Systematic Investigation of the Role of Molybdenum and Boron in NiCo-Based Alloys for the Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phase Analysis and Particle Morphology
- D: mean crystallite size (nm);
- K: shape factor (assumed to be 0.89, unitless);
- λ: wavelength of the X-ray used for diffraction (0.15418 nm);
- β: FWHM of the diffraction peak (rad, corrected for instrumental broadening);
- θ: Bragg angle (2θ/2) (°).
2.2. Electrochemical Performance
3. Materials and Methods
3.1. Synthesis of Ni-Co-Based Electrocatalysts
3.2. Physicochemical Characterization
3.3. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, Y.; Yang, H.; Wang, X.; Hu, C.; Jing, H.; Cheng, J. Role of transition metals in catalyst designs for oxygen evolution reaction: A comprehensive review. Int. J. Hydrogen Energy 2022, 47, 17946–17970. [Google Scholar] [CrossRef]
- Murugappan, K.; Anderson, E.M.; Teschner, D.; Jones, T.E.; Skorupska, K.; Román-Leshkov, Y. Operando NAP-XPS unveils differences in MoO3 and Mo2C during hydrodeoxygenation. Nat. Catal. 2018, 1, 960–967. [Google Scholar] [CrossRef]
- Zahra, R.; Pervaiz, E.; Yang, M.; Rabi, O.; Saleem, Z.; Ali, M.; Farrukh, S. A review on nickel cobalt sulphide and their hybrids: Earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 24518–24543. [Google Scholar] [CrossRef]
- Huang, C.; Qin, P.; Luo, Y.; Ruan, Q.; Liu, L.; Wu, Y.; Li, Q.; Xu, Y.; Liu, R.; Chu, P.K. Recent progress and perspective of cobalt-based catalysts for water splitting: Design and nanoarchitectonics. Mater. Today Energy 2022, 23, 100911. [Google Scholar] [CrossRef]
- Zhang, K.; Zou, R. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. Small 2021, 17, 2100129. [Google Scholar] [CrossRef]
- Lin, Y.; Fan, X.; Huang, M.; Yang, Z.; Zhang, W. Preferential Co substitution on Ni sites in Ni–Fe oxide arrays enabling large-current-density alkaline oxygen evolution. Chem. Sci. 2022, 13, 7332–7340. [Google Scholar] [CrossRef]
- Roy, A.; Tariq, M.Z.; La, M.; Choi, D.; Park, S.J. A comparative study on the oxygen evolution reaction of cobalt and nickel based hydroxide electrodes in alkaline electrolyte. J. Electroanal. Chem. 2022, 920, 116633. [Google Scholar] [CrossRef]
- Priamushko, T.; Guggenberger, P.; Mautner, A.; Lee, J.; Ryoo, R.; Kleitz, F. Enhancing OER Activity of Ni/Co Oxides via Fe/Mn Substitution within Tailored Mesoporous Frameworks. ACS Appl. Energy Mater. 2022, 5, 13385–13397. [Google Scholar] [CrossRef]
- Yang, L.; Wu, X.; Zhu, X.; He, C.; Meng, M.; Gan, Z.; Chu, P.K. Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution reaction. Appl. Surf. Sci. 2015, 341, 149–156. [Google Scholar] [CrossRef]
- Jeghan, S.M.N.; Kim, N.; Lee, G. Mo-incorporated three-dimensional hierarchical ternary nickel-cobalt-molybdenum layer double hydroxide for high-efficiency water splitting. Int. J. Hydrogen Energy 2021, 46, 22463–22477. [Google Scholar] [CrossRef]
- Qi, R.; Bu, H.; Yang, X.; Song, M.; Ma, J.; Gao, H. Multifunctional molybdenum-tuning porous nickel-cobalt bimetallic phosphide nanoarrays for efficient water splitting and energy-saving hydrogen production. J. Colloid Interface Sci. 2024, 653, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Cao, Y.-H.; Yadav, S.; Kim, G.-C.; Han, Z.; Wang, W.; Zhang, W.-J.; Dao, V.; Lee, I.-H. Electronic structure reconfiguration of nickel–cobalt layered double hydroxide nanoflakes via engineered heteroatom and oxygen-vacancies defect for efficient electrochemical water splitting. Chem. Eng. J. 2023, 463, 142396. [Google Scholar] [CrossRef]
- Wang, Y.; Kumar, A.; Budiyanto, E.; Cheraparambil, H.; Weidenthaler, C.; Tüysüz, H. Boron-Incorporated Cobalt–Nickel Oxide Nanosheets for Electrochemical Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2024, 7, 3145–3156. [Google Scholar] [CrossRef]
- Sharma, V.; Mahajan, A. Modulation of oxygen vacancies in boron nanosheets via nickel cobalt layered double hydroxides for boosting hydrogen-and oxygen-evolution reaction kinetics. Electrochim. Acta 2024, 479, 143876. [Google Scholar] [CrossRef]
- Sivagurunathan, A.T.; Seenivasan, S.; Kavinkumar, T.; Kim, D.-H. Phosphorus doping of nickel–cobalt boride to produce a metal–metalloid–nonmetal electrocatalyst for improved overall water splitting. J. Mater. Chem. A 2024, 12, 4643–4655. [Google Scholar] [CrossRef]
- Maarisetty, D.; Hang, D.-R.; Chou, M.M.C.; Parida, S. Tuning the Ni/Co Ratios and Surface Concentration of Reduced Molybdenum States for Enhanced Electrocatalytic Performance in Trimetallic Molybdates: OER, HER, and MOR Activity. ACS Appl. Energy Mater. 2022, 5, 14059–14070. [Google Scholar] [CrossRef]
- Guan, C.; Xiao, W.; Wu, H.; Liu, X.; Zang, W.; Zhang, H.; Ding, J.; Feng, Y.P.; Pennycook, S.J.; Wang, J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy 2018, 48, 73–80. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, L.; Xin, W.; Zhang, T.; Cao, J.; Liu, B.; Qiang, Q.; Zhou, Z.; Han, T.; Cao, S.; et al. Rational construction of 3D MoNi/NiMoOx@NiFe LDH with rapid electron transfer for efficient overall water splitting. Electrochim. Acta 2021, 369, 137680. [Google Scholar] [CrossRef]
- Zhong, S.-C.; Li, J.; Cui, Z.; Tian, G.-R.; Zhao, F.-C.; Zhou, Z.-H.; Jiao, H.-F.; Liu, D.-Y.; Xiong, J.-F.; Wang, L.-C.; et al. Phase engineering and surface reconstruction of FeNiMo alloys as high efficient electrode for oxygen evolution reaction. J. Mater. Res. Technol. 2024, 31, 4012–4018. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, X.; Zhou, C.; Du, S.; Zhen, D.; Chen, B.; Li, J.; Wu, Q.; Iru, Y.; Chen, D. A modulated electronic state strategy designed to integrate active HER and OER components as hybrid heterostructures for efficient overall water splitting. Appl. Catal. B Environ. 2020, 260, 118197. [Google Scholar] [CrossRef]
- Srirapu, V.K.V.P.; Kumar, A.; Kumari, N.; Srivastava, P.; Singh, R.N. A comparative study of electrocatalytic performance of metal molybdates for the water oxidation. Int. J. Hydrogen Energy 2018, 43, 16543–16555. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, H.; Jiang, Y.; Mao, Y.; Shen, W.; Li, M.; He, R. Adjustable heterointerface-vacancy enhancement effect in RuO2@Co3O4 electrocatalysts for efficient overall water splitting. Appl. Catal. B Environ. 2023, 324, 122294. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Q.; Jiang, X.; Huang, S.; Fu, G.; Lee, J.-M. Interface engineering in transition metal-based heterostructures for oxygen electrocatalysis. Mater. Chem. Front. 2021, 5, 1033–1059. [Google Scholar] [CrossRef]
- Zhang, N.; Jiang, R. Interfacial Engineering of Metal/Metal Oxide Heterojunctions toward Oxygen Reduction and Evolution Reactions. ChemPlusChem 2021, 86, 1586–1601. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiao, Y.; Yan, H.; Yang, G.; Liu, Y.; Tian, C.; Wu, A.; Fu, H. Mo−Ni-based Heterojunction with Fine-customized d-Band Centers for Hydrogen Production Coupled with Benzylamine Electrooxidation in Low Alkaline Medium. Angew. Chem. 2023, 135, e202306640. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Ma, T.; Hu, Z.; Liu, Q.; Zhan, C.; Li, Y.; Bowen, C.; Lu, H.; Liu, Y. Delocalization of d-electrons induced by cation coupling in ultrathin Chevrel-phase NiMo3S4 nanosheets for efficient electrochemical water splitting. Appl. Catal. B Environ. 2023, 338, 123007. [Google Scholar] [CrossRef]
- Huang, H.; Li, C.; Yan, F.; Yuan, F.; Liang, X.; Zhou, W.; Guo, J. Bi-functional Ni-Co-Mo hybrid oxide/phosphide nanoarrays grown on Ni foam with enhanced charge storage and oxygen evolution reaction performance. Appl. Surf. Sci. 2023, 623, 157079. [Google Scholar] [CrossRef]
- Yin, Z.; Sun, Y.; Zhu, C.; Li, C.; Zhang, X.; Chen, Y. Bimetallic Ni–Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2017, 5, 13648–13658. [Google Scholar] [CrossRef]
- Jin, Y.; Huang, S.; Yue, X.; Du, H.; Shen, P.K. Mo- and Fe-Modified Ni(OH)2/NiOOH Nanosheets as Highly Active and Stable Electrocatalysts for Oxygen Evolution Reaction. ACS Catal. 2018, 8, 2359–2363. [Google Scholar] [CrossRef]
- Fan, M.; Liang, X.; Li, Q.; Cui, L.; He, X.; Zou, X. Boron: A key functional component for designing high-performance heterogeneous catalysts. Chin. Chem. Lett. 2023, 34, 107275. [Google Scholar] [CrossRef]
- Nsanzimana, J.M.V.; Peng, Y.; Xu, Y.Y.; Thia, L.; Wang, C.; Xia, B.Y.; Wang, X. An Efficient and Earth-Abundant Oxygen-Evolving Electrocatalyst Based on Amorphous Metal Borides. Adv. Energy Mater. 2018, 8, 1701475. [Google Scholar] [CrossRef]
- El-Refaei, S.M.; Rauret, D.L.; Manjón, A.G.; Spanos, I.; Zeradjanin, A.; Dieckhöfer, S.; Arbiol, J.; Schuhmann, W.; Masa, J. Ni-Xides (B, S, and P) for Alkaline OER: Shedding Light on Reconstruction Processes and Interplay with Incidental Fe Impurities as Synergistic Activity Drivers. ACS Appl. Energy Mater. 2024, 7, 1369–1381. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; He, X.; Yan, C.; Hu, Q.; Zhang, J.; Yang, F. Promoted surface reconstruction of amorphous nickel boride electrocatalysts by boron dissolution for boosting the oxygen evolution reaction. J. Mater. Chem. A 2025, 13, 7962–7972. [Google Scholar] [CrossRef]
- He, D.; Zhang, L.; He, D.; Zhou, G.; Lin, Y.; Deng, Z.; Hong, X.; Wu, Y.; Chen, C.; Li, Y. Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, H.; Jiang, M.; Kang, Q.; Zhou, W.; Wang, P.; Zhou, F. Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires. J. Mater. Chem. A 2020, 8, 13638–13645. [Google Scholar] [CrossRef]
- Corrias, A.; Ennas, G.; Marongiu, G.; Musinu, A.; Paschina, G.; Zedda, D. The synthesis of nanocrystalline nickel boride powders by ball milling of elemental components. Mater. Sci. Eng. A 1995, 204, 211–216. [Google Scholar] [CrossRef]
- Diplas, S.; Lehrmann, J.; Jørgensen, S.; Våland, T.; Watts, J.F.; Taftø, J. Characterization of Ni—B amorphous alloys with X-ray photoelectron and secondary ion mass spectroscopy. Surf. Interface Anal. 2005, 37, 459–465. [Google Scholar] [CrossRef]
- Rebekah; Viswanathan, C.; Ponpandian, N. NiCo2O4 nanoparticles inlaid on sulphur and nitrogen doped and co-doped rGO sheets as efficient electrocatalysts for the oxygen evolution and methanol oxidation reactions. Nanoscale Adv. 2021, 3, 3216–3231. [Google Scholar] [CrossRef]
- Thangasamy, P.; Shanmuganathan, S.; Subramanian, V. A NiCo-MOF nanosheet array based electrocatalyst for the oxygen evolution reaction. Nanoscale Adv. 2020, 2, 2073–2079. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Jiang, M.; Kuang, Y.; Sun, X.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251–2259. [Google Scholar] [CrossRef]
- Yu, M.; Weidenthaler, C.; Wang, Y.; Budiyanto, E.; Onur Sahin, E.; Chen, M.; DeBeer, S.; Rüdiger, O.; Tüysüz, H. Surface Boron Modulation on Cobalt Oxide Nanocrystals for Electrochemical Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2022, 61, e202211543. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Cao, G.; Chen, Z.; Kang, Q.; Dai, H.; Wang, P. Cobalt nickel boride as an active electrocatalyst for water splitting. J. Mater. Chem. A 2017, 5, 12379–12384. [Google Scholar] [CrossRef]
- Wu, T.; Han, M.-Y.; Xu, Z.J. Size Effects of Electrocatalysts: More Than a Variation of Surface Area. ACS Nano 2022, 16, 8531–8539. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wu, Y.; Zhou, X.; Ye, Y.; Nie, K.; Wang, J.; Xie, M.; Zhang, Z.; Liu, Z.; Cheng, T.; et al. Promoting nickel oxidation state transitions in single-layer NiFeB hydroxide nanosheets for efficient oxygen evolution. Nat. Commun. 2022, 13, 6094. [Google Scholar] [CrossRef]
- Xiang, D.; Zhang, B.; Zhang, H.; Shen, L. One-Step Synthesis of Bifunctional Nickel Phosphide Nanowires as Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. Front. Chem. 2021, 9, 773018. [Google Scholar] [CrossRef]
- Batugedara, T.N.; Brock, S.L. A Little Nickel Goes a Long Way: Ni Incorporation into Rh2P for Stable Bifunctional Electrocatalytic Water Splitting in Acidic Media. ACS Mater. Au 2023, 3, 299–309. [Google Scholar] [CrossRef]
- Sugawara, Y.; Nakase, Y.; Anilkumar, G.M.; Kamata, K.; Yamaguchi, T. Oxygen evolution activity of nickel-based phosphates and effects of their electronic orbitals. Nanoscale Adv. 2025, 7, 456–466. [Google Scholar] [CrossRef]
- Laïk, B.; Richet, M.; Emery, N.; Bach, S.; Perrière, L.; Cotrebil, Y.; Russier, V.; Guillot, I.; Dubot, P. XPS Investigation of Co–Ni Oxidized Compounds Surface Using Peak-On-Satellite Ratio. Application to Co20Ni80 Passive Layer Structure and Composition. ACS Omega 2024, 9, 40707–40722. [Google Scholar] [CrossRef]
- Song, H.; Li, J.; Sheng, G.; Yin, R.; Fang, Y.; Zhong, S.; Luo, J.; Wang, Z.; Mohamad, A.A.; Shao, W. Chemical Transformation Induced Core–Shell Ni2P@Fe2P Heterostructures toward Efficient Electrocatalytic Oxygen Evolution. Nanomaterials 2022, 12, 3153. [Google Scholar] [CrossRef]
- Shi, W.; Sun, X.; Ding, R.; Ying, D.; Huang, Y.; Huang, Y.; Tan, C.; Jia, Z.; Liu, E. Trimetallic NiCoMo/graphene multifunctional electrocatalysts with moderate structural/electronic effects for highly efficient alkaline urea oxidation reaction. Chem. Commun. 2020, 56, 6503–6506. [Google Scholar] [CrossRef]
- Cui, D.; Zhao, R.; Dai, J.; Xiang, J.; Wu, F. A hybrid NiCo2O4@NiMoO4 structure for overall water splitting and excellent hybrid energy storage. Dalton Trans. 2020, 49, 9668–9679. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Bao, K.; Ma, T.; Zhang, J.; Zhou, C.; Ma, S.; Tao, Q.; Zhu, P.; Cui, T. Revealing the Unusual Boron-Pinned Layered Substructure in Superconducting Hard Molybdenum Semiboride. ACS Omega 2021, 6, 21436–21443. [Google Scholar] [CrossRef] [PubMed]
- Men, Y.; Magkoev, T.T.; Behjatmanesh-Ardakani, R.; Zaalishvili, V.B.; Ashkhotov, O.G. Enhancing the Catalytic Activity of Mo(110) Surface via Its Alloying with Submonolayer to Multilayer Boron Films and Oxidation of the Alloy: A Case of (CO + O2) to CO2 Conversion. Nanomaterials 2023, 13, 651. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, R.; Huo, Y.; Li, H.; Wang, L. Formation, Detection, and Function of Oxygen Vacancy in Metal Oxides for Solar Energy Conversion. Adv. Funct. Mater. 2022, 32, 2109503. [Google Scholar] [CrossRef]
- Mahala, C.; Sharma, M.D.; Basu, M. Fe-Doped Nickel Hydroxide/Nickel Oxyhydroxide Function as an Efficient Catalyst for the Oxygen Evolution Reaction. ChemElectroChem 2019, 6, 3488–3498. [Google Scholar] [CrossRef]
- An, K.; Yu, Z.; Bai, H.; Liu, D.; Qiao, L.; Lv, X.; Shao, L.; Feng, J.; Cao, Y.; Li, L.; et al. Oxygen vacancy redistribution and ferroelectric polarization relaxation on epitaxial perovskite films during an electrocatalytic process. J. Mater. Chem. A 2024, 12, 9672–9680. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Yu, Y.; Shi, Y.; Yu, Y.; Niu, Z.; Zhang, B. Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Res. 2018, 11, 603–613. [Google Scholar] [CrossRef]
- Klaus, S.; Cai, Y.; Louie, M.W.; Trotochaud, L.; Bell, A.T. Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity. J. Phys. Chem. C 2015, 119, 7243–7254. [Google Scholar] [CrossRef]
- Cole, K.M.; Prabhudev, S.; Botton, G.A.; Kirk, D.W.; Thorpe, S.J. Amorphous Ni-Based Nanoparticles for Alkaline Oxygen Evolution. ACS Appl. Nano Mater. 2020, 3, 10522–10530. [Google Scholar] [CrossRef]
- Ghobrial, S.; Kirk, D.W.; Thorpe, S.J. Amorphous Ni-Nb-Y Alloys as Hydrogen Evolution Electrocatalysts. Electrocatalysis 2019, 10, 243–252. [Google Scholar] [CrossRef]
Sample | Atomic Composition | Nominal Ratio | ICP Ratio | |||||
---|---|---|---|---|---|---|---|---|
Ni | Co | Mo | B | Ni/Co | Mo/B | Ni/Co | Mo/B | |
NiCoMo | 83.09 | 5.81 | 11.09 | - | 15 | - | 14.3 | - |
NiCoB | 72.22 | 5.20 | - | 22.58 | 15 | - | 13.9 | - |
NiCoMoxB1−x | 68.80 | 4.90 | 7.16 | 19.14 | 15 | 0.49 | 14.0 | 0.40 |
NiCoMoyBy | 72.61 | 5.13 | 10.64 | 11.62 | 15 | 1 | 14.2 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouchani, P.; Kirk, D.W.; Thorpe, S.J. Systematic Investigation of the Role of Molybdenum and Boron in NiCo-Based Alloys for the Oxygen Evolution Reaction. Molecules 2025, 30, 1971. https://doi.org/10.3390/molecules30091971
Mouchani P, Kirk DW, Thorpe SJ. Systematic Investigation of the Role of Molybdenum and Boron in NiCo-Based Alloys for the Oxygen Evolution Reaction. Molecules. 2025; 30(9):1971. https://doi.org/10.3390/molecules30091971
Chicago/Turabian StyleMouchani, Parastoo, Donald W. Kirk, and Steven J. Thorpe. 2025. "Systematic Investigation of the Role of Molybdenum and Boron in NiCo-Based Alloys for the Oxygen Evolution Reaction" Molecules 30, no. 9: 1971. https://doi.org/10.3390/molecules30091971
APA StyleMouchani, P., Kirk, D. W., & Thorpe, S. J. (2025). Systematic Investigation of the Role of Molybdenum and Boron in NiCo-Based Alloys for the Oxygen Evolution Reaction. Molecules, 30(9), 1971. https://doi.org/10.3390/molecules30091971