 MHz, DMSOd6) δ: 165.96, 152.70, 142.45, 142.26, 139.30, 132.74, 132.28, 129.43, 128.21, 121.55, 120.32, 21.49. ESI-HRMS calcd for C16H15N4O+ ([M + H]+): 279.1240; found: 279.1250.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)propionamide (9a): White solid, Yield 65%, Mp 220–221 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.08 (s, 1H, NH), 9.20 (s, 1H, Triazole-H), 8.20 (s, 1H, Triazole-H), 7.77 (s, 4H, Ar-H), 2.35 (q, 2H, J = 8.33 Hz, CH2), 1.10 (t, 3H, J = 7.5 Hz, CH3). 13C NMR (125 MHz, DMSOd6) δ: 172.66, 152.64, 142.37, 139.42, 132.22, 120.49, 120.18, 29.99, 10.03. ESI-HRMS calcd for C11H13N4O+ ([M + H]+): 217.1084; found: 217.1090.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)butyramide (9b): White solid, Yield 66%, Mp 152–153 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.15 (s, 1H, NH), 9.19 (s, 1H, Triazole-H), 8.22 (s, 1H, Triazole-H), 7.78 (s, 4H, Ar-H), 2.33 (t, 2H, J = 7.5 Hz, CH2), 1.66–1.62 (m, 2H, CH2), 0.94 (t, 3H, J = 7.5 Hz, CH3). 13C NMR (125 MHz, DMSOd6) δ: 172.13, 152.58, 142.33, 139.27, 132.27, 120.52, 120.38, 38.75, 18.98, 14.02. ESI-HRMS calcd for C12H15N4O+ ([M + H]+): 231.1240; found: 231.1250.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)pentanamide (9c): White solid, Yield 71%, Mp 120–121 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.09 (s, 1H, NH), 9.19 (s, 1H, Triazole-H), 8.20 (s, 1H, Triazole-H), 7.77 (s, 4H, Ar-H), 2.34 (t, 2H, J = 7.5 Hz, CH2), 1.61–1.33 (m, 4H, CH2), 0.91 (t, 3H, J = 7.5 Hz, CH3). 13C NMR (125 MHz, DMSOd6) δ: 171.98, 152.65, 142.39, 139.40, 132.26, 120.48, 120.22, 36.60, 27.64, 22.29, 14.20. ESI-HRMS calcd for C13H17N4O+ ([M + H]+): 245.1397; found: 245.1406.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)hexanamide (9d): White solid, Yield 64%, Mp 153–154 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.08 (s, 1H, NH), 9.19 (s, 1H, Triazole-H), 8.20 (s, 1H, Triazole-H), 7.77 (s, 4H, Ar-H), 2.34 (t, 2H, J = 7.5 Hz, CH2), 1.63–1.30 (m, 6H, CH2), 0.88 (t, 3H, J = 7.5 Hz, CH3). 13C NMR (125 MHz, DMSOd6) δ: 171.97, 152.64, 142.37, 139.38, 132.25, 120.47, 120.21, 36.85, 31.36, 25.19, 22.37, 14.33. ESI-HRMS calcd for C14H19N4O+ ([M + H]+): 259.1553; found: 259.1563.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)heptanamide (9e): White solid, Yield 58%, Mp 151–152 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.16 (s, 1H, NH), 9.18 (s, 1H, Triazole-H), 8.22 (s, 1H, Triazole-H), 7.77 (s, 4H, Ar-H), 2.34 (t, 2H, J = 7.5 Hz, CH2), 1.62–1.29 (m, 8H, CH2), 0.87 (t, 3H, J = 7.5 Hz, CH3). 13C NMR (125 MHz, DMSOd6) δ: 172.31, 152.56, 142.30, 139.27, 132.26, 120.52, 120.39, 36.84, 31.42, 28.71, 25.46, 22.40, 14.33. ESI-HRMS calcd for C15H21N4O+ ([M + H]+): 273.1710; found: 273.1719.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)octanamide (9f): White solid, Yield 55%, Mp 148–149 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.07 (s, 1H, NH), 9.19 (s, 1H, Triazole-H), 8.20 (s, 1H, Triazole-H), 7.77 (s, 4H, Ar-H), 2.33 (t, 2H, J = 7.5 Hz, CH2), 1.62–1.26 (m, 10H, CH2), 0.87 (t, 3H, J = 7.5 Hz, CH3). 13C NMR (125 MHz, DMSOd6) δ: 171.98, 152.65, 142.38, 139.40, 132.26, 120.48, 120.22, 36.88, 31.63, 29.10, 28.93, 25.51, 22.53, 14.39. ESI-HRMS calcd for C16H23N4O+ ([M + H]+): 287.1866; found: 287.1874.
- N-(4-(1H-1,2,4-triazol-1-yl)phenyl)nonanamide (9g): White solid, Yield 49%, Mp 146–147 °C. 1H NMR (500 MHz, DMSOd6) δ: 10.08 (s, 1H, NH), 9.19 (s, 1H, Triazole-H), 8.20 (s, 1H, Triazole-H), 7.77 (s, 4H, Ar-H), 2.33 (t, 2H, J = 7.5 Hz, CH2), 1.62–1.26 (m, 12H, CH2), 0.86 (t, 3H, J = 7.5 Hz, CH3). 13C NMR (125 MHz, DMSOd6) δ: 171.98, 152.65, 142.38, 139.40, 132.26, 120.47, 120.21, 36.89, 31.72, 29.23, 29.14, 29.06, 25.50, 22.54, 14.41. ESI-HRMS calcd for C17H25N4O+ ([M + H]+): 301.2023; found: 301.2032.
3.2. Pharmacology
3.2.1. Animals and Treatment
3.2.2. Biological Evaluation
3.2.3. In Silico Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whitlock, J.H.; Soelter, T.M.; Williams, A.S.; Hardigan, A.A.; Lasseigne, B.N. Liquid biopsies in epilepsy: Biomarkers for etiology, diagnosis, prognosis, and therapeutics. Hum. Cell 2022, 35, 15–22. [Google Scholar] [CrossRef]
- Pepi, C.; Mercier, M.; Salimbene, L.; Galati, C.; Specchio, N.; Palma, L. Post-traumatic stress-disorder in epilepsy: Meta-analysis of current evidence. Epilepsy Behav. 2024, 157, 109833. [Google Scholar] [CrossRef]
- Lamberink, H.J.; Otte, W.M.; Blümcke, I.; Braun, K.P.J. Seizure outcome and use of antiepileptic drugs after epilepsy surgery according to histopathological diagnosis: A retrospective multicentre cohort study. Lancet Neural. 2020, 19, 748–757. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, G.; Yu, T.; Bartolomei, F.; Ren, L.K. Emerging personalized virtual brain models: Next-generation resection neurosurgery for durg-resistant epilepsy? Acta Epileptol. 2023, 6, 185–187. [Google Scholar]
- Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Hauser, W.A.; Mathern, G.; Moshé, S.L.; Perucca, E.; Wiebe, S.; French, J. Definition of drug resistant epilepsy: Consensus Proposal by the ad hoc Task Force of the ILAE commission on Therapeutic strategies. Epilepsia 2010, 51, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Dlugos, D.J. The early identification of candidotes for epilepsy surgery. Arch. Neurol. 2001, 58, 1543–1546. [Google Scholar] [CrossRef]
- Zahrani, N.A.A. Design and Synthesis of Heptadecane-Linked 1,2,4-Triazoles As Antimicrobial Agents. Chem. Biodivers. 2025, e202500089. [Google Scholar] [CrossRef]
- Hong, S.; Lu, H.Z.; Tian, D.W.; Chang, Y.; Lu, Q.; Gao, F. Discovery of triazole derivatives for biofilm disruption, anti-inflammation and metal ion chelation. Front. Chem. 2025, 13, 1545259. [Google Scholar] [CrossRef]
- Mahmoud, E.; Abdelhamid, D.; Mohammed, A.F.; Almarhoon, Z.M.; Bräse, S.; Youssif, B.G.M.; Hayallah, A.M.; Abdel-Aziz, M. Design, Synthesis, and Antiproliferative Activity of Novel Indole/1,2,4-Triazole Hybrids as Tubulin Polymerization Inhibitors. Pharmaceuticals 2025, 18, 275. [Google Scholar] [CrossRef]
- Tarıkoğulları Doğan, A.H.; Saylam, M.; Yılmaz, S.; Parlar, S.; Ballar, P.; Alptüzün, V. 3-(1H-pyrazole-1-yl/1H-1,2,4-triazole-1-yl)-N-propananilide Derivatives: Design, Synthesis and Neuroprotectivity Potential Against 6-OHDA Induced Neurotoxicity Model. Turk. J. Pharm. Sci. 2025, 22, 1–9. [Google Scholar] [CrossRef]
- Capan, I.; Hawash, M.; Qaoud, M.T.; Jaradat, N. Next-Generation Carbazole-Linked 1,2,4-Triazole-Thione Derivatives: Strategic Design, Synthesis, Molecular Docking, and Evaluation of Antidiabetic Potential. ACS Omega 2024, 10, 848–861. [Google Scholar] [CrossRef] [PubMed]
- Kahk, N.M.; Mohamed, F.E.A.; Abdelhakeem, M.M.; Bakr, R.B. Optimization of pyrazole/1,2,4-triazole as dual EGFR/COX-2 inhibitors: Design, synthesis, anticancer potential, apoptosis induction and cell cycle analysis. Eur. J. Med. Chem. 2025, 287, 117340. [Google Scholar] [CrossRef]
- Paruch, K.; Kaproń, B.; Łuszczki, J.J.; Paneth, A.; Plech, T. Effect of Linker Elongation on the VGSC Affinity and Anticonvulsant Activity among 4-Alkyl-5-aryl-1,2,4-triazole-3-thione Derivatives. Molecules 2023, 28, 5287. [Google Scholar] [CrossRef]
- Li, M.J.; Hu, L.N.; Yi, S.J.; Yan, H.; Liu, Z.; Lei, K.; Wang, X.K.; Wang, S.B. Design, synthesis and pharmacological evaluation of triazolopyrimidines derivatives as novel agonists for benzodiazepine receptor. J. Mol. Struct. 2025, 1331, 141611. [Google Scholar] [CrossRef]
- Wang, S.B.; Liu, H.; Wang, X.K.; Lei, K.; Li, G.Y.; Li, J.; Liu, R.M.; Quan, Z.S. Synthesis of 1,3,4-oxadiazole derivatives with anticonvulsant activity and their binding to the GABAA receptor. Eur. J. Med. Chem. 2020, 206, 112672. [Google Scholar] [CrossRef]
- Valipour, M.; Ghasemian, M.; Karima, S.; Khatir, Z.Z.; Aghamiri, H.; Shaki, F.; Akbari, S.; Amiri, F.T.; Hosseini, A.; Jafari-Sabet, M.; et al. Design, synthesis, and structure-activity relationships of five-membered heterocyclic incorporated aryl(alkyl)azoles: From antiproliferative thiazoles to safer anticonvulsant oxadiazoles. Bioorg. Chem. 2025, 155, 108117. [Google Scholar] [CrossRef]
- Sirakanyan, S.N.; Spinelli, D.; Geronikaki, A.; Hakobyan, E.K.; Petrou, A.; Kartsev, V.G.; Yegoryan, H.A.; Paronikyan, E.G.; Zuppiroli, L.; Jughetsyan, H.V.; et al. New triazole-based hybrids as neurotropic agents. RSC Adv. 2024, 14, 32922–32943. [Google Scholar] [CrossRef]
- Jahani, R.; Reza Abtahi, S.; Nematpour, M.; Fasihi Dastjerdi, H.; Chamanara, M.; Hami, Z.; Paknejad, B. Design, synthesis, and pharmacological evaluation of novel 1,2,4-triazol-3-amine derivatives as potential agonists of GABA(A) subtype receptors with anticonvulsant and hypnotic effects. Bioorg. Chem. 2020, 104, 104212. [Google Scholar] [CrossRef]
- Yadav, P.R.; Bhagat, P.R. Novel Metal-Free Porphyrin with Ionic Liquid and Sulphonic Acid Moieties for Visible Light Assisted Photocatalytic CN Coupling of Heterocyclic Compounds with Aryl Halides. Asian J. Org. Chem. 2024, 13, e202400337. [Google Scholar] [CrossRef]
- Osolodkin, D.I.; Chupakhin, V.I.; Palyulin, V.A.; Zefirov, N.S. Molecular modeling of ligand-receptor interactions in GABAc receptor. J. Mol. Graph. Model. 2009, 27, 813–821. [Google Scholar] [CrossRef]
- Djebaili, R.; Kenouche, S.; Daoud, I.; Melkemi, N.; Belkadi, A.; Mesli, F. Investigation of [3H]diazepam derivatives as allosteric modulators of GABAA receptor α1β2γ2 subtypes: Combination of molecular docking/dynamic simulations, pharmacokinetics/druglikeness prediction, and QSAR analysis. Struct. Chem. 2023, 34, 791–823. [Google Scholar] [CrossRef] [PubMed]
- Shushpanova, T.V.; Bokhan, N.A.; Kuksenok, V.Y.; Shtrykova, V.V.; Shushpanova, O.V.; Udute, V.V. A novel urea derivative anticonvulsant: In vivo biological evaluation, radioreceptor analysis of GABAA receptors and molecular docking studies of enantiomers. Mendeleev. Commun. 2023, 33, 546–549. [Google Scholar] [CrossRef]
- Zhu, S.T.; Sridhar, A.; Teng, J.F.; Howard, R.J.; Lindahl, E.; Hibbs, R.E. Structural and dynamic mechanisms of GABAA receptor modulators with opposing activities. Nat. Commun. 2022, 13, 4582. [Google Scholar] [CrossRef]
- Golani, L.K.; Mian, M.Y.; Ahmed, T.; Pandey, K.P.; Mondal, P.; Sharmin, D.; Rezvanian, S.; Witkin, J.M.; Cook, J.M. Rationalizing the binding and α subtype selectivity of synthesized imidazodiazepines and benzodiazepines at GABAA receptors by using molecular docking studies. Bioorg. Med. Chem. 2022, 62, 128637. [Google Scholar] [CrossRef]
- Djebaili, R.; Melkemi, N.; Kenouche, S.; Daoud, I.; Bouachrine, M.; Hazhazi, H.; Salah, T. Combined conceptual-DFT, quantitative MEP analysis, and molecular docking study of benzodiazepine analogs. Orbital Electron. J. Chem. 2021, 13, 301–315. [Google Scholar] [CrossRef]
- Krall, R.J.; Penry, J.K.; White, B.G.; Kupferberg, H.L. Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 1978, 19, 409–428. [Google Scholar] [CrossRef]
- Poter, R.J.; Cereghino, J.J.; Gladding, G.D.; Hessie, B.J.; Kupferberg, H.J.; Scoville, B.; White, B.G. Antiepileptic drug development program. Cleve. Clin. Q. 1984, 51, 293–305. [Google Scholar] [CrossRef]
- White, H.S.; Woodhead, J.H.; Franklin, M.R.; Swinyard, E.A.; Wolf, H.H. General principles: Experimental selection, quantiffcation and evaluation of antiepileptic drugs. In Antiepileptic Drugs, 4th ed.; Levy, R.H., Mattson, R.H., Meldrum, B.S., Eds.; Raven Press: New York, NY, USA, 1995; pp. 99–110. [Google Scholar]
- Shen, Y.; Lindemeyer, A.K.; Gonzales, C.; Shao, X.M.; Spigelman, I.; Olsen, R.W.; Liang, J. Dihydromyricetin as a novel anti-alcohol intoxication medication. J. Neurosci. 2012, 32, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Gokani, N.; Thakker, M.U.; Patel, J.G.; Ghosh, S.K.; Chatterjee, S.K. Thin-layer chromatographic method for estimation of gamma-aminobutyric acid from brain. Indian J. Physiol. Pharmacol. 1979, 23, 101–104. [Google Scholar]
- King, E.J.; Armstrong, A.R. A convenient method for determining serum and bile phosphatase activity. Can. Med. Assoc. J. 1934, 31, 376–381. [Google Scholar]
- Rodgers, R.; Cole, J.; Cooper, S.; Hendrie, C. (Eds.) Ethology and Psychopharmacology; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 1994; pp. 9–32. [Google Scholar]
- Bignante, E.; Paglini, G.; Molina, V. Previous stress exposure enhances both anxietylike behaviour and p35 levels in the basolateral amygdala complex: Modulation by midazolam. Eur. Neuropsychopharmacol. 2010, 20, 388–397. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 6, 19–25. [Google Scholar] [CrossRef]
- Páll, S.; Abraham, M.J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. Solving Softw. Chall. Exascale 2015, 8759, 3–27. [Google Scholar]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory. Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef]
- MacKerell, A.D.; Bashford, D.; Bellott, M.; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998, 102, 3586–3616. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Phys. Chem. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Dinola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Phys. Chem. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
Compounds | MES a (mg/kg) | Compounds | scPTZ a (mg/kg) | ||
---|---|---|---|---|---|
0.5 h | 4 h | 0.5 h | 4 h | ||
6a | 300 | 300 | 6a | 100 | 100 |
6b | 300 | 100 | 6b | 100 | 300 |
6c | 100 | 300 | 6c | 100 | 100 |
6d | 300 | 300 | 6d | 300 | - |
6e | 100 | 100 | 6e | 100 | 100 |
6f | 30 | 30 | 6f | 30 | 30 |
6g | 30 | 30 | 6g | 30 | 100 |
6h | 100 | 300 | 6h | 300 | - |
6i | 30 | 30 | 6i | 30 | 100 |
6j | 100 | 300 | 6j | 100 | 100 |
6k | 30 | 100 | 6k | 100 | 300 |
6l | 30 | 30 | 6l | 30 | 30 |
6m | 300 | 300 | 6m | 100 | 300 |
9a | 100 | 300 | 9a | 100 | 100 |
9b | 30 | 100 | 9b | 30 | 100 |
9c | 30 | 30 | 9c | 30 | 100 |
9d | 30 | 30 | 9d | 100 | 100 |
9e | 100 | 300 | 9e | 300 | - |
9f | 100 | 300 | 9f | 300 | - |
9g | 300 | 300 | 9g | 300 | - |
I | 30 | 30 | I | 30 | 30 |
Compounds | NT a (mg/kg) | Compounds | NT (mg/kg) | ||
---|---|---|---|---|---|
0.5 h | 4 h | 0.5 h | 4 h | ||
6a | >300 | >300 | 6l | >300 | >300 |
6b | >300 | >300 | 6m | >300 | >300 |
6c | >300 | >300 | 9a | >300 | >300 |
6d | >300 | >300 | 9b | 300 | >300 |
6e | >300 | >300 | 9c | 300 | >300 |
6f | >300 | >300 | 9d | >300 | >300 |
6g | >300 | >300 | 9e | >300 | >300 |
6h | >300 | >300 | 9f | >300 | >300 |
6i | >300 | >300 | 9g | >300 | >300 |
6j | >300 | >300 | I | >150 | >150 |
6k | >300 | >300 | - | - | - |
Compounds | ED50 a (MES) | ED50 (scPTZ) | TD50 b (ROT) | PI c | |
---|---|---|---|---|---|
MES | scPTZ | ||||
6f | 13.1 (15.4–11.2) | 19.7 (21.4–18.1) | 476.7 (518.3–438.5) | 36.3 | 24.2 |
6g | 13.7 (16.1–11.7) | 31.5 (34.3–29.0) | 429.1 (466.4–394.7) | 31.3 | 13.6 |
6i | 21.9 (25.7–18.6) | 22.8 (26.8–19.5) | 381.4 (414.6–350.8) | 17.4 | 16.7 |
6l | 9.1 (10.7–7.8) | 19.0 (22.3–16.2) | 419.5 (456.1–385.9) | 45.9 | 22.1 |
9c | 17.3 (18.8–15.94) | 35.5 (38.5–32.6) | 260.0 (282.7–239.2) | 15.0 | 7.3 |
I [14] | 11.3 (12.3–10.4) | 9.5 (10.4–8.8) | 190.7 (207.3–175.4) | 16.8 | 20.0 |
Carbamazepine | 11.4 (12.4–10.5) | - | 69.3 (75.4–63.8) | 6.1 | - |
Ethosuximide | - | 94.4 (86.8–102.6) | 333.7 (362.8–306.9) | - | 3.5 |
Compounds | IC50 (μM) a (95% CI) |
---|---|
6f | 0.14 (0.12–0.16) |
6g | 1.92 (1.52–2.41) |
6i | 0.35 (0.31–0.39) |
6l | 0.22 (0.19–0.25) |
9c | 1.21 (1.01–1.46) |
Diazepam | 0.034 (0.028–0.044) |
Compounds | Physicochemical | Pharmacokinetic | |||||
---|---|---|---|---|---|---|---|
MW | ClogP | nHD | nHA | nRotB | ABS a (Level) | BBB b (Level) | |
6a | 264.282 | 2.04 | 1 | 3 | 3 | 0 | 2 |
6b | 298.727 | 1.96 | 1 | 3 | 3 | 0 | 2 |
6c | 298.727 | 2.79 | 1 | 3 | 3 | 0 | 2 |
6d | 298.727 | 2.79 | 1 | 3 | 3 | 0 | 2 |
6e | 282.272 | 1.81 | 1 | 3 | 3 | 0 | 2 |
6f | 282.272 | 2.22 | 1 | 3 | 3 | 0 | 2 |
6g | 282.272 | 2.22 | 1 | 3 | 3 | 0 | 2 |
6h | 332.28 | 1.80 | 1 | 3 | 4 | 0 | 2 |
6i | 332.28 | 3.01 | 1 | 3 | 4 | 0 | 2 |
6j | 332.28 | 3.01 | 1 | 3 | 4 | 0 | 2 |
6k | 278.309 | 2.20 | 1 | 3 | 3 | 0 | 2 |
6l | 278.309 | 2.54 | 1 | 3 | 3 | 0 | 2 |
6m | 278.309 | 2.54 | 1 | 3 | 3 | 0 | 2 |
9a | 216.239 | 1.08 | 1 | 3 | 3 | 0 | 3 |
9b | 230.266 | 1.61 | 1 | 3 | 4 | 0 | 3 |
9c | 244.292 | 2.14 | 1 | 3 | 5 | 0 | 2 |
9d | 258.319 | 2.67 | 1 | 3 | 6 | 0 | 2 |
9e | 272.346 | 3.20 | 1 | 3 | 7 | 0 | 2 |
9f | 286.372 | 3.73 | 1 | 3 | 8 | 0 | 2 |
9g | 300.399 | 4.26 | 1 | 3 | 9 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Li, M.; Liu, Z.; Yan, H.; Wang, X.; Wang, S. Design, Synthesis, and Pharmacological Activity of the N-(4-(1H-1,2,4-Triazol-1-yl)phenyl)-substituted-amide Derivatives. Molecules 2025, 30, 3400. https://doi.org/10.3390/molecules30163400
Hu L, Li M, Liu Z, Yan H, Wang X, Wang S. Design, Synthesis, and Pharmacological Activity of the N-(4-(1H-1,2,4-Triazol-1-yl)phenyl)-substituted-amide Derivatives. Molecules. 2025; 30(16):3400. https://doi.org/10.3390/molecules30163400
Chicago/Turabian StyleHu, Lina, Mengjiao Li, Zheng Liu, Hui Yan, Xuekun Wang, and Shiben Wang. 2025. "Design, Synthesis, and Pharmacological Activity of the N-(4-(1H-1,2,4-Triazol-1-yl)phenyl)-substituted-amide Derivatives" Molecules 30, no. 16: 3400. https://doi.org/10.3390/molecules30163400
APA StyleHu, L., Li, M., Liu, Z., Yan, H., Wang, X., & Wang, S. (2025). Design, Synthesis, and Pharmacological Activity of the N-(4-(1H-1,2,4-Triazol-1-yl)phenyl)-substituted-amide Derivatives. Molecules, 30(16), 3400. https://doi.org/10.3390/molecules30163400