Evaluation of the Profile of Selected Bioactive Compounds and the Potential of Barley Wort Enriched with Malted and Unmalted Hemp Seeds for Brewing Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Brief Characterisation of cv. Henola and Phytochemical Profile of Hemp Seeds
2.3. Malting Procedure
2.3.1. Preparation of Laboratory Wort
Mashing
2.3.2. RP-HPLC-DAD Analysis of the Selected Polyphenol Compounds
Polyphenols Determination
Cannabinoids Determination
2.3.3. Analysis of the Fermentable Sugars
2.3.4. Analysis of the B Group Vitamins
2.4. Statistical Analysis
3. Results and Discussion
3.1. Analysis of the Physicochemical Parameters of the Wort
3.2. Polyphenols and Selected B Vitamins Content
3.2.1. Profile of Phenolic Compounds in Wort with Hemp Seeds
3.2.2. Content of Selected B Vitamins
3.3. Cannabinoid Profile in Hemp Seeds-Enriched Wort
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.H.; Kim, M.J.; Kim, C.Y. The Development of New Functional Foods and Ingredients. Foods 2024, 13, 3038. [Google Scholar] [CrossRef] [PubMed]
- Żuk-Gołaszewska, K.; Żuk-Gołaszewska, K.; Gołaszewski, J. Cannabis sativa L.–cultivation and quality of raw material. J. Elem. 2018, 23, 971–984. [Google Scholar] [CrossRef]
- Kamle, M.; Mahato, D.K.; Sharma, B.; Gupta, A.; Shah, A.K.; Mahmud, M.M.C.; Agrawal, S.; Singh, J.; Rasane, P.; Shukla, A.C.; et al. Nutraceutical potential, phytochemistry of hemp seed (Cannabis sativa L.) and its application in food and feed: A review. Food Chem. Adv. 2024, 4, 100671. [Google Scholar] [CrossRef]
- Tănase Apetroaei, V.; Pricop, E.M.; Istrati, D.I.; Vizireanu, C. Hemp Seeds (Cannabis sativa L.) as a Valuable Source of Natural Ingredients for Functional Foods—A Review. Molecules 2024, 29, 2097. [Google Scholar] [CrossRef] [PubMed]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Hempseed in food industry: Nutritional value, health benefits, and industrial applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 282–308. [Google Scholar] [CrossRef] [PubMed]
- Dabija, A.; Rusu, L.; Codină, G.G. Studies on the Manufacturing of Food Products Using Unconventional Raw Materials. Appl. Sci. 2023, 13, 7990. [Google Scholar] [CrossRef]
- Ramírez, A.; Viveros, J.M. Brewing with Cannabis sativa vs. Humulus lupulus: A review. J. Inst. Brew. 2021, 127, 201–209. [Google Scholar] [CrossRef]
- Cárdenas-Pinto, S.; Gazaleh, J.E.; Budner, D.; Keene, S.; Dhoble, L.R.; Sharma, A.; Pearson, B.; Jia, Z.; Zhang, B.; Thompson-Witrick, K.A. Influence of Ethanol Concentration on the Extraction of Cannabinoid and Volatile Compounds for Dry-Hemped Beer. Beverages 2024, 10, 65. [Google Scholar] [CrossRef]
- Schultz, C.J.; Lim, W.L.; Khor, S.F.; Neumann, K.A.; Schulz, J.M.; Ansari, O.; Skewes, M.A.; Burton, R.A. Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. J. Agric. Food Res. 2020, 2, 100025. [Google Scholar] [CrossRef]
- Zdaniewicz, M.; Duliński, R.; Żuk-Gołaszewska, K.; Tarko, T. Characteristics of Selected Bioactive Compounds and Malting Parameters of Hemp (Cannabis sativa L.) Seeds and Malt. Molecules 2024, 29, 4345. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Walch, S.G. Analysis and Toxicological Evaluation of Cannabinoids in Hemp Food Products-A review. Electron. J. Environ. Agric. Food Chem. 2005, 4, 812–826. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The Seed of Industrial Hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Chen, C.; Ni, D.; Yang, Y.; Tian, J.; Li, Y.; Chen, S.; Ye, X.; Wang, L. Effects of Fermentation on Bioactivity and the Composition of Polyphenols Contained in Polyphenol-Rich Foods: A Review. Foods 2023, 12, 3315. [Google Scholar] [CrossRef]
- Cruz-Chamorro, I.; Santos-Sánchez, G.; Bollati, C.; Bartolomei, M.; Li, J.; Arnoldi, A.; Lammi, C. Hempseed (Cannabis sativa) Peptides WVSPLAGRT and IGFLIIWV Exert Anti-inflammatory Activity in the LPS-Stimulated Human Hepatic Cell Line. J. Agric. Food Chem. 2022, 70, 577–583. [Google Scholar] [CrossRef]
- Padilla-González, G.F.; Rosselli, A.; Sadgrove, N.J.; Cui, M.; Simmonds, M.S.J. Mining the chemical diversity of the hemp seed (Cannabis sativa L.) metabolome: Discovery of a new molecular family widely distributed across hemp. Front. Plant Sci. 2023, 14, 1114398. [Google Scholar] [CrossRef]
- Lanzoni, D.; Skřivanová, E.; Rebucci, R.; Crotti, A.; Baldi, A.; Marchetti, L.; Giromini, C. Total Phenolic Content and Antioxidant Activity of In Vitro Digested Hemp-Based Products. Foods 2023, 12, 601. [Google Scholar] [CrossRef]
- Scioli, G.; Della Valle, A.; Zengin, G.; Locatelli, M.; Tartaglia, A.; Cichelli, A.; Stefanucci, A.; Mollica, A. Artisanal fortified beers: Brewing, enrichment, HPLC-DAD analysis and preliminary screening of antioxidant and enzymatic inhibitory activities. Food Biosci. 2022, 48, 101721. [Google Scholar] [CrossRef]
- Wolak, N.; Zawrotniak, M.; Gogol, M.; Kozik, A.; Rapala-Kozik, M. B1, B2, B3 and B9–Occurrence, Biosynthesis Pathways and Functions in Human Nutrition. Mini-Rev. Med. Chem. 2017, 17, 1075–1111. [Google Scholar] [CrossRef]
- Pellegrini, M.; Marchei, E.; Pacifici, R.; Pichini, S. A rapid and simple procedure for the determination of cannabinoids in hemp food products by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2005, 36, 939–946. [Google Scholar] [CrossRef]
- Janatová, A.; Doskočil, I.; Božik, M.; Fraňková, A.; Tlustoš, P.; Klouček, P. The chemical composition of ethanolic extracts from six genotypes of medical cannabis (Cannabis sativa L.) and their selective cytotoxic activity. Chem. Biol. Interact. 2022, 353, 109800. [Google Scholar] [CrossRef] [PubMed]
- Pourseyed Lazarjani, M.; Torres, S.; Hooker, T.; Fowlie, C.; Young, O.; Seyfoddin, A. Methods for quantification of cannabinoids: A narrative review. J. Cannabis Res. 2020, 2, 35. [Google Scholar] [CrossRef]
- Duliński, R.; Starzyńska-Janiszewska, A. Content and in vitro bioavailability of selected B vitamins and myo-inositol in spelt wheat (Triticum spelta L.) subjected to solid-state fermentation. J. Food Nutr. Res. 2020, 59, 1–6. [Google Scholar]
- Laureys, D.; Baillière, J.; Vermeir, P.; Vanderputten, D.; De Clippeleer, J. The Impact of 10 Unmalted Alternative Adjuncts on Wort Characteristics. Foods 2023, 12, 4206. [Google Scholar] [CrossRef] [PubMed]
- Cadenas, R.; Caballero, I.; Nimubona, D.; Blanco, C.A. Brewing with Starchy Adjuncts: Its Influence on the Sensory and Nutritional Properties of Beer. Foods 2021, 10, 1726. [Google Scholar] [CrossRef] [PubMed]
- Zdaniewicz, M.; Pater, A.; Hrabia, O.; Duliński, R.; Cioch-Skoneczny, M. Tritordeum malt: An innovative raw material for beer production. J. Cereal Sci. 2020, 96, 103095. [Google Scholar] [CrossRef]
- Zdaniewicz, M.; Pater, A.; Knapik, A.; Duliński, R. The effect of different oat (Avena sativa L.) malt contents in a top-fermented beer recipe on the brewing process performance and product quality. J. Cereal Sci. 2021, 101, 103301. [Google Scholar] [CrossRef]
- Piornos, J.A.; Koussissi, E.; Balagiannis, D.P.; Brouwer, E.; Parker, J.K. Alcohol-free and low-alcohol beers: Aroma chemistry and sensory characteristics. Compr. Rev. Food Sci. Food Saf. 2023, 22, 233–259. [Google Scholar] [CrossRef]
- Maia, C.; Cunha, S.; Debyser, W.; Cook, D. Impacts of Adjunct Incorporation on Flavor Stability Metrics at Early Stages of Beer Production. J. Am. Soc. Brew. Chem. 2023, 81, 54–65. [Google Scholar] [CrossRef]
- Ivanov, A.; Ivanova, K.; Kostov, G. Modeling and Optimization of Processes for Craft Beer Production: Malt Mixture Modeling and Mashing Optimization for Lager Beer Production. Appl. Sci. 2023, 13, 11554. [Google Scholar] [CrossRef]
- Galasso, I.; Russo, R.; Mapelli, S.; Ponzoni, E.; Brambilla, I.M.; Battelli, G.; Reggiani, R. Variability in Seed Traits in a Collection of Cannabis sativa L. Genotypes. Front. Plant Sci. 2016, 7, 688. [Google Scholar] [CrossRef]
- Shahidi, F.; Danielski, R.; Ikeda, C. Phenolic compounds in cereal grains and effects of processing on their composition and bioactivities: A review. J. Food Bioact. 2021, 15, 39–50. [Google Scholar] [CrossRef]
- Radonjić, S.; Maraš, V.; Raičević, J.; Košmerl, T. Wine or Beer? Comparison, Changes and Improvement of Polyphenolic Compounds during Technological Phases. Molecules 2020, 25, 4960. [Google Scholar] [CrossRef] [PubMed]
- Farinon, B.; Costantini, L.; Molinari, R.; Di Matteo, G.; Garzoli, S.; Ferri, S.; Ceccantoni, B.; Mannina, L.; Merendino, N. Effect of malting on nutritional and antioxidant properties of the seeds of two industrial hemp (Cannabis sativa L.) cultivars. Food Chem. 2022, 370, 131348. [Google Scholar] [CrossRef]
- Lebiedzińska, A.; Szefer, P. Vitamins B in grain and cereal–grain food, soy-products and seeds. Food Chem. 2006, 95, 116–122. [Google Scholar] [CrossRef]
- Zaupa, M.; Scazzina, F.; Dall’Asta, M.; Calani, L.; Del Rio, D.; Bianchi, M.A.; Melegari, C.; De Albertis, P.; Tribuzio, G.; Pellegrini, N.; et al. In Vitro Bioaccessibility of Phenolics and Vitamins from Durum Wheat Aleurone Fractions. J. Agric. Food Chem. 2014, 62, 1543–1549. [Google Scholar] [CrossRef]
- Hucker, B.; Wakeling, L.; Vriesekoop, F. The Quantitative Analysis of Thiamin and Riboflavin and Their Respective Vitamers in Fermented Alcoholic Beverages. J. Agric. Food Chem. 2011, 59, 12278–12285. [Google Scholar] [CrossRef] [PubMed]
- Prodanov, M.; Sierra, I.; Vidal-Valverde, C. Influence of soaking and cooking on the thiamin, riboflavin and niacin contents of legumes. Food Chem. 2004, 84, 271–277. [Google Scholar] [CrossRef]
- Sirangelo, T.M.; Diretto, G.; Fiore, A.; Felletti, S.; Chenet, T.; Catani, M.; Spadafora, N.D. Nutrients and Bioactive Compounds from Cannabis sativa Seeds: A Review Focused on Omics-Based Investigations. Int. J. Mol. Sci. 2025, 26, 5219. [Google Scholar] [CrossRef]
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonça, M.D.; Padilha, F.F. Beer Molecules and Its Sensory and Biological Properties: A Review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef]
- Laudert, D.; Hohmann, H.-P. 3.50-Application of Enzymes and Microbes for the Industrial Production of Vitamins and Vitamin-Like Compounds. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Burlington, VT, USA, 2011; pp. 583–602. ISBN 978-0-08-088504-9. [Google Scholar]
- Said, H.M. Intestinal absorption of water-soluble vitamins in health and disease. Biochem. J. 2011, 437, 357–372. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Arcella, D.; Cascio, C.; Mackay, K. Acute human exposure assessment to tetrahydrocannabinol (Δ9-THC). EFSA J. 2020, 18, e05953. [Google Scholar] [CrossRef] [PubMed]
- Maly, M.; Benes, F.; Binova, Z.; Hajslova, J. Tea Prepared from Dried Cannabis: What Do We Drink? J. Agric. Food Chem. 2024, 72, 21254–21265. [Google Scholar] [CrossRef] [PubMed]
Compounds | CAL 1 | CAL 2 | CAL 3 | R2 (%) | Wavelength (nm) | Purity of Standard |
---|---|---|---|---|---|---|
Catechin hydrate | 13.269 | 26.538 | 53.077 | 99.972 | 240 | ≥96% (HPLC) |
Epicatechin | 3.846 | 7.692 | 15.385 | 99.986 | 240 | ≥98% (HPLC), from green tea |
Chlorogenic acid | 14.423 | 28.846 | 57.692 | 99.987 | 324 | primary reference standard, 96.67% |
Rutin | 16.731 | 33.462 | 66.923 | 99.980 | 256 | ≥97.84%, reference standard |
Quercetin | 16.077 | 32.154 | 64.308 | 99.986 | 256 | ≥98%, HPLC |
Resveratrol | 15.231 | 30.462 | 60.923 | 99.984 | 320 | ≥99.2%, certified reference material TraceCERT® |
Kaempferol | 15.769 | 31.538 | 63.077 | 99.987 | 265 | ≥93.9%, primary reference standard |
4-Hydroxybenzoic acid | 19.231 | 38.462 | 76.923 | 99.981 | 256 | ≥99% |
Trans-cinnamic acid | 17.192 | 34.385 | 68.769 | 99.984 | 276 | ≥98%, analytical standard |
Trans-p-coumaric acid | 14.615 | 29.231 | 58.462 | 99.980 | 320 | ≥98.0%, (HPLC) |
Trans-ferulic acid | 17.00 | 34.00 | 68.00 | 99.988 | 324 | ≥99.4%, certified reference material TraceCERT® |
Trans-caffeic acid | 16.308 | 32.615 | 65.231 | 99.982 | 324 | ≥99.3%, certified reference material TraceCERT® |
Gallic acid | 17.154 | 34.308 | 68.615 | 99.981 | 276 | certified reference material TraceCERT® |
Control | 10% Hemp Seeds Malt | 30% Hemp Seeds Malt | 30% Unmalted Hemp Seeds | |
---|---|---|---|---|
pH | 5.86 a ± 0.05 | 5.95 b ± 0 | 6.01 c ± 0.01 | 5.96 b ± 0.01 |
Extract (% m/m) | 8.57 a ± 0.12 | 8.03 b ± 0.05 | 6.63 c ± 0.06 | 6.5 d ± 0 |
Colour (EBC) | 4.8 a ± 0.14 | 5.73 b ± 0.19 | 4.33 c ± 0.12 | 4.5 d ± 0 |
Turbidity (NTU) | 64.4 a ± 2.77 | 92.8 b ± 5.98 | 19.04 c ± 1.49 | 20.37 c ± 0.9 |
Filtration time | 60 a ± 14 | 60 a ± 15 | 40 b ± 6 | 50 b ±4 |
Saccharification time (min) | <10 | <10 | <10 | <10 |
Fermentability (%) | 64.96 a ± 1.1 | 62.39 b ± 0.8 | 58.82 c ± 0.4 | 60.23 bc ± 1.4 |
Sample | Maltose | Glucose | Sucrose |
---|---|---|---|
Control barley malt | 51.234 a | 14.028 a | 2.742 b |
Barley malt with 10% of malted hemp seeds | 44.334 b | 13.423 b | 3.045 a |
Barley malt with 30% of malted hemp seeds | 35.390 c | 10.558 c | 2.396 c |
Barley malt with 30% of unmalted hemp seeds | 34.874 c | 10.176 c | 2.435 c |
Sample | Gallic Acid | 4-Hydroxybenzoic Acid | Catechin Hydrate | Trans-p-Coumaric Acid | Trans-Ferulic Acid | Quercetin | Trans-Cinnamic Acid |
---|---|---|---|---|---|---|---|
Control barley malt | 0.81 a ± 0.06 | ND | 42.64 ± 0.52 | ND | 7.22 a ± 0.41 | ND | ND |
10% malted hemp seeds | ND | ND | ND | ND | 11.81 b ± 0.39 | ND | ND |
30% malted hemp seeds | 4.18 b ± 0.79 | ND | ND | ND | 17.62 ± 0.69 c | ND | ND |
30% unmalted hemp seeds | 4.99 c ± 0.15 | 1.24 ± 0.02 | ND | 3.68 ± 0.10 | 20.61 d ± 0.55 | 6.07 ± 0.32 | 4.07 ± 0.24 |
Sample Name | Thiamine (B1) (mg/mL) | Riboflavin (RFL) (µg/mL) |
---|---|---|
Control barley malt | 0.28123 a | 142.4 a |
10% malted hemp seeds | 0.29341 b | 163.2 c |
30% malted hemp seeds | 0.30199 b | 178.8 d |
30% unmalted hemp seeds | 0.28867 ab | 148.4 b |
Cannabinoid | Control Barley Malt | 10% Malted Hemp Seeds | 30% Malted Hemp Seeds | 30% Unmalted Hemp Seeds |
---|---|---|---|---|
CBDV | ND | 0.630 ± 0.078 | 0.557 ± 0.045 | 0.583 ± 0.059 |
THCV | ND | 2.267 ± 1.270 | 2.737 ± 0.196 | 2.790 ± 0.182 |
CBC | ND | ND | ND | ND |
CBD | ND | ND | ND | ND |
THCA-A | ND | 10.137 ± 3.048 | 10.537 ± 2.153 | 9.477 ± 0.802 |
CBG | ND | 0.350 ± 0.238 | 0.427 ± 0.067 | 0.430 ± 0.062 |
CBN | ND | 0.217 ± 0.188 | 0.333 ± 0.050 | 0.330 ± 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdaniewicz, M.; Duliński, R.; Lakatošová, J.; Gołaszewski, J.; Żuk-Gołaszewska, K. Evaluation of the Profile of Selected Bioactive Compounds and the Potential of Barley Wort Enriched with Malted and Unmalted Hemp Seeds for Brewing Applications. Molecules 2025, 30, 3261. https://doi.org/10.3390/molecules30153261
Zdaniewicz M, Duliński R, Lakatošová J, Gołaszewski J, Żuk-Gołaszewska K. Evaluation of the Profile of Selected Bioactive Compounds and the Potential of Barley Wort Enriched with Malted and Unmalted Hemp Seeds for Brewing Applications. Molecules. 2025; 30(15):3261. https://doi.org/10.3390/molecules30153261
Chicago/Turabian StyleZdaniewicz, Marek, Robert Duliński, Jana Lakatošová, Janusz Gołaszewski, and Krystyna Żuk-Gołaszewska. 2025. "Evaluation of the Profile of Selected Bioactive Compounds and the Potential of Barley Wort Enriched with Malted and Unmalted Hemp Seeds for Brewing Applications" Molecules 30, no. 15: 3261. https://doi.org/10.3390/molecules30153261
APA StyleZdaniewicz, M., Duliński, R., Lakatošová, J., Gołaszewski, J., & Żuk-Gołaszewska, K. (2025). Evaluation of the Profile of Selected Bioactive Compounds and the Potential of Barley Wort Enriched with Malted and Unmalted Hemp Seeds for Brewing Applications. Molecules, 30(15), 3261. https://doi.org/10.3390/molecules30153261