1,1′-(Diazene-1,2-diyl)bis(4-nitro-1H-1,2,3-triazole-5-carboxamide): An N8-Type Energetic Compound with Enhanced Molecular Stability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Single Crystal X-Ray Structure Analysis
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Computational Methods
- Electrostatic potential (ESP) and Heat of Formation
3.3. Compound 1,2 Prepared According to the Literature [25]
- Synthesis of compound 1:
- Synthesis of compound 2:
- Synthesis of compound 3:
- Synthesis of compound S8:
3.4. Single-Crystal Preparation Method of 3 and S8
3.5. Thermal Performance and FTIR Experimental Methods
- Differential scanning calorimetry experiments
- In situ FTIR experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, C.; Imler, G.H.; Parrish, D.A.; Shreeve, J.M. Energetic salts of 4-Nitramino-3- (5-dinitromethyl-1,2,4-oxadiazolyl)-furazan: Powerful alliance towards good thermal stability and high performance. J. Mater. Chem. A 2018, 6, 16833–16837. [Google Scholar] [CrossRef]
- Ma, J.; Chinnam, A.K.; Cheng, G.; Yang, H.; Zhang, J.; Shreeve, J.M. 1,3,4- oxadiazole bridges: A strategy to improve energetics at the molecular level. Angew. Chem. Int. Ed. 2021, 60, 5497–5504. [Google Scholar] [CrossRef]
- Dalinger, I.L.; Kormanov, A.V.; Suponitsky, K.Y.; Muravyev, N.V.; Sheremetev, A.B. Pyrazole–tetrazole hybrid with trinitromethyl, fluorodinitromethyl, or (difluoroamino) dinitromethyl groups: High-performance energetic materials. Chem. Asian J. 2018, 13, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qi, C.; Li, S.; Zhang, H.; Sun, C.; Yu, Y.; Pang, S. 1,1’-Azobis-1,2,3-triazole: A high-nitrogen compound with stable N8 structure and photochromism. J. Am. Chem. Soc. 2010, 132, 12172–12173. [Google Scholar] [CrossRef]
- Dippold, A.A.; Klapötke, T.M. A study of dinitro-bis-1,2,4-triazole-1,1’-diol and derivatives: Design of high-performance insensitive energetic materials by the introduction of N-oxides. J. Am. Chem. Soc. 2013, 135, 9931–9938. [Google Scholar] [CrossRef]
- Feng, S.; Li, Y.; Lai, Q.; Wang, Z.; Yin, P.; He, C.; Pang, S. A strategy for stabilizing of n8 type energetic materials by introducing 4-nitro-1,2,3-triazole scaffolds. Chem. Eng. J. 2022, 430, 133181. [Google Scholar] [CrossRef]
- Yin, P.; Parrish, D.A.; Shreeve, J.M. N-diazo-bridged nitroazoles: Catenated nitrogen-atom chains compatible with nitro functionalities. Chem. Eur. J. 2014, 20, 6707–6712. [Google Scholar] [CrossRef]
- Xie, W.; Liu, Y.; Zhou, M.; Yin, P.; Pang, S. 1,2,3-triazole with linear and branched catenated nitrogen chains—The role of regiochemistry in energetic materials. Chem. Eng. J. 2024, 488, 150974. [Google Scholar] [CrossRef]
- Lai, Q.; Fei, T.; Yin, P.; Shreeve, J.M. 1,2,3-triazole with linear and branched catenated nitrogen chains—The role of regiochemistry in energetic materials. Chem. Eng. J. 2021, 410, 128148. [Google Scholar] [CrossRef]
- Klapötke, T.M.; Piercey, D.G.; Stierstorfer, J. Amination of energetic anions: High-performing energetic materials. Dalton Trans. 2012, 41, 9451–9459. [Google Scholar] [CrossRef]
- Benz, M.; Klapötke, T.M.; Stierstorfer, J.; Voggenreiter, M. Synthesis and characterization of binary, highly endothermic, and extremely sensitive 2,2’-azobis(5-azidotetrazole). J. Am. Chem. Soc. 2022, 144, 6143–6147. [Google Scholar] [CrossRef] [PubMed]
- Klapötke, T.M.; Piercey, D.G. ; 1,10-Azobis(tetrazole): A Highly Energetic Nitrogen-Rich Compound with a N10 Chain. Inorg. Chem. 2011, 50, 2732–2734. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, X.; Bamforth, C.; Lin, Q.; Murugesu, M.; Lu, M. Higher performing and less sensitive CN7− -based high-energy-density material. Sci. Chi. Mater. 2020, 63, 1779–1787. [Google Scholar] [CrossRef]
- Cai, Y.; Hai, Y.; Ohashi, M.; Jamieson, C.S.; Garcia-Borras, M.; Houk, K.N.; Zhou, J.; Tang, Y. Structural basis for stereoselective dehydration and hydrogen-bonding catalysis by the SAM-dependent pericyclase LepI. Nature Chem. 2019, 11, 812–820. [Google Scholar] [CrossRef]
- James, N.M.; Han, E.; Cruz, R.A.L.; Jureller, J.; Jaeger, H.M. Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nature Mater. 2018, 17, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Schawartz, J.; Hornyák, M.; Süts, T. Preparation of 5-amino-1H,1,2,3-triazole-4-carboxamide. Chem. Ind. London. 1970, 3, 93. [Google Scholar]
- He, C.; Shreeve, J.M. Energetic Materials with Promising Properties: Synthesis and characterization of 4,4’-bis(5-nitro-1,2,3-2h-triazole) derivatives. Angew. Chem. Int. Ed. 2015, 54, 6260–6264. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. Model. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Lu, T.; Manzetti, S. Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms. Struct. Chem. 2014, 25, 1521–1533. [Google Scholar] [CrossRef]
- Geng, W.; Ma, Q.; Chen, Y.; Yang, W.; Jia, Y.; Li, J.; Zhang, Z.; Fan, G.; Wang, S. Structureperformance relationship in thermally stable energetic materials: Tunable physical properties of benzopyridotetraazapentalene by incorporating amino groups, hydrogen bonding, and π-π interactions. Cryst. Growth Des. 2020, 20, 2106–2114. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, J.; Deng, M.; Qi, X.; Nie, F.; Zhang, Q. A promising high-energy density material. Nat. Commun. 2017, 8, 181. [Google Scholar] [CrossRef] [PubMed]
- Blanksby, S.J.; Ellison, G.B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 2003, 36, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Schawartz, J.; Hornyák, M.; Süts, T. Crystal structure of 5-amino-1H-1,2,3-triazole-4-carboxamide. J. Chem. Soc. Perkin Trans. 1974, 2, 1849. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Phys. Chem. 1993, 98, 5648. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623. [Google Scholar] [CrossRef]
- Westwell, M.S.; Searle, M.S.; Williams, D.H. Empirical Correlations between Thermodynamic Properties and Intermolecular Forces. J. Am. Chem. Soc. 1995, 117, 5013. [Google Scholar] [CrossRef]
Comp. | Td a [°C] a | db [gcm−3] b | ΔfH c [KJ mol−1] c | ISd [J] d | FSe [N] e | Df [ms−1] f | Pg [GPa] |
---|---|---|---|---|---|---|---|
N8L | 177 | 1.78 | 877.7 | 1.5 | 10 | 8916 | 33.5 |
S8 | 177.6 | 1.76 | 687.45 | 10 | 40 | 8317 | 28.27 |
N8-1h | 193.8 | 1.62 | 962 | 4 | - | 7764 | 25.24 |
N8-3 i | - | 1.80 | 1153 | <<<<1 | <<<<5 | 9184 | 39 |
N8-4j | 114 | 1.81 | 1700 | <<0.25 | <<0.1 | 9515 | 36.6 |
RDX | 204 | 1.80 | 70.3 | 7.4 | 120 | 8762 | 18.4 |
TNT | 295 | 1.65 | 69.75 | 2.5–4 | 0.1–1 | 7190 | 34.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Xie, W.; Lai, Q.; Zhao, G.; Yin, P.; Pang, S. 1,1′-(Diazene-1,2-diyl)bis(4-nitro-1H-1,2,3-triazole-5-carboxamide): An N8-Type Energetic Compound with Enhanced Molecular Stability. Molecules 2025, 30, 2589. https://doi.org/10.3390/molecules30122589
Sun M, Xie W, Lai Q, Zhao G, Yin P, Pang S. 1,1′-(Diazene-1,2-diyl)bis(4-nitro-1H-1,2,3-triazole-5-carboxamide): An N8-Type Energetic Compound with Enhanced Molecular Stability. Molecules. 2025; 30(12):2589. https://doi.org/10.3390/molecules30122589
Chicago/Turabian StyleSun, Moxin, Wenjie Xie, Qi Lai, Gang Zhao, Ping Yin, and Siping Pang. 2025. "1,1′-(Diazene-1,2-diyl)bis(4-nitro-1H-1,2,3-triazole-5-carboxamide): An N8-Type Energetic Compound with Enhanced Molecular Stability" Molecules 30, no. 12: 2589. https://doi.org/10.3390/molecules30122589
APA StyleSun, M., Xie, W., Lai, Q., Zhao, G., Yin, P., & Pang, S. (2025). 1,1′-(Diazene-1,2-diyl)bis(4-nitro-1H-1,2,3-triazole-5-carboxamide): An N8-Type Energetic Compound with Enhanced Molecular Stability. Molecules, 30(12), 2589. https://doi.org/10.3390/molecules30122589