An Evaluation of the Cytotoxicity and Safety Profile of Usnic Acid for a Broad Panel of Human Cancers and Normal Cells with Respect to Its Enantiospecificity
Abstract
1. Introduction
2. Results and Discussion
2.1. Cytotoxic Effect of UA Enantiomers on Colon Cancer Cells
2.2. Cytotoxic Effect of UA Enantiomers to Prostate Cancer Cells
2.3. Cytotoxic Effect of UA Enantiomers on Thyroid Cancer Cells
2.4. Cytotoxic Effect of UA Enantiomers on Breast Cancer Cells
2.5. Cytotoxic Effect of UA Enantiomers on Brain Cancer Cells
2.6. Cytotoxic Effect of UA Enantiomers on Melanoma Cells
2.7. Evaluation of Toxicity and Selectivity of UA Enantiomers to Non-Cancerous Cells
3. Materials and Methods
3.1. Chemicals and Cell Culture Media
3.2. Cell Lines
3.3. Cell Culture and Treatment
3.4. Viability Assay
3.5. Selectivity Index
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galanty, A.; Paśko, P.; Podolak, I. Enantioselective activity of usnic acid: A comprehensive review and future perspectives. Phytochem. Rev. 2019, 18, 527–548. [Google Scholar] [CrossRef]
- Macedo, D.C.S.; Almeida, F.J.F.; Wanderley, M.S.O.; Ferraz, M.S.; Santos, N.P.S.; López, A.M.Q.; Santos-Magalhães, N.S.; Lira-Nogueira, M.C.B. Usnic acid: From an ancient lichen derivative to promising biological and nanotechnology applications. Phytochem. Rev. 2021, 20, 609–630. [Google Scholar] [CrossRef]
- Wang, H.; Xuan, M.; Huang, C.; Wang, C. Advances in research on bioactivity, toxicity, metabolism, and pharmacokinetics of usnic acid in vitro and in vivo. Molecules 2022, 27, 7469. [Google Scholar] [CrossRef] [PubMed]
- Gimła, M.; Herman-Antosiewicz, A. Multifaceted properties of usnic acid in disrupting cancer hallmarks. Biomedicines 2024, 12, 2199. [Google Scholar] [CrossRef] [PubMed]
- Ceramella, J.; Iacopetta, D.; Franchini, A.; De Luca, M.; Saturnino, C.; Andreu, I.; Sinicropi, M.S.; Catalano, A. A look at the importance of chirality in drug activity: Some significative examples. Appl. Sci. 2022, 12, 10909. [Google Scholar] [CrossRef]
- Vargesson, N.; Stephens, T. Thalidomide: History, withdrawal, renaissance, and safety concerns. Expert Opin. Drug Saf. 2021, 20, 1455–1457. [Google Scholar] [CrossRef] [PubMed]
- Batista, S.A.A.; Vandresen, F.; Falzirolli, H.; Britta, E.; de Oliveira, D.N.; Catharino, R.R.; Goncalves, M.A.; Ramalho, T.C.; La Porta, F.A.; Nakamura, C.V.; et al. Synthesis and comparison of antileishmanial and cytotoxic activities of S-(−)-limonene benzaldehyde thiosemicarbazones with their R-(+)-analogues. J. Mol. Struct. 2019, 1179, 252–262. [Google Scholar] [CrossRef]
- Lis-Balcnin, M.; Ochocka, R.J.; Deans, S.G.; Asztemborska, M.; Hart, S. Differences in bioactivity between the enantiomers of α-pinene. J. Essent. Oil Res. 1999, 11, 393–397. [Google Scholar] [CrossRef]
- Dubey, A.; Singh, Y. Medicinal properties of Cinchona alkaloids-A brief review. Asian J. Res. Pharm. Sci. 2021, 11, 224–228. [Google Scholar] [CrossRef]
- Koparal, A.T.; Tüylü, B.A.; Türk, H. In vitro cytotoxic activities of (+)-usnic acid and (−)-usnic acid on V79, A549, and human lymphocyte cells and their non-genotoxicity on human lymphocytes. Nat. Prod. Res. 2006, 20, 1300–1307. [Google Scholar] [CrossRef] [PubMed]
- Prokopiev, I.A.; Filippov, E.V.; Filippova, G.V.; Gladkina, N.P. Genotoxicity of usnic acid enantiomers in vitro in human peripheral-blood lymphocytes. Cell Tissue Biol. 2017, 11, 141–146. [Google Scholar] [CrossRef]
- Galanty, A.; Zagrodzki, P.; Gdula-Argasińska, J.; Grabowska, K.; Koczurkiewicz-Adamczyk, P.; Wróbel-Biedrawa, D.; Podolak, I.; Pękala, E.; Paśko, P. A comparative survey of anti-melanoma and anti-inflammatory potential of UA enantiomers—A comprehensive in vitro approach. Pharmaceuticals 2021, 14, 945. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, D.N.; Zarubaev, V.V.; Shtro, A.A.; Polovinka, M.P.; Luzina, O.A.; Komarova, N.I.; Salakhutdinov, N.F.; Kiselev, O.I. Anti-viral activity of (−)-and (+)-usnic acids and their derivatives against influenza virus A (H1N1) 2009. Bioorg. Med. Chem. Lett. 2012, 22, 7060–7064. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Miura, Y.; Kinoshita, Y.; Higuchi, M.; Yamada, Y.; Murakami, A.; Ohigashi, H.; Koshimizu, K. Screening of tissue cultures and thalli of lichens and some of their active constituents for inhibition of tumor promoter-induced Epstein-Barr virus activation. Chem. Pharm. Bull. 1995, 43, 1388–1390. [Google Scholar] [CrossRef] [PubMed]
- Emmerich, R.; Giez, I.; Lange, O.L.; Proksch, P. Toxicity and antifeedant activity of lichen compounds against the polyphagous herbivorous insect Spodoptera littoralis. Phytochemistry 1993, 33, 1389–1394. [Google Scholar] [CrossRef]
- Romagni, J.G.; Meazza, G.; Nanayakkara, N.D.; Dayan, F.E. The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p-hydroxyphenylpyruvate dioxygenase. FEBS Lett. 2000, 480, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Prokopiev, I.A.; Filippov, E.V.; Filippova, G.V.; Zhanataev, A.K. Pro/antigenotoxic activity of UA enantiomers in vitro. Bull. Exp. Biol. Med. 2018, 164, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Hausen, B.M.; Emde, L.; Marks, V. An investigation of the allergenic constituents of Cladonia stellaris (Opiz) Pous & VeŽda (‘silver moss’,‘reindeer moss’ or ‘reindeer lichen’). Contact Dermat. 1993, 28, 70–76. [Google Scholar] [CrossRef]
- Galanty, A.; Popiół, J.; Paczkowska-Walendowska, M.; Studzińska-Sroka, E.; Paśko, P.; Cielecka-Piontek, J.; Pękala, E.; Podolak, I. (+)-usnic acid as a promising candidate for a safe and stable topical photoprotective agent. Molecules 2021, 26, 5224. [Google Scholar] [CrossRef] [PubMed]
- Millot, M.; Kaouadji, M.; Champavier, Y.; Gamond, A.; Simon, A.; Chulia, A.J. Usnic acid derivatives from Leprocaulon microscopicum. Phytochem. Lett. 2013, 6, 31–35. [Google Scholar] [CrossRef]
- Yang, Y.; Bae, W.K.; Lee, J.Y.; Choi, Y.J.; Lee, K.H.; Park, M.S.; Yu, Y.H.; Park, S.-Y.; Zhou, R.; Taş, I.; et al. Potassium usnate, a water-soluble usnic acd salt, shows enhanced bioavailability and inhibits invasion and metastasis in colorectal cancer. Sci. Rep. 2018, 8, 16234. [Google Scholar] [CrossRef]
- Bačkorová, M.; Bačkor, M.; Mikeš, J.; Jendželovský, R.; Fedoročko, P. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, UA and gyrophoric acid. Toxicol. In Vitro 2011, 25, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Bazin, M.A.; Le Lamer, A.C.; Delcros, J.G.; Rouaud, I.; Uriac, P.; Boustie, J.; Corbel, J.-C.; Tomasi, S. Synthesis and cytotoxic activities of usnic acid derivatives. Bioorg. Med. Chem. 2008, 16, 6860–6866. [Google Scholar] [CrossRef] [PubMed]
- Pyrczak-Felczykowska, A.; Narlawar, R.; Pawlik, A.; Guzow-Krzemińska, B.; Artymiuk, D.; Hać, A.; Ryś, K.; Rendina, L.M.; Reekie, T.A.; Herman-Antosiewicz, A.; et al. Synthesis of usnic acid derivatives and evaluation of their antiproliferative activity against cancer cells. J. Nat. Prod. 2019, 82, 1768–1778. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, Ö.; Abas, B.I.; Çevik, Ö. Usnic acid exerts antiproliferative and apoptotic effects by suppressing NF-B p50 in DU145 cells. Eur. J. Biol. 2023, 82, 251–257. [Google Scholar] [CrossRef]
- Eryilmaz, I.E.; Eskiler, G.G.; Egeli, U.; Yurdacan, B.; Cecener, G.; Tunca, B. In vitro cytotoxic and antiproliferative effects of Usnic acid on hormone-dependent breast and prostate cancer cells. J. Biochem. Mol. Toxicol. 2018, 32, e22208. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Liu, J.; Zhang, H.; Gu, Q.; Zhou, X.; Ji, M.; Yao, D. Lenvatinib promotes the antitumor effect of doxorubicin in anaplastic thyroid cancer. OncoTargets Ther. 2020, 13, 11183–11192. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim, H.Y.; Akl, M.R.; Elsayed, H.E.; Hill, R.A.; El Sayed, K.A. Usnic acid benzylidene analogues as potent mechanistic target of rapamycin inhibitors for the control of breast malignancies. J. Nat. Prod. 2017, 80, 932–952. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.T.; Wang, L.P.; Zhang, Y.; Zhao, D.N.; Li, Q.S.; Shao, D.; Fang, X.D. Usnic acid induces apoptosis via an ROS-dependent mitochondrial pathway in human breast cancer cells in vitro and in vivo. RSC Adv. 2015, 5, 153–162. [Google Scholar] [CrossRef]
- Paździora, W.; Podolak, I.; Grudzińska, M.; Paśko, P.; Grabowska, K.; Galanty, A. Critical assessment of the anti-inflammatory potential of usnic acid and its derivatives—A review. Life 2023, 13, 1046. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.G.T.; Nguyen, N.V.; Chun, W.; Kamounah, F.S.; Vang, O.; Hansen, P.E. Synthesis and cytotoxicity of (+)-usnic acid derivatives in U87MG glioblastoma cells. Nat. Prod. Chem. Res. 2016, 4, 1000216. [Google Scholar] [CrossRef]
- Emsen, B.; Aslan, A.; Turkez, H.; Taghizadehghalehjoughi, A.; Kaya, A. The anti-cancer efficacies of diffractaic, lobaric, and usnic acid: In vitro: Inhibition of glioma. J. Cancer Res. Ther. 2018, 14, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Studzińska-Sroka, E.; Majchrzak-Celińska, A.; Zalewski, P.; Szwajgier, D.; Baranowska-Wójcik, E.; Kaproń, B.; Plech, T.; Żarowski, M.; Cielecka-Piontek, J. Lichen-derived compounds and extracts as biologically active substances with anticancer and neuroprotective properties. Pharmaceuticals 2021, 14, 1293. [Google Scholar] [CrossRef] [PubMed]
- Vasarri, M.; Ponti, L.; Degl’Innocenti, D.; Bergonzi, M.C. Usnic acid-loaded polymeric micelles: An optimal migrastatic-acting formulation in human SH-SY5Y neuroblastoma cells. Pharmaceuticals 2022, 15, 1207. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, T.K.; Zeidán-Chuliá, F.; Vasques, L.M.; dos Santos, J.P.A.; da Rocha, R.F.; de Bittencourt Pasquali, M.A.; Rybarczyk-Filho, J.L.; Araújo, A.A.S.; Moreira, J.C.F.; Gelain, D.P. Redox characterization of usnic acid and its cytotoxic effect on human neuron-like cells (SH-SY5Y). Toxicol. In Vitro 2012, 26, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Ranković, B.; Kosanić, M.; Stanojković, T.; Vasiljević, P.; Manojlović, N. Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. Int. J. Mol. Sci. 2012, 13, 14707–14722. [Google Scholar] [CrossRef] [PubMed]
- Draut, H.; Rehm, T.; Begemann, G.; Schobert, R. Antiangiogenic and toxic effects of genistein, usnic acid, and their copper complexes in zebrafish embryos at different developmental stages. Chem. Biodivers. 2017, 14, e1600302. [Google Scholar] [CrossRef] [PubMed]
- Galanty, A.; Paśko, P.; Koczurkiewicz-Adamczyk, P.; Siedlarczyk, G.; Pękala, E.; Podolak, I. Enantiospecific hepatotoxicity of usnic acid in vitro, and the attempt to modify the toxic effect. Toxicology 2025, 516, 154189. [Google Scholar] [CrossRef] [PubMed]
- Galanty, A.; Koczurkiewicz, P.; Wnuk, D.; Paw, M.; Karnas, E.; Podolak, I.; Węgrzyn, M.; Borusiewicz, M.; Madeja, Z.; Czyż, J.; et al. Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells. Toxicol. In Vitro 2017, 40, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Piska, K.; Galanty, A.; Koczurkiewicz, P.; Żmudzki, P.; Potaczek, J.; Podolak, I.; Pękala, E. Usnic acid reactive metabolites formation in human, rat, and mice microsomes. Implication for hepatotoxicity. Food Chem. Toxicol. 2018, 120, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Galanty, A.; Zagrodzki, P.; Miret, M.; Paśko, P. Chickpea and lupin sprouts, stimulated by different LED lights, as novel examples of isoflavones-rich functional food, and their impact on breast and prostate cells. Molecules 2022, 27, 9030. [Google Scholar] [CrossRef] [PubMed]
- Grabowska, K.; Galanty, A.; Pecio, Ł.; Stojakowska, A.; Malarz, J.; Żmudzki, P.; Zagrodzki, P.; Podolak, I. Selectivity screening and structure–cytotoxic activity observations of selected oleanolic acid (OA)-type saponins from the Amaranthaceae family on a wide panel of human cancer cell lines. Molecules 2024, 29, 3794. [Google Scholar] [CrossRef] [PubMed]
Cell Line | UA(+) 48 h | UA(−) 48 h | UA(+) 72 h | UA(−) 72 h |
---|---|---|---|---|
DLD-1 | 26.1 | 44.3 | 19.6 | 15.4 |
HCT116 | 26.4 | 26.2 | 10.5 | 10.7 |
HT29 | >50 | >50 | >50 | 32.7 |
CCD 841 CoN | >50 | >50 | >50 | >50 |
Cell Line | UA(+) 48 h | UA(−) 48 h | UA(+) 72 h | UA(−) 72 h |
---|---|---|---|---|
LNCaP | >50 | >50 | >50 | >50 |
DU145 | 11.5 (SI 3.25) | 34.8 (SI 1.02) | 12.1 (SI 1.68) | 18.6 (SI 1.49) |
PC3 | 39.6 (SI 0.94) | 37.8 (SI 0.93) | 19.1 (SI 1.07) | 34.8 (SI 0.79) |
PNT2 | 37.4 | 35.4 | 20.4 | 27.8 |
Cell Line | UA(+) 48 h | UA(−) 48 h | UA(+) 72 h | UA(−) 72 h |
---|---|---|---|---|
8505C | >50 | >50 | >50 | >50 |
TPC-1 | >50 | >50 | 28.2 (SI 1.18) | 39.2 (SI 0.74) |
FTC133 | >50 | >50 | 35.1 (SI 0.95) | 35.3 (SI 0.83) |
Nthy ori 3-1 | >50 | >50 | 33.2 | 29.3 |
Cell Line | UA(+) 48 h | UA(−) 48 h | UA(+) 72 h | UA(−) 72 h |
---|---|---|---|---|
MDA-MB-231 | >50 | 41.4 | 15.8 (SI 2.83) | 20.2 |
MCF7 | >50 | >50 | >50 | 33.4 |
MCF10A | >50 | >50 | 44.8 | >50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siedlarczyk, G.; Paśko, P.; Galanty, A. An Evaluation of the Cytotoxicity and Safety Profile of Usnic Acid for a Broad Panel of Human Cancers and Normal Cells with Respect to Its Enantiospecificity. Molecules 2025, 30, 2964. https://doi.org/10.3390/molecules30142964
Siedlarczyk G, Paśko P, Galanty A. An Evaluation of the Cytotoxicity and Safety Profile of Usnic Acid for a Broad Panel of Human Cancers and Normal Cells with Respect to Its Enantiospecificity. Molecules. 2025; 30(14):2964. https://doi.org/10.3390/molecules30142964
Chicago/Turabian StyleSiedlarczyk, Gabriela, Paweł Paśko, and Agnieszka Galanty. 2025. "An Evaluation of the Cytotoxicity and Safety Profile of Usnic Acid for a Broad Panel of Human Cancers and Normal Cells with Respect to Its Enantiospecificity" Molecules 30, no. 14: 2964. https://doi.org/10.3390/molecules30142964
APA StyleSiedlarczyk, G., Paśko, P., & Galanty, A. (2025). An Evaluation of the Cytotoxicity and Safety Profile of Usnic Acid for a Broad Panel of Human Cancers and Normal Cells with Respect to Its Enantiospecificity. Molecules, 30(14), 2964. https://doi.org/10.3390/molecules30142964