Chemical Constituents of Oxytropis ochrocephala
Abstract
:1. Introduction
2. Results
2.1. Structural Elucidation
2.2. Biological Activity Analysis
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Materials
3.3. Extraction and Isolation
3.4. Biology Assay
3.5. Compound Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Academia Sinica. Flora of China; Science Press: Beijing, China, 1998; Volume 42, p. 21. [Google Scholar]
- Lu, H.; Wang, S.S.; Zhou, Q.W.; Zhao, Y.N.; Zhao, B.Y. Damage and control of major poisonous plants in the western grasslands of China-a review. Rangeland J. 2012, 34, 329–339. [Google Scholar] [CrossRef]
- Editorial Committee of Chinese Materia Medica. Chinese Materia Medica (The Volume of the Tibetan Medicines); Shanghai Science and Technology Press: Shanghai, China, 1999. [Google Scholar]
- Institute for Drug and Biological Products Control, the Ministry of Health. Medicinal Herbal in Chinese Nation; People’s Medical Publishing House: Beijing, China, 1984. [Google Scholar]
- Zhang, D.; Lei, J.; Hong, E.K.; Lu, D.; Yuan, W.; Yang, Z.; Ming, C. Anti-hypoxia effects of the ethanol extract of Oxytropis ochrocephala. Legume Res. 2016, 39, 914–920. [Google Scholar] [CrossRef]
- Zhou, K.S.; Tian, W.; Zhang, Z.; Tan, C.J. Research advances on chemical constituents of Oxytropis ochrocephala Bunge and its bioactivities. Nat. Prod. Res. Dev. 2020, 32, 161–171. [Google Scholar]
- Dang, P.H.; Nguyen, H.X.; Nguyen, H.H.T.; Vo, T.D.; Le, T.H.; Phan, T.H.N.; Nguyen, N.T. Lignans from the roots of Taxus wallichiana and their α-glucosidase inhibitory activities. J. Nat. Prod. 2017, 80, 1876–1882. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.Y.; Wu, X.D.; Jia, Y.N.; Fan, J.T.; Tan, N.H. A new phenolic glycoside from honey-fried Eriobotrya japonica. China J. Chin. Mater. Med. 2019, 44, 2806–2812. [Google Scholar]
- Kasai, R.; Okihara, M.; Asakawa, J.; Mizutani, K.; Tanaka, O. 13C NMR study of α-and β-anomeric pairs of d-mannopyranosides and l-rhamnopyranosides. Tetrahedron 1979, 35, 1427–1432. [Google Scholar] [CrossRef]
- Schmid, C.; Dawid, C.; Peters, V.; Hofmann, T. Saponins from European licorice roots (Glycyrrhiza glabra). J. Nat. Prod. 2018, 81, 1734–1744. [Google Scholar] [CrossRef]
- Yi, B.; Hu, L.; Mei, W. Antioxidant phenolic compounds of cassava (Manihot esculenta) from Hainan. Molecules 2011, 16, 10157–10167. [Google Scholar] [CrossRef]
- Fujita, T.; Funayoshi, A.; Nakayama, M. A phenylpropanoid glucoside from Perilla frutescens. Phytochemistry 1994, 37, 543–546. [Google Scholar] [CrossRef]
- Banzragchgarav, O.; Murata, T.; Odontuya, G.; Buyankhishig, B.; Suganuma, K.; Davaapurev, B.O.; Inoue, N.; Batkhuu, J.; Sasaki, K. Trypanocidal activity of 2,5-diphenyloxazoles isolated from the roots of Oxytropis lanata. J. Nat. Prod. 2016, 79, 2933–2940. [Google Scholar] [CrossRef]
- Mimaki, Y.; Ishibashi, N.; Komatsu, M. Studies on the chemical constituents of Gloriosa rothschildiana and Colchicum autumnale. Jpn. J. Pharmacogn. 1991, 45, 255–260. [Google Scholar]
- Ran, Y.; Zhang, Y.; Wang, X.; Li, G. Nematicidal Metabolites from the Actinomycete Micromonospora sp. WH06. Microorganisms 2022, 10, 2274. [Google Scholar] [CrossRef] [PubMed]
- Čižmárik, J.; Matel, I. Examination of the chemical composition of propolis 2. Isolation and identification of 4-hydroxy-3-methoxycinnamic acid (ferulic acid) from propolis. J. Apic. Res. 1973, 12, 52–54. [Google Scholar] [CrossRef]
- Cui, B.L.; Nakamura, M.; Kinjo, J. Chemical constituents of Astragali semen. Chem. Pharm. Bull. 1993, 41, 178–182. [Google Scholar] [CrossRef]
- Hussein, I.A.; Srivedavyasasri, R.; Atef, A.; Mohammad, A.E.I.; Ross, S.A. Chemical constituents from Silene schimperiana Boiss. belonging to Caryophyllaceae and their chemotaxonomic significance. Biochem. Syst. Ecol. 2020, 92, 104113. [Google Scholar] [CrossRef]
- Rios, M.Y.; Estrada-Soto, S.; Flores-Morales, V.; Aguilar, M.I. Chemical constituents from Flourensia resinosa SF Blake (Asteraceae). Biochem. Syst. Ecol. 2013, 51, 240–242. [Google Scholar] [CrossRef]
- Kojima, K.S.; Purevsuren, S.; Narantuya, S. Alkaloids from oxytropis myriophylla (PALL) DC. Sci. Pharm. 2001, 69, 383–388. [Google Scholar] [CrossRef]
- Kelly, S.E.; LaCour, T.G. A one pot procedure for the synthesis of α-hydroxyamides from the corresponding α-hydroxyacids. Synth. Commun. 1992, 22, 859–869. [Google Scholar] [CrossRef]
- Cao, L.; Ding, J.; Gao, M.; Wang, Z.; Li, J.; Wu, A. Novel and direct transformation of methyl ketones or carbinols to primary amides by employing aqueous ammonia. Org. Lett. 2009, 11, 3810–3813. [Google Scholar] [CrossRef]
- Liu, Y.J.; Liu, Y.; Zhang, K.Q. Xanthothone, a new nematicidal N-compound from Coprinus xanthothrix. Chem. Nat. Compd. 2008, 44, 203–205. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhu, S.; Wu, G. Chemical constituents of Vernonia parishii. Chem. Nat. Compd. 2020, 56, 134–136. [Google Scholar] [CrossRef]
- Moraes, G.J.; Flechtmann, C.H.W. Manual de Acarologia Acarologia Básica e Ácaros de Plantas Cultivadas no Brasil; Holos: Ribeirão Preto, Brasil, 2008; p. 308. [Google Scholar]
- Jeppson, L.R.; Keifer, H.H.; Baker, E.W. Mites Injurious to Economic Plants; University of California Press: Berkeley, CA, USA, 1975. [Google Scholar]
- Grbić, M.; Van Leeuwen, T.; Clark, R.M.; Rombauts, S.; Rouzé, P.; Grbić, V.; Osborne, E.J.; Dermauw, W.; Thi Ngoc, P.C.; Ortego, F.; et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 2011, 479, 487–492. [Google Scholar] [CrossRef] [PubMed]
Title 1 | 1 a | 2 b | |||
---|---|---|---|---|---|
No. | δH | δC | No. | δH | δC |
1 | 132.4 | 1 | 132.8 | ||
2 | 6.85, d (1.9) | 108.4 | 2 | 7.73, t (1.5) | 118.4 |
3 | 146.7 | 3 | 158.7 | ||
4 | 145.9 | 4 | 7.32, m | 122.0 | |
5 | 6.89, d (8.0) | 114.4 | 5 | 7.43, m | 130.8 |
6 | 6.82, dd (8.0, 1.9) | 119.1 | 6 | 7.71, dt (1.5, 7.5) | 124.3 |
7 | 5.09, d (8.4) | 84.0 | 7 | 167.4 | |
8 | 3.12, dd (9.5, 8.4) | 54.4 | 1′ | 137.6 | |
9 | 173.1 | 2′, 6′ | 2H, 7.48, m | 129.2 | |
3′, 5′ | 2H, 7.41, m | 129.7 | |||
OMe-3 | 3.88, s | 56.1 | 4′ | 7.36, m | 129.3 |
OMe-9 | 3.74, s | 51.9 | 7′ | 2H, 5.36, d (2.5) | 67.9 |
1′ | 131.5 | 1″ | 5.10, d (7.5) | 100.2 | |
2′ | 6.84, d (1.9) | 109.1 | 2″ | 3.68, m | 79.5 |
3′ | 147.1 | 3″ | 3.61, m | 79.1 | |
4′ | 145.5 | 4″ | 3.45, m | 71.3 | |
5′ | 6.87, d (8.0) | 114.4 | 5″ | 3.45, m | 78.0 |
6′ | 6.81, dd (8.0, 1.9) | 121.1 | 6″ | 2H, 3.72, 3.86, m | 62.3 |
7′ | 4.19, d (10.5) | 82.2 | 1‴ | 5.27, d (1.5) | 102.7 |
8′ | 3.01, dddd (10.5, 9.5, 7.7, 7.5) | 50.3 | 2‴ | 3.95, m | 72.2 |
9′ | 3.54, dd (9.2, 7.7) | 70.5 | 3‴ | 3.60, m | 72.2 |
3.71, dd (9.2, 7.5) | 4‴ | 3.40, m | 74.0 | ||
OMe-3′ | 3.90, s | 56.1 | 5‴ | 3.97, m | 70.0 |
OMe-7′ | 3.05, s | 56.1 | 6‴ | 3H, 1.28, d (6.5) | 18.2 |
Com. | Mortality Rate/% | Corrected Mortality Rate/% |
---|---|---|
3 | 26.6 | 26.6 |
9 | 33.3 | 33.3 |
15 | 40.0 | 40.0 |
19 | 33.3 | 33.3 |
Clofentezine | 90.0 | 90.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Liu, Z.; Xie, J.; Jin, Y.; Wang, L.; Yang, H.; He, Y.; Shen, T. Chemical Constituents of Oxytropis ochrocephala. Molecules 2025, 30, 2489. https://doi.org/10.3390/molecules30122489
Li G, Liu Z, Xie J, Jin Y, Wang L, Yang H, He Y, Shen T. Chemical Constituents of Oxytropis ochrocephala. Molecules. 2025; 30(12):2489. https://doi.org/10.3390/molecules30122489
Chicago/Turabian StyleLi, Guoli, Zhengyu Liu, Jiacheng Xie, Yunao Jin, Lei Wang, Hongying Yang, Yilin He, and Tong Shen. 2025. "Chemical Constituents of Oxytropis ochrocephala" Molecules 30, no. 12: 2489. https://doi.org/10.3390/molecules30122489
APA StyleLi, G., Liu, Z., Xie, J., Jin, Y., Wang, L., Yang, H., He, Y., & Shen, T. (2025). Chemical Constituents of Oxytropis ochrocephala. Molecules, 30(12), 2489. https://doi.org/10.3390/molecules30122489