Tuning the Inter-Chromophore Electronic Coupling in Perylene Diimide Dimers with Rigid Covalent Linkers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Designing
2.2. Electronic Coupling
2.3. Vibrational Analysis
2.4. Further Discussion
3. Calculational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le, A.K.; Bender, J.A.; Arias, D.H.; Cotton, D.E.; Johnson, J.C.; Roberts, S.T. Singlet Fission Involves an Interplay between Energetic Driving Force and Electronic Coupling in Perylenediimide Films. J. Am. Chem. Soc. 2018, 140, 814–826. [Google Scholar] [CrossRef]
- Young, R.M.; Wasielewski, M.R. Mixed Electronic States in Molecular Dimers: Connecting Singlet Fission, Excimer Formation, and Symmetry-Breaking Charge Transfer. Acc. Chem. Res. 2020, 53, 1957–1968. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Kim, T.; Schultz, J.D.; Young, R.M.; Wasielewski, M.R. Accelerating Symmetry-Breaking Charge Separation in a Perylenediimide Trimer through a Vibronically Coherent Dimer Intermediate. Nat. Chem. 2022, 14, 786–793. [Google Scholar] [CrossRef]
- Lijina, M.P.; Benny, A.; Sebastian, E.; Hariharan, M. Keeping the Chromophores Crossed: Evidence for Null Exciton Splitting. Chem. Soc. Rev. 2023, 52, 6664–6679. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, H.; Okada, K.; Tada, K.; Kishi, R.; Kitagawa, Y. Theoretical Study on Singlet Fission Dynamics and Triplet Migration Process in Symmetric Heterotrimer Models. Molecules 2024, 29, 5449. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Xu, Y.; Hou, L.; Liu, D.; Yang, Z.; Ding, Z.; Meng, P.; Liu, H.; Zhang, J.; Zhao, Z.; et al. In-Solution Intramolecular through-Space Conjugations of Sterically Constrained Tetranaphthylethane. CCS Chem. 2025, 1–12. [Google Scholar] [CrossRef]
- Martin, I.J.; Masese, F.K.; Shih, K.-C.; Nieh, M.-P.; Kasi, R.M. Nanoscale “Chessboard” Pattern Lamellae in a Supramolecular Perylene-Diimide Polydiacetylene System. Molecules 2025, 30, 1207. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, J.; Phelan, B.T.; Mauck, C.M.; Stoddart, J.F.; Young, R.M.; Wasielewski, M.R. Probing Distance Dependent Charge-Transfer Character in Excimers of Extended Viologen Cyclophanes Using Femtosecond Vibrational Spectroscopy. J. Am. Chem. Soc. 2017, 139, 14265–14276. [Google Scholar] [CrossRef]
- Derr, J.B.; Tamayo, J.; Clark, J.A.; Morales, M.; Mayther, M.F.; Espinoza, E.M.; Rybicka-Jasińska, K.; Vullev, V.I. Multifaceted Aspects of Charge Transfer. Phys. Chem. Chem. Phys. 2020, 22, 21583–21629. [Google Scholar] [CrossRef]
- Zhang, W.; Kong, J.; Hu, D.; Tao, M.; Niu, X.; Vdović, S.; Aumiler, D.; Ma, Y.; Xia, A. Solvation-Dependent Excited-State Dynamics of Donor–Acceptor Molecules with Hybridized Local and Charge Transfer Character. J. Phys. Chem. C 2020, 124, 5574–5582. [Google Scholar] [CrossRef]
- Clark, J.A.; Kusy, D.; Vakuliuk, O.; Krzeszewski, M.; Kochanowski, K.J.; Koszarna, B.; O’Mari, O.; Jacquemin, D.; Gryko, D.T.; Vullev, V.I. The Magic of Biaryl Linkers: The Electronic Coupling through Them Defines the Propensity for Excited-State Symmetry Breaking in Quadrupolar Acceptor–Donor–Acceptor Fluorophores. Chem. Sci. 2023, 14, 13537–13550. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; O’Connor, J.P.; Phelan, B.T.; Young, R.M.; Wasielewski, M.R. Ultrafast Charge Transfer Dynamics in a Slip-Stacked Donor–Acceptor–Acceptor System. J. Phys. Chem. A 2024, 128, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ma, Z.; Niu, X.; Zhang, W.; Tao, M.; Guo, Q.; Wang, Z.; Xia, A. Bridge-Mediated Charge Separation in Isomeric N-Annulated Perylene Diimide Dimers. J. Am. Chem. Soc. 2019, 141, 12789–12796. [Google Scholar] [CrossRef] [PubMed]
- Coleman, A.F.; Chen, M.; Zhou, J.; Shin, J.Y.; Wu, Y.; Young, R.M.; Wasielewski, M.R. Reversible Symmetry-Breaking Charge Separation in a Series of Perylenediimide Cyclophanes. J. Phys. Chem. C 2020, 124, 10408–10419. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, J.; Liu, H.; Liu, T. Water-Soluble Single-Benzene Chromophores: Excited State Dynamics and Fluorescence Detection. Molecules 2022, 27, 5522. [Google Scholar] [CrossRef]
- Wang, K.; Chen, X.; Peng, S.; Liang, G.; Xu, J.; Zhang, L.; Wu, D.; Xia, J. Symmetry-Breaking Charge Separation in a Null-Excitonic 3-Dimensional Rigid Nonconjugated Trimer. J. Chem. Phys. 2024, 160, 164719. [Google Scholar] [CrossRef]
- Mazumder, A.; Vinod, K.; Thomas, A.C.; Hariharan, M. Accelerating Symmetry-Breaking Charge Separation in an Angular versus Linear Perylenediimide Dimer through the Modulation of Coulombic Coupling. J. Phys. Chem. Lett. 2025, 16, 4819–4827. [Google Scholar] [CrossRef]
- Ma, L.; Kuang, Z.; Zhang, H.; Wan, Y.; Guo, Y.; Xia, A.; Li, Y. Modulating the Charge Transfer Coupling in Boron-Dipyrromethene Homodimers by π-Bridge Units. J. Phys. Chem. B 2025, 129, 3428–3435. [Google Scholar] [CrossRef]
- Pun, A.B.; Asadpoordarvish, A.; Kumarasamy, E.; Tayebjee, M.J.Y.; Niesner, D.; McCamey, D.R.; Sanders, S.N.; Campos, L.M.; Sfeir, M.Y. Ultra-Fast Intramolecular Singlet Fission to Persistent Multiexcitons by Molecular Design. Nat. Chem. 2019, 11, 821–828. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Xie, X.; Zhang, C.; Wang, R.; Chen, L.; Xu, Y.; Ma, H.; Fang, W.; Yao, Y.; et al. Free-Triplet Generation with Improved Efficiency in Tetracene Oligomers through Spatially Separated Triplet Pair States. Nat. Chem. 2021, 13, 559–567. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, Y.; Xu, R.; Li, S.; Zhang, C.; Li, H.; Zhu, H. Above 100% Efficiency Photocharge Generation in Monolayer Semiconductors by Singlet Fission Sensitization. J. Am. Chem. Soc. 2023, 145, 26257–26265. [Google Scholar] [CrossRef]
- Nakamura, S.; Sakai, H.; Fuki, M.; Ooie, R.; Ishiwari, F.; Saeki, A.; Tkachenko, N.V.; Kobori, Y.; Hasobe, T. Thermodynamic Control of Intramolecular Singlet Fission and Exciton Transport in Linear Tetracene Oligomers. Angew. Chem. Int. Ed. 2023, 62, e202217704. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Parenti, K.R.; Budden, P.J.; Niklas, J.; Macdonald, T.; Kumarasamy, E.; Chen, X.; Yin, X.; McCamey, D.R.; Poluektov, O.G.; et al. Unraveling Triplet Formation Mechanisms in Acenothiophene Chromophores. J. Am. Chem. Soc. 2023, 145, 22058–22068. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Churchill, E.M.; Parenti, K.R.; Zhang, J.; Narayanan, P.; Namata, F.; Malkoch, M.; Congreve, D.N.; Cacciuto, A.; Sfeir, M.Y.; et al. Promoting Multiexciton Interactions in Singlet Fission and Triplet Fusion Upconversion Dendrimers. Nat. Commun. 2023, 14, 6080. [Google Scholar] [CrossRef] [PubMed]
- Spenst, P.; Würthner, F. A Perylene Bisimide Cyclophane as a “Turn-on” and “Turn-off” Fluorescence Probe. Angew. Chem. Int. Ed. 2015, 54, 10165–10168. [Google Scholar] [CrossRef]
- Sung, J.; Nowak-Król, A.; Schlosser, F.; Fimmel, B.; Kim, W.; Kim, D.; Würthner, F. Direct Observation of Excimer-Mediated Intramolecular Electron Transfer in a Cofacially-Stacked Perylene Bisimide Pair. J. Am. Chem. Soc. 2016, 138, 9029–9032. [Google Scholar] [CrossRef]
- Kim, W.; Nowak-Król, A.; Hong, Y.; Schlosser, F.; Würthner, F.; Kim, D. Solvent-Modulated Charge-Transfer Resonance Enhancement in the Excimer State of a Bay-Substituted Perylene Bisimide Cyclophane. J. Phys. Chem. Lett. 2019, 10, 1919–1927. [Google Scholar] [CrossRef]
- Sebastian, E.; Sunny, J.; Hariharan, M. Excimer Evolution Hampers Symmetry-Broken Charge-Separated States. Chem. Sci. 2022, 13, 10824–10835. [Google Scholar] [CrossRef]
- Su, P.; Ran, G.; Wang, H.; Yue, J.; Kong, Q.; Bo, Z.; Zhang, W. Intramolecular and Intermolecular Interaction Switching in the Aggregates of Perylene Diimide Trimer: Effect of Hydrophobicity. Molecules 2023, 28, 3003. [Google Scholar] [CrossRef]
- Jing, R.; Li, Y.; Tajima, K.; Wan, Y.; Fukui, N.; Shinokubo, H.; Kuang, Z.; Xia, A. Excimer Formation Driven by Excited-State Structural Relaxation in a Covalent Aminonaphthalimide Dimer. J. Phys. Chem. Lett. 2024, 15, 1469–1476. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Guo, Z.; Wan, Y.; Xue, Z.; Han, Y.; Yang, W.; Ma, X. Ultrafast Photophysics of an Orange–Red Thermally Activated Delayed Fluorescence Emitter: The Role of External Structural Restraint. Chem. Sci. 2024, 15, 6410–6420. [Google Scholar] [CrossRef] [PubMed]
- Bartynski, A.N.; Gruber, M.; Das, S.; Rangan, S.; Mollinger, S.; Trinh, C.; Bradforth, S.E.; Vandewal, K.; Salleo, A.; Bartynski, R.A.; et al. Symmetry-Breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor for High Open Circuit Voltage Organic Photovoltaics. J. Am. Chem. Soc. 2015, 137, 5397–5405. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, M.; Akil, A.; Muthiah Ravinson, D.S.; Estergreen, L.; Bradforth, S.E.; Thompson, M.E. Symmetry Breaking Charge Transfer as a Means to Study Electron Transfer with No Driving Force. Faraday Discuss. 2019, 216, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Spano, F.C. Symmetry-Breaking Charge Separation and Null Aggregates. J. Phys. Chem. C 2024, 128, 248–260. [Google Scholar] [CrossRef]
- Jadhav, P.J.; Brown, P.R.; Thompson, N.; Wunsch, B.; Mohanty, A.; Yost, S.R.; Hontz, E.; Van Voorhis, T.; Bawendi, M.G.; Bulović, V.; et al. Triplet Exciton Dissociation in Singlet Exciton Fission Photovoltaics. Adv. Mater. 2012, 24, 6169–6174. [Google Scholar] [CrossRef]
- Congreve, D.N.; Lee, J.; Thompson, N.J.; Hontz, E.; Yost, S.R.; Reusswig, P.D.; Bahlke, M.E.; Reineke, S.; Van Voorhis, T.; Baldo, M.A. External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission–Based Organic Photovoltaic Cell. Science 2013, 340, 334–337. [Google Scholar] [CrossRef]
- Rao, A.; Friend, R.H. Harnessing Singlet Exciton Fission to Break the Shockley–Queisser Limit. Nat. Rev. Mater. 2017, 2, 17063. [Google Scholar] [CrossRef]
- Welsh, T.; Laventure, A.; Welch, G. Direct (Hetero)Arylation for the Synthesis of Molecular Materials: Coupling Thieno[3,4-c]Pyrrole-4,6-Dione with Perylene Diimide to Yield Novel Non-Fullerene Acceptors for Organic Solar Cells. Molecules 2018, 23, 931. [Google Scholar] [CrossRef]
- Wang, H.; Li, M.; Liu, Y.; Song, J.; Li, C.; Bo, Z. Perylene Diimide Based Star-Shaped Small Molecular Acceptors for High Efficiency Organic Solar Cells. J. Mater. Chem. C 2019, 7, 819–825. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Liu, Y.; Zhou, Y.; Lu, H.; Song, J.; Bo, Z. Perylene Diimide Acceptor with Two Planar Arms and a Twisted Core for High Efficiency Polymer Solar Cells. Dyes Pigm. 2020, 175, 108186. [Google Scholar] [CrossRef]
- Ahmed Qureshi, M.B.; Li, M.; Wang, H.; Song, J.; Bo, Z. Nonfullerene Acceptors with an N-Annulated Perylene Core and Two Perylene Diimide Units for Efficient Organic Solar Cells. Dyes Pigm. 2020, 173, 107970. [Google Scholar] [CrossRef]
- Li, M.; Yang, L.; Zhou, Y.; Liu, Y.; Song, J.; Wang, H.; Bo, Z. Flexible–Rigid Synergetic Strategy for Saddle-Shaped Perylene Diimide Acceptors in As-Cast Polymer Solar Cells. J. Phys. Chem. C 2021, 125, 10841–10849. [Google Scholar] [CrossRef]
- Peinkofer, K.R.; Williams, M.L.; Mantel, G.C.; Phelan, B.T.; Young, R.M.; Wasielewski, M.R. Polarity of Ordered Solvent Molecules in 9,9′-Bianthracene Single Crystals Selects between Singlet Fission or Symmetry-Breaking Charge Separation. J. Am. Chem. Soc. 2024, 146, 34934–34942. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, R.; Shen, L.; Tang, Z.; Wen, C.; Dong, B.; Liu, H.; Zhang, C.; Li, X. Intramolecular Singlet Fission in a Face-to-Face Stacked Tetracene Trimer. Phys. Chem. Chem. Phys. 2018, 20, 6330–6336. [Google Scholar] [CrossRef]
- Davydov, A.S. The Theory of Molecular Excitons. Sov. Phys. Usp 1964, 7, 393–448. [Google Scholar] [CrossRef]
- Kasha, M. Characterization of Electronic Transitions in Complex Molecules. Discuss. Faraday Soc. 1950, 9, 14–19. [Google Scholar] [CrossRef]
- Kasha, M. Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiat. Res. 1963, 20, 55–70. [Google Scholar] [CrossRef]
- Kasha, M.; Rawls, H.R.; Ashraf El-Bayoumi, M. The Exciton Model in Molecular Spectroscopy. Pure. Appl. Chem. 1965, 11, 371–392. [Google Scholar] [CrossRef]
- Spano, F.C. The Spectral Signatures of Frenkel Polarons in H- and J-Aggregates. Acc. Chem. Res. 2010, 43, 429–439. [Google Scholar] [CrossRef]
- Spano, F.C.; Silva, C. H- and J-Aggregate Behavior in Polymeric Semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477–500. [Google Scholar] [CrossRef]
- Hestand, N.J.; Spano, F.C. Molecular Aggregate Photophysics beyond the Kasha Model: Novel Design Principles for Organic Materials. Acc. Chem. Res. 2017, 50, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Hestand, N.J.; Spano, F.C. Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer. Chem. Rev. 2018, 118, 7069–7163. [Google Scholar] [CrossRef]
- Frenkel, J. On the Transformation of Light into Heat in Solids. I. Phys. Rev. 1931, 37, 17–44. [Google Scholar] [CrossRef]
- Scholes, G.D.; Ghiggino, K.P. Electronic Interactions and Interchromophore Excitation Transfer. J. Phys. Chem. 1994, 98, 4580–4590. [Google Scholar] [CrossRef]
- Yamagata, H.; Pochas, C.M.; Spano, F.C. Designing J- and H-Aggregates through Wave Function Overlap Engineering: Applications to Poly(3-Hexylthiophene). J. Phys. Chem. B 2012, 116, 14494–14503. [Google Scholar] [CrossRef] [PubMed]
- Hestand, N.J.; Spano, F.C. Interference between Coulombic and CT-Mediated Couplings in Molecular Aggregates: H- to J-Aggregate Transformation in Perylene-Based π-Stacks. J. Chem. Phys. 2015, 143, 244707. [Google Scholar] [CrossRef]
- O’Connor, J.P.; Schultz, J.D.; Tcyrulnikov, N.A.; Kim, T.; Young, R.M.; Wasielewski, M.R. Distinct Vibrational Motions Promote Disparate Excited-State Decay Pathways in Cofacial Perylenediimide Dimers. J. Chem. Phys. 2024, 161, 74306. [Google Scholar] [CrossRef]
- Kang, S.; Choi, W.; Ahn, J.; Kim, T.; Oh, J.H.; Kim, D. Impact of Packing Geometry on Excimer Characteristics and Mobility in Perylene Bisimide Polycrystalline Films. ACS Appl. Mater. Interfaces 2024, 16, 18134–18143. [Google Scholar] [CrossRef]
- Hong, Y.; Kim, J.; Kim, W.; Kaufmann, C.; Kim, H.; Würthner, F.; Kim, D. Efficient Multiexciton State Generation in Charge-Transfer-Coupled Perylene Bisimide Dimers via Structural Control. J. Am. Chem. Soc. 2020, 142, 7845–7857. [Google Scholar] [CrossRef]
- Hong, Y.; Rudolf, M.; Kim, M.; Kim, J.; Schembri, T.; Krause, A.-M.; Shoyama, K.; Bialas, D.; Röhr, M.I.S.; Joo, T.; et al. Steering the Multiexciton Generation in Slip-Stacked Perylene Dye Array via Exciton Coupling. Nat. Commun. 2022, 13, 4488. [Google Scholar] [CrossRef]
- Giaimo, J.M.; Gusev, A.V.; Wasielewski, M.R. Excited-State Symmetry Breaking in Cofacial and Linear Dimers of a Green Perylenediimide Chlorophyll Analogue Leading to Ultrafast Charge Separation. J. Am. Chem. Soc. 2002, 124, 8530–8531. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Young, R.M.; Frasconi, M.; Schneebeli, S.T.; Spenst, P.; Gardner, D.M.; Brown, K.E.; Würthner, F.; Stoddart, J.F.; Wasielewski, M.R. Ultrafast Photoinduced Symmetry-Breaking Charge Separation and Electron Sharing in Perylenediimide Molecular Triangles. J. Am. Chem. Soc. 2015, 137, 13236–13239. [Google Scholar] [CrossRef] [PubMed]
- Busby, E.; Xia, J.; Wu, Q.; Low, J.Z.; Song, R.; Miller, J.R.; Zhu, X.-Y.; Campos, L.M.; Sfeir, M.Y. A Design Strategy for Intramolecular Singlet Fission Mediated by Charge-Transfer States in Donor–Acceptor Organic Materials. Nat. Mater. 2015, 14, 426–433. [Google Scholar] [CrossRef]
- Wang, K.; Shao, G.; Peng, S.; You, X.; Chen, X.; Xu, J.; Huang, H.; Wang, H.; Wu, D.; Xia, J. Achieving Symmetry-Breaking Charge Separation in Perylenediimide Trimers: The Effect of Bridge Resonance. J. Phys. Chem. B 2022, 126, 3758–3767. [Google Scholar] [CrossRef]
- Yu, G.; Yang, L.; Gao, Y.; Guo, Z.; Tian, Y.; Wang, Y.; Wan, Y.; Han, Y.; Yang, W.; Song, J.; et al. Enabling Ultrafast Intramolecular Singlet Fission in Perylene Diimide Tetramer with Saddle-Shaped Linker. J. Phys. Chem. Lett. 2024, 15, 12561–12570. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, Z.; Gao, Y.; Tian, Y.; Deng, Y.; Ma, X.; Yang, W. Tuning Hybridized Local and Charge-Transfer Mixing for Efficient Hot-Exciton Emission with Improved Color Purity. J. Phys. Chem. Lett. 2022, 13, 6664–6673. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, Y.; Gao, Y.; Guo, Z.; Xue, Z.; Han, Y.; Yang, W.; Ma, X. Resolving the Photophysics of Nitrogen-Embedded Multiple Resonance Emitters: Origin of Color Purity and Emitting Efficiency. J. Phys. Chem. Lett. 2023, 14, 9665–9676. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T. A Comprehensive Electron Wavefunction Analysis Toolbox for Chemists, Multiwfn. J. Chem. Phys. 2024, 161, 82503. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Guo, Z.; Wan, Y.; Li, C.; Yang, B.; Yang, W.; Ma, X. Ultrafast Photophysics of Multiple-Resonance Ultrapure Blue Emitters. J. Phys. Chem. B 2022, 126, 2729–2739. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, P.; Sha, Y.; Gao, Y.; Yu, G.; Lv, H.-H.; Wang, Y.; Han, Y.; Yang, W.; Wang, X.-Y.; et al. Resolving the Vibronic Effect on Dark Processes of Conjugation Extended Diketopyrrolopyrrole with Red/NIR Emitting. J. Phys. Chem. Lett. 2025, 16, 4615–4625. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Li, W.; Peng, Q.; Geng, H.; Yi, Y.; Wang, L.; Nan, G.; Wang, D.; Shuai, Z. MOlecular MAterials Property Prediction Package (MOMAP) 1.0: A Software Package for Predicting the Luminescent Properties and Mobility of Organic Functional Materials. Mol. Phys. 2018, 116, 1078–1090. [Google Scholar] [CrossRef]
- Niu, Y.; Peng, Q.; Shuai, Z. Promoting-Mode Free Formalism for Excited State Radiationless Decay Process with Duschinsky Rotation Effect. Sci. China Ser. B-Chem. 2008, 51, 1153–1158. [Google Scholar] [CrossRef]
- Shuai, Z. Thermal Vibration Correlation Function Formalism for Molecular Excited State Decay Rates. Chin. J. Chem. 2020, 38, 1223–1232. [Google Scholar] [CrossRef]
- Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. Toward Quantitative Prediction of Molecular Fluorescence Quantum Efficiency: Role of Duschinsky Rotation. J. Am. Chem. Soc. 2007, 129, 9333–9339. [Google Scholar] [CrossRef]
- Sebastian, E.; Hariharan, M. Null Exciton-Coupled Chromophoric Dimer Exhibits Symmetry-Breaking Charge Separation. J. Am. Chem. Soc. 2021, 143, 13769–13781. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. A.03; Gaussian Inc.: Wallingford, CN, USA, 2016. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph 1996, 14, 33–38. [Google Scholar] [CrossRef]
Without PDI Units | With PDI Units | ||||||
---|---|---|---|---|---|---|---|
δS0 (°) | δS1 (°) | RMSDS1/S0 (Å) | δS0 (°) | δS1 (°) | RMSDS1/S0 (Å) | ||
Th4 | 47.7 | 22.9 | 0.51 | -FPDI | 63.9 | 50.2 | 0.23 |
-PDI | 47.1 | 33.9 | 0.24 | ||||
Th3 | 29.8 | 1.4 | 0.42 | -FPDI | 76.5 | 70.6 | 0.06 |
-PDI | 58.9 | 57.4 | 0.02 | ||||
Me4Th3 | 64.6 | 39.1 | 0.19 | -FPDI | 78.0 | 72.6 | 0.06 |
-PDI | 64.6 | 62.7 | 0.03 | ||||
Me4Si2Th3 | 60.7 | 30.5 | 0.26 | -FPDI | 76.6 | 71.4 | 0.07 |
-PDI | 57.7 | 57.2 | 0.04 | ||||
Ph4 | 61.2 | 42.4 | 0.45 | -mFPDI | 59.8 | 57.4 | 0.05 |
-pFPDI | 59.8 | 57.7 | 0.04 | ||||
Ph3 | 60.1 | 34.7 | 0.21 | -mFPDI | 65.5 | 63.1 | 0.04 |
-pFPDI | 46.6 | 43.7 | 0.05 | ||||
Me4Ph3 | 62.0 | 43.2 | 0.17 | -mFPDI | 66.3 | 64.4 | 0.04 |
-pFPDI | 60.1 | 57.6 | 0.03 | ||||
Me4Si2Ph3 | 62.4 | 35.2 | 0.23 | -mFPDI | 64.2 | 57.5 | 0.08 |
-pFPDI | 61.9 | 60.6 | 0.06 |
Noted as | κS0 | κS1 | JCoulS0 (cm−1) | JCoulS1 (cm−1) | JCT (cm−1) | |
---|---|---|---|---|---|---|
Th4-FPDI | Th-FPDIs | −0.73 | –0.54 | −714 | −698 | 852 |
Th3-FPDI | –0.93 | –0.94 | −699 | −779 | 526 | |
Me4Th3-FPDI | –0.92 | –0.90 | −721 | −790 | 614 | |
Me4Si2Th3-FPDI | –0.87 | –0.85 | −691 | −686 | 829 | |
Th4-PDI | Th-PDIs | –0.25 | –0.36 | −118 | −187 | 102 |
Th3-PDI | –0.92 | –1.15 | −511 | −677 | 45 | |
Me4Th3-PDI | –0.41 | –0.74 | −170 | −354 | 58 | |
Me4Si2Th3-PDI | –0.18 | –0.32 | −67 | −118 | 112 | |
Ph4-mFPDI | Ph-mFPDIs | 0.27 | 0.38 | 536 | 889 | 747 |
Ph3-mFPDI | –0.22 | –0.12 | −354 | −229 | 452 | |
Me4Ph3-mFPDI | 0.05 | 0.08 | −263 | −164 | 411 | |
Me4Si2Ph3-mFPDI | –0.03 | 0.12 | −47 | 247 | 705 | |
Ph4-pFPDI | Ph-pFPDIs | 0.18 | –0.10 | −31 | −25 | 112 |
Ph3-pFPDI | –0.37 | –0.40 | −106 | −114 | 230 | |
Me4Ph3-pFPDI | –0.14 | –0.08 | 13 | 19 | 137 | |
Me4Si2Ph3-pFPDI | –0.04 | –0.05 | −11 | −13 | 121 |
ΓS1→S0 (cm−1) | |||
---|---|---|---|
Th-based core | Th-FPDIs | Th-PDIs | |
Th4 | 6711 | 1864 | 2050 |
Th3 | 5296 | 1358 | 1691 |
Me4Th3 | 4904 | 1392 | 1694 |
Me4Si2Th3 | 4430 | 1388 | 1772 |
Ph-based core | Ph-mFPDIs | Ph-pFPDIs | |
Ph4 | 5975 | 1282 | 1225 |
Ph3 | 5910 | 1309 | 1198 |
Me4Ph3 | 3896 | 1297 | 1125 |
Me4Si2Ph3 | 5742 | 1382 | 1219 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, G.; Gao, Y.; Li, Y.; Tian, Y.; Zhang, X.; Han, Y.; Song, J.; Yang, W.; Ma, X. Tuning the Inter-Chromophore Electronic Coupling in Perylene Diimide Dimers with Rigid Covalent Linkers. Molecules 2025, 30, 2513. https://doi.org/10.3390/molecules30122513
Yu G, Gao Y, Li Y, Tian Y, Zhang X, Han Y, Song J, Yang W, Ma X. Tuning the Inter-Chromophore Electronic Coupling in Perylene Diimide Dimers with Rigid Covalent Linkers. Molecules. 2025; 30(12):2513. https://doi.org/10.3390/molecules30122513
Chicago/Turabian StyleYu, Guo, Yixuan Gao, Yonghang Li, Yiran Tian, Xiaoyu Zhang, Yandong Han, Jinsheng Song, Wensheng Yang, and Xiaonan Ma. 2025. "Tuning the Inter-Chromophore Electronic Coupling in Perylene Diimide Dimers with Rigid Covalent Linkers" Molecules 30, no. 12: 2513. https://doi.org/10.3390/molecules30122513
APA StyleYu, G., Gao, Y., Li, Y., Tian, Y., Zhang, X., Han, Y., Song, J., Yang, W., & Ma, X. (2025). Tuning the Inter-Chromophore Electronic Coupling in Perylene Diimide Dimers with Rigid Covalent Linkers. Molecules, 30(12), 2513. https://doi.org/10.3390/molecules30122513