Quercetin Reduces Antinociceptive but Not the Anti-Inflammatory Effects of Indomethacin, Ketorolac, and Celecoxib in Rats with Gout-like Pain
Abstract
1. Introduction
2. Results
2.1. In Vivo Study
2.1.1. Antinociceptive Effect After Individual Administration of QUER, IND, KET, or CEL in the PIFIR Model
2.1.2. Antinociceptive Effect of NSAIDs in the Presence of the Acute Administration of QUER
2.1.3. Analysis of Interaction of IND, KET, or CEL in Combination with QUER
2.1.4. Effect of the Repeated Administration of QUER on the Antinociceptive Effect of IND, KET, or CEL in the PIFIR Model
2.1.5. Anti-Inflammatory Effect of NSAIDs in Combination with QUER in the Carrageenan Test
2.2. In Silico Study
2.2.1. COX-1–Ligand Interactions
2.2.2. COX-2 Ligand Interactions
3. Discussion
4. Materials and Methods
4.1. In Vivo Study
4.1.1. Animals
4.1.2. Compounds
4.1.3. Nociceptive and Inflammatory Test
Pain-Induced Functional Impairment in the Rat (PIFIR) Model
Carrageenan-Induced Paw Edema Model in Rats
4.1.4. Experimental Design
Antinociceptive Effect of QUER, IND, KET, and CEL Alone and in Combination Evaluated Using the PIFIR Model
Anti-Inflammatory Effect of IND, KET, or CEL Combined with QUER and Evaluated Based on Carrageenan-Induced Edema in Rats
4.1.5. Statistical Analysis
4.2. Molecular Docking (In Silico) Study
4.2.1. Ligand and Receptor Preparation
4.2.2. Molecular Docking Simulations
4.2.3. Interaction Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
AUC | Area Under the Curve |
CEL | Celecoxib |
DRC | Dose–Response Curve |
IND | Indomethacin |
KET | Ketorolac |
NSAIDs | Non-Steroidal Anti-Inflammatory Drugs |
PIFIR | Pain Induced Functional Impairment Model in Rats |
QUER | Quercetin |
SEM | Standard Error of Mean |
SS | Saline Solution |
SSI | Surface of Synergistic Interaction |
VEH | Vehicle |
References
- Ussai, S.; Miceli, L.; Pisa, F.E.; Bednarova, R.; Giordano, A.; Della Rocca, G.R.; Petelin. Impact of potential inappropriate NSAIDs use in chronic pain. Drug. Des. Devel. Ther. 2015, 9, 2073–2077. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.R.; Kim, H.A. Molecular Mechanisms of Sex-Related Differences in Arthritis and Associated Pain. Int. J. Mol. Sci. 2020, 21, 7938. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Gonzalez, F.; Sanchez-Madrid, F. NSAIDs: Learning new tricks from old drugs. Eur. J. Immunol. 2015, 45, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 3, 1582–1614. [Google Scholar] [CrossRef] [PubMed]
- Anjaneyulu, M.; Chopra, K. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 27, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Guazelli, C.F.S.; Staurengo-Ferrari, L.; Zarpelon, A.C.; Pinho-Ribeiro, F.A.; Ruiz-Miyazawa, K.W.; Vicentini, F.T.M.C.; Vignoli, J.A.; Camilios-Neto, D.; Georgetti, S.R.; Baracat, M.M.; et al. Quercetin attenuates zymosan-induced arthritis in mice. Biomed. Pharmacother. 2018, 102, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S. Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Vollmannová, A.; Bojňanská, T.; Musilová, J.; Lidiková, J.; Cifrová, M. Quercetin as one of the most abundant represented biological valuable plant components with remarkable chemoprotective effects—A review. Heliyon 2024, 10, e33342. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.L.; Gonzalez-Trujano, M.E.; Chavez, M.; Pellicer, F.; Moreno, J.; López-Muñoz, F.J. Hesperidin produces antinociceptive response and synergistic interaction with ketorolac in an arthritic gout-type pain in rats. Pharmacol. Biochem. Behav. 2011, 97, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Rocha-González, H.I.; Sánchez-Mendoza, M.E.; Cruz-Antonio, L.; Flores-Murrieta, F.J.; Cornelio-Huerta, X.I.; Arrieta, J. Antinociceptive Interaction and Pharmacokinetics of the Combination Treatments of Methyleugenol Plus Diclofenac or Ketorolac. Molecules 2020, 25, 5106. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Morales, J.R.; Alonso-Castro, A.J.; Muñoz-Martínez, G.S.; Martínez-Rodríguez, M.M.; Nambo-Arcos, M.E.; Brennan-Bourdon, L.M.; Aragón-Martínez, O.H.; Martínez-Morales, J.F. In vitro and In vivo Synergistic Interactions of the Flavonoid Rutin with Paracetamol and with Non-Steroidal Anti-Inflammatory Drugs. Arch. Med. Res. 2021, 52, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Valério, D.A.; Georgetti, S.R.; Magro, D.A.; Casagrande, R.; Cunha, T.M.; Vicentini, F.T.; Vieira, S.M.; Fonseca, M.J.; Ferreira, S.H.; Cunha, F.Q.; et al. Quercetin reduces inflammatory pain: Inhibition of oxidative stress and cytokine production. J. Nat. Prod. 2009, 72, 1975–1979. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhu, M.; Tao, Y.; Wang, S.; Chen, J.; Sun, W.; Li, S. Therapeutic properties of quercetin on monosodium urate crystal-induced inflammation in rat. J. Pharm. Pharmacol. 2012, 64, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Heeba, G.H.; Mahmoud, M.E.; El Hanafy, A.A. Anti-inflammatory potential of curcumin and quercetin in rats: Role of oxidative stress, heme oxygenase-1 and TNF-alpha. Toxicol. Ind. Health 2014, 30, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Martinez, R.; Deciga-Campos, M.; Bustamante-Marquina, A.; Ángeles-López, G.E.; Aviles-Herrera, J.; González-Trujano, M.E.; Navarrete-Vázquez, G. Quercetin decreases the antinociceptive effect of diclofenac in an arthritic gout-pain model in rats. J. Pharm. Pharmacol. 2021, 73, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- López-Muñoz, F.J.; Salazar, L.A. Determination of analgesic interaction between acetaminophen and d-propoxyphene obtained by means of the surface of synergistic interaction. Methods Find. Exp. Clin. Pharmacol. 1995, 17, 311–320. [Google Scholar] [PubMed]
- Warren, G.L.; Andrews, C.W.; Capelli, A.M.; Clarke, B.; LaLonde, J.; Lambert, M.H.; Lindvall, M.; Nevins, N.; Semus, S.F.; Senger, S.; et al. A critical assessment of docking programs and scoring functions. J. Med. Chem. 2006, 49, 5912–5931. [Google Scholar] [CrossRef] [PubMed]
- De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem. 2016, 59, 4035–4061. [Google Scholar] [CrossRef] [PubMed]
- Forli, S.; Huey, R.; Pique, M.E.; Sanner, M.F.; Goodsell, D.S.; Olson, A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016, 11, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Filho, A.W.; Filho, V.C.; Olinger, L.; de Souza, M.M. Quercetin: Further investigation of its antinociceptive properties and mechanisms of action. Arch. Pharm. Res. 2008, 31, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, M.E.R.; Kerppers, F.K.; Cunha, L.F.; Bragnholo, K.; Vasconcelos, L.; Hosni, A.; Kerppers, I.; Bini, A.; Moreira, F.; Licoviski, P.; et al. Quercetin action on pain modulation/ Ação da quercetina sobre a modulação da dor. Braz. J. Dev. 2021, 7, 43616–43634. [Google Scholar] [CrossRef]
- López-Muñoz, F.J.; Salazar, L.A.; Castañeda-Hernández, G.; Villarreal, J.E. A new model to assess analgesic activity: Pain-induced functional impairment in the rat (PIFIR). Drug. Dev. Res. 2008, 28, 169–175. [Google Scholar] [CrossRef]
- Carrillo-Calzadilla, P.E.; López-Muñoz, F.J.; Moreno-Rocha, L.A.; Medina-López, J.R.; Cortés-Arroyo, A.R.; Domínguez-Ramírez, A.M. Pharmacokinetics and pharmacodynamics of metamizol in co-administration with morphine under acute and chronic treatments in arthritic rats. J. Pharma. Pharmacol. 2017, 69, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Crofford, L.J. Use of NSAIDs in treating patients with arthritis. Arthritis. Res. Ther. 2013, 15, S2. [Google Scholar] [CrossRef] [PubMed]
- Granados-Soto, V.; Flores-Murrieta, F.J.; Castaneda-Hernandez, G.; Lopez-Munoz, F.J. Evidence for the involvement of nitric oxide in the antinociceptive effect of ketorolac. Eur. J. Pharmacol. 1995, 277, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Martinez, R.; Deciga-Campos, M.; Diaz-Reval, M.I.; Gonzalez-Trujano, M.E.; Lopez-Munoz, F.J. Peripheral involvement of the nitric oxide-cGMP pathway in the indomethacin-induced antinociception in rat. Eur. J. Pharmacol. 2004, 503, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Michel, R.E.; Holt, J.C.; Domer, F.R. Ketorolac causes the release of methionine-enkephalin in rats. Res. Commun. Mol. Pathol. Pharmacol. 1996, 91, 249–252. [Google Scholar] [PubMed]
- Alvarez-Soria, M.A.; Largo, R.; Santillana, J.; Sánchez-Pernaute, O.; Calvo, E.; Hernández, M.; Egido, J.; Herrero-Beaumont, G. Long term NSAID treatment inhibits COX-2 synthesis in the knee synovial membrane of patients with osteoarthritis: Differential proinflammatory cytokine profile between celecoxib and aceclofenac. Ann. Rheum. Dis. 2006, 65, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Roh, G.S.; Yi, C.O.; Cho, Y.J.; Jeon, B.T.; Nizamudtinova, I.T.; Kim, H.J.; Kim, J.H.; Oh, Y.M.; Huh, J.W.; Lee, J.H.; et al. Anti-inflammatory effects of celecoxib in rat lungs with smoke-induced emphysema. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 299, L184–L191. [Google Scholar] [CrossRef] [PubMed]
- Rezende, R.M.; Dos Reis, W.G.; Duarte, I.D.; Lima, P.P.; Bakhle, Y.S.; de Francischi, J.N. The analgesic actions of centrally administered celecoxib are mediated by endogenous opioids. Pain 2009, 142, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Plazas, E.; Sierra-Marquez, L.; Olivero-Verbel, J. Bioactive Molecules from Tropical American Plants: Potential Anti-Inflammatory Agents for Cytokine Storm Management. Molecules 2025, 30, 1486. [Google Scholar] [CrossRef] [PubMed]
- Marín, V.; Villegas, C.; Ogundele, A.V.; Cabrera-Pardo, J.R.; Schmidt, B.; Paz, C.; Burgos, V. Inhibitory Potential of the Drimane Sesquiterpenoids Isotadeonal and Polygodial in the NF-kB Pathway. Molecules 2025, 30, 1555. [Google Scholar] [CrossRef] [PubMed]
- Tallarida, R.J. Quantitative methods for assessing drug synergism. Genes Cancer 2011, 2, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Castro, A.J.; Rangel-Velázquez, J.E.; Isiordia-Espinoza, M.A.; Villanueva-Solís, L.E.; Aragon-Martinez, O.H.; Zapata-Morales, J.R. Synergism between Naproxen and Rutin in a Mouse Model of Visceral Pain. Drug Dev. Res. 2017, 78, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Martinez, R.; Mares-Sanchez, J.J.; Aviles-Herrera, J.; Ángeles-López, G.E.; Déciga-Campos, M.; González-Trujano, M.E.; López-Muñoz, F.J. Antinociceptive Synergy Between Metamizole and Hesperidin in a Model of Visceral Pain in Mice. Arch. Med. Res. 2021, 52, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Bedada, S.K.; Neerati, P. Evaluation of the effect of quercetin treatment on CYP2C9 enzyme activity of diclofenac in healthy human volunteers. Phytother. Res. 2018, 32, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Helleberg, L. Clinical Pharmacokinetics of indomethacin. Clin. Pharmacokinet. 1981, 6, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Paulson, S.K.; Zhang, J.Y.; Breau, A.P.; Hribar, J.D.; Liu, N.W.; Jessen, S.M.; Lawal, Y.M.; Cogburn, J.N.; Gresk, C.J.; Markos, C.S.; et al. Pharmacokinetics, tissue distribution, metabolism, and excretion of celecoxib in rats. Drug Metab. Dispos. 2000, 28, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Resman-Targoff, B.H. Ketorolac: A parenteral nonsteroidal antiinflammatory drug. DICP 1990, 24, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Murota, K.; Terao, J. Antioxidative flavonoid quercetin: Implication of its intestinal absorption and metabolism. Arch. Biochem. Biophys. 2003, 417, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Girona, B. Introducción a las Interacciones Farmacológicas, 1st ed.; Sociedad Española de Farmacia Hospitalaria: Madrid, Spain, 2013; pp. 12–65. [Google Scholar]
- Carabaza, A.; Cabré, F.; Rotllan, E.; Gómez, M.; Gutiérrez, M.; García, M.L.; Mauleón, D. Stereoselective inhibition of inducible cyclooxygenase by chiral nonsteroidal antiinflammatory drugs. J. Clin. Pharmacol. 1996, 36, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Gierse, J.K.; Koboldt, C.M.; Walker, M.C.; Seibert, K.; Isakson, P.C. Kinetic basis for selective inhibition of cyclo-oxygenases. Biochem. J. 1999, 339, 607. [Google Scholar] [CrossRef]
- Kartasasmita, R.E.; Herowati, R.; Harmastuti, N.; Gusdinar, T. Quercetin Derivatives Docking Based on Study of Flavonoids Interaction to Cyclooxygenase-2. Indon. J. Chem. 2010, 9, 297–302. [Google Scholar] [CrossRef]
- Lee, K.M.; Hwang, M.K.; Lee, D.E.; Lee, K.W.; Lee, H.J. Protective effect of quercetin against arsenite-induced COX-2 expression by targeting PI3K in rat liver epithelial cells. J. Agric. Food Chem. 2010, 51, 5815–5820. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Juárez, J.V.; Jaramillo-Morales, O.A.; Déciga-Campos, M.; Moreno-Rocha, L.A.; López-Munoz, F.J. Sigma-1 receptor antagonist (BD-1063) potentiates the antinociceptive effect of quercetin in neuropathic pain induced by chronic constriction injury. Drug Dev. Res. 2021, 82, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Chan, H.S.; Hu, Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1298. [Google Scholar] [CrossRef]
- Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res. 2018, 62, 1700447. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, P.; Patton, E.; VanderVeen, B.N.; Unger, C.; Aladhami, A.; Enos, R.T.; Madero, S.; Chatzistamou, I.; Fan, D.; Murphy, E.A.; et al. Sub-chronic oral toxicity screening of quercetin in mice. BMC Complement. Med. Ther. 2022, 22, 279. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Sharma, S.; Rath, S.K. A versatile flavonoid Quercetin: Study of its toxicity and differential gene expression in the liver of mice. Phytomedicine Plus 2022, 2, 100148. [Google Scholar] [CrossRef]
- Dunnick, J.K.; Hailey, J.R. Toxicity and carcinogenicity studies of quercetin, a natural component of foods. Fundam. Appl. Toxicol. 1992, 19, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Official Mexican Norm with Technical Specifications for the Production, Care, and Use of Laboratory Animals. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 22 May 2024).
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar]
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef] [PubMed]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, E.; Tegeder, I.; Vetter, G.; Schmidtko, A.; Schmidt, H.; Euchenhofer, C.; Bräutigam, L.; Grösch, S.; Geisslinger, G. Celecoxib loses its anti-inflammatory efficacy at high doses through activation of NF-kappaB. FASEB J. 2001, 15, 1622–1624. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Munoz, F.J.; Diaz-Reval, M.I.; Terron, J.A.; Deciga-Campos, M. Analysis of the analgesic interactions between ketorolac and tramadol during arthritic nociception in rat. Eur. J. Pharmacol. 2004, 484, 157–165. [Google Scholar] [CrossRef] [PubMed]
- López-Alvarenga, J.C.; Reding-Bernal, A.; García-García, J.A. Cálculo del tamaño de la muestra en investigación en educación médica. Investig. Educ. Med. 2013, 2, 217–224. [Google Scholar]
- Gibaldi, M. Biopharmaceutics and Clinical Pharmacokinetics, 4th ed.; Pharmamed Press: Koti, India, 2005. [Google Scholar]
Group | Antinociceptive Effect (%) | |||||||
---|---|---|---|---|---|---|---|---|
0.5 h | 1 h | 1.5 h | 2 h | 2.5 h | 3 h | 3.5 h | 4.0 h | |
SS + QUER-RA | 36.6 ± 14.4 | 39.5 ± 19.1 | 37.6 ± 19.3 | 39.1 ± 18.5 | 35.3 ± 13.8 | 36.0 ± 16.0 | 37.1 ± 11.1 | 35.0 ± 13.1 |
SS + VEH-RA | 1.9 ± 1.6 * | 2.7 ± 2.7 * | 3.6 ± 2.6 * | 1.3 ± 0.9 * | 4.7 ± 2.7 * | 4.1 ± 2.7 * | 3.7 ± 1.8 * | 2.4 ± 1.8 * |
IND (10 mg/kg) + VEH-RA | 42.3 ± 13.5 | 45.3 ± 14.1 | 60.7 ± 15.5 | 56.6 ± 11.9 | 58.5 ± 12.5 | 81.9 ± 7.7 | 66.6 ± 17.2 | 71.6 ± 10.2 |
IND + QUER-RA | 53.2 ± 14.8 | 41.2 ± 9.5 | 40.7 ± 6.6 | 37.3 ± 5.5 | 43.2 ± 13.7 | 68.4 ± 21.7 | 64.5 ± 11.4 | 55.7 ± 6.1 |
KET (5.6 mg/kg) + VEH-RA | 38.2 ± 14.3 | 63.8 ± 15.5 | 55.9 ± 8.5 | 59.8 ± 18.7 | 51.2 ± 16.7 | 56.8 ± 14.5 | 52.9 ± 15.4 | 67.0 ± 23.3 |
KET + QUER-RA | 26.3 ± 10.5 | 31.1 ± 9.8 | 39.7 ± 13.1 | 38.0 ± 11.7 | 26.4 ± 11.4 | 32.1 ± 10.6 | 45.0 ± 16.4 | 38.0 ± 16.6 |
CEL (10 mg/kg) + VEH-RA | 25.7 ± 6.9 | 34.6 ± 8.4 | 45.3 ± 17.4 | 49.1 ± 13.5 | 39.4 ± 9.6 | 45.3 ± 7.9 | 49.7 ± 10.7 | 40.7 ± 13.0 |
CEL + QUER-RA | 39.8 ± 14.2 | 39.2 ± 11.5 | 58.6 ± 12.8 | 51.6 ± 10.7 | 52.5 ± 12.1 | 59.6 ± 13.3 | 62.8 ± 10.6 | 72.1 ± 13.0 |
Group | Dose (mg/kg) | Paw Edema (%) | |||||
---|---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | 6 h | ||
VEH | 25.3 ± 4.4 | 48.8 ± 3.8 | 58.6 ± 6.3 | 61.8 ± 6.2 | 65.3 ± 6.1 | 65.3 ± 7.1 | |
QUER | 100 | 31.3 ± 3.2 | 40.9 ± 5.2 | 52.4 ± 6.0 | 58.2 ± 4.0 | 58.3 ± 2.6 | 60.5 ± 2.9 |
IND | 10 | 17.8 ± 2.8 | 18.8 ± 4.3 * | 24.7 ± 3.3 * | 28.6 ± 4.1 * | 30.1 ± 5.3 * | 33.5 ± 7.4 * |
IND + QUER | 16.1 ± 3.5 | 18.6 ± 4.9 * | 24.3 ± 3.8 * | 33.0 ± 5.2 * | 38.3 ± 7.1 * | 41.8 ± 6.8 * | |
KET | 5.6 | 25.2 ± 1.7 | 28.3 ± 2.9 * | 29.8 ± 3.3 * | 34.3 ± 4.0 * | 40.9 ± 5.2 * | 45.8 ± 6.0 * |
KET + QUER | 18.7 ± 2.9 | 22.4 ± 2.7 * | 23.9 ± 4.1 * | 29.5 ± 3.7 * | 37.3 ± 4.4 * | 38.6 ± 4.6 * | |
CEL | 10 | 21.5 ± 2.5 | 31.1 ± 3.9 * | 38.5 ± 5.5 * | 51.5 ± 8.9 | 55.3 ± 6.6 | 56.6 ± 7.9 |
CEL + QUER | 24.9 ± 3.8 | 28.9 ± 4.9 * | 34.2 ± 4.3 * | 41.5 ± 5.1 * | 43.3 ± 5.6 * | 44.8 ± 5.6 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aviles-Herrera, J.; Ángeles-López, G.E.; Déciga-Campos, M.; González-Trujano, M.E.; Moreno-Pérez, G.F.; Reyes-Chilpa, R.; Romero, I.; Alejo-Martínez, A.; Ventura-Martínez, R. Quercetin Reduces Antinociceptive but Not the Anti-Inflammatory Effects of Indomethacin, Ketorolac, and Celecoxib in Rats with Gout-like Pain. Molecules 2025, 30, 3196. https://doi.org/10.3390/molecules30153196
Aviles-Herrera J, Ángeles-López GE, Déciga-Campos M, González-Trujano ME, Moreno-Pérez GF, Reyes-Chilpa R, Romero I, Alejo-Martínez A, Ventura-Martínez R. Quercetin Reduces Antinociceptive but Not the Anti-Inflammatory Effects of Indomethacin, Ketorolac, and Celecoxib in Rats with Gout-like Pain. Molecules. 2025; 30(15):3196. https://doi.org/10.3390/molecules30153196
Chicago/Turabian StyleAviles-Herrera, José, Guadalupe Esther Ángeles-López, Myrna Déciga-Campos, María Eva González-Trujano, Gabriel Fernando Moreno-Pérez, Ricardo Reyes-Chilpa, Irma Romero, Amalia Alejo-Martínez, and Rosa Ventura-Martínez. 2025. "Quercetin Reduces Antinociceptive but Not the Anti-Inflammatory Effects of Indomethacin, Ketorolac, and Celecoxib in Rats with Gout-like Pain" Molecules 30, no. 15: 3196. https://doi.org/10.3390/molecules30153196
APA StyleAviles-Herrera, J., Ángeles-López, G. E., Déciga-Campos, M., González-Trujano, M. E., Moreno-Pérez, G. F., Reyes-Chilpa, R., Romero, I., Alejo-Martínez, A., & Ventura-Martínez, R. (2025). Quercetin Reduces Antinociceptive but Not the Anti-Inflammatory Effects of Indomethacin, Ketorolac, and Celecoxib in Rats with Gout-like Pain. Molecules, 30(15), 3196. https://doi.org/10.3390/molecules30153196