A Modified Fenton’s System Fe2+–EGTA–H2O2 Reveals That Redox Activities of Simple Polyphenols Are Suppressed in Binary Mixtures
Abstract
:1. Introduction
1.1. Plausible Antagonism of Plant Polyphenols in Relation to Health-Promoting Activities
1.2. Examples of Mutual Polyphenols Interactions Evaluated In Vitro with Redox Activity Assays
1.3. Modified Fenton’s System Fe2+–EGTA–H2O2 as a Tool for Determination of Polyphenol Interactions and Aims of the Study
2. Results
3. Discussion
3.1. Relevance to the Development of Polyphenol Dietary Supplements
3.2. Possible Mechanisms Responsible for Suppression of Polyphenols’ Redox Activities in Binary Mixtures
4. Study Limitations
5. Directions for Future Research
6. Materials and Methods
6.1. Chemicals and Solutions
6.2. Preparation of Aqueous Solutions of Polyphenols
6.3. Evaluation of the Effect of Single Polyphenols and Their Combination (Two Compounds) on UPE of Fe2+–EGTA–H2O2 System
6.4. Statistical Analyses
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 5, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Bialasiewicz, P.; Prymont-Przyminska, A.; Zwolinska, A.; Sarniak, A.; Wlodarczyk, A.; Krol, M.; Glusac, J.; Nowak, P.; Markowski, J.; Rutkowski, K.P.; et al. Addition of strawberries to the usual diet decreases resting chemiluminescence of fasting blood in healthy subjects-possible health-promoting effect of these fruits consumption. J. Am. Coll. Nutr. 2014, 33, 274–287. [Google Scholar] [CrossRef] [PubMed]
- Bialasiewicz, P.; Prymont-Przyminska, A.; Zwolinska, A.; Sarniak, A.; Wlodarczyk, A.; Krol, M.; Markowski, J.; Rutkowski, K.P.; Nowak, D. Sour cherries but not apples added to the regular diet decrease resting and fMLP-stimulated chemiluminescence of fasting whole blood in healthy subjects. J. Am. Coll. Nutr. 2018, 37, 24–33. [Google Scholar] [CrossRef]
- Nardini, M. An overview of bioactive phenolic molecules and antioxidant properties of beer: Emerging trends. Molecules 2023, 28, 3221. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T. Possible side effects of polyphenols and their interactions with medicines. Molecules 2023, 28, 2536. [Google Scholar] [CrossRef]
- Erskine, E.; Gültekin Subaşı, B.; Vahapoglu, B.; Capanoglu, E. Coffee phenolics and their interaction with other food phenolics: Antagonistic and synergistic effects. ACS Omega 2022, 7, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative stress and antioxidants-a critical review on in vitro antioxidant assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef]
- Guardado, E.; Molina, E.; Joo, M.; Uriarte, E. Antioxidant and pro-oxidant effects of polyphenolic compounds and structure-activity relationship evidence. In Nutrition, Well-Being and Health; Bouayed, J., Bohn, T., Eds.; InTech Janeza Trdine: Rijeka, Croatia, 2012; pp. 154–196. [Google Scholar]
- León-González, A.J.; Auger, C.; Schini-Kerth, V.B. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem. Pharmacol. 2015, 98, 371–380. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Polyphenols as antioxidant/pro-oxidant compounds and donors of reducing species: Relationship with human antioxidant metabolism. Processes 2023, 11, 2771. [Google Scholar] [CrossRef]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Generalić Mekinić, I. Investigation of antioxidant synergisms and antagonisms among phenolic acids in the model matrices using FRAP and ORAC methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef]
- Olszowy, M.; Dawidowicz, A.L.; Jóźwik Dolęba, M. Are mutual interactions between antioxidants the only factors responsible for antagonistic antioxidant effect of their mixtures? Additive and antagonistic antioxidant effects in mixtures of gallic, ferulic and caffeic acids. Eur. Food Res. Technol. 2019, 245, 1473–1485. [Google Scholar] [CrossRef]
- Nowak, M.; Tryniszewski, W.; Sarniak, A.; Wlodarczyk, A.; Nowak, P.J.; Nowak, D. Concentration dependence of anti- and pro-oxidant activity of polyphenols as evaluated with a light-emitting Fe2+–EGTA–H2O2 system. Molecules 2022, 27, 3453. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.; Tryniszewski, W.; Sarniak, A.; Wlodarczyk, A.; Nowak, P.J.; Nowak, D. Light emission from the Fe2+–EGTA–H2O2 system: Possible application for the determination of antioxidant activity of plant phenolics. Molecules 2018, 23, 866. [Google Scholar] [CrossRef]
- Lemańska, K.; Szymusiak, H.; Tyrakowska, B.; Zieliński, R.; Soffers, A.E.; Rietjens, I.M. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic. Biol. Med. 2001, 31, 869–881. [Google Scholar] [CrossRef]
- Sasak, K.; Nowak, M.; Wlodarczyk, A.; Sarniak, A.; Tryniszewski, W.; Nowak, D. Light emission from Fe2+–EGTA–H2O2 system depends on the pH of the reaction milieu within the range that may occur in cells of the human body. Molecules 2024, 29, 4014. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Antioxidant metabolism pathways in vitamins, polyphenols, and selenium: Parallels and divergences. Int. J. Mol. Sci. 2024, 25, 2600. [Google Scholar] [CrossRef]
- Sahraeian, S.; Rashidinejad, A.; Golmakani, M.T. Recent advances in the conjugation approaches for enhancing the bioavailability of polyphenols. Food Hydrocoll. 2024, 146, 109221. [Google Scholar] [CrossRef]
- Liu, K.; Chen, S.; Geng, X.; Pei, X.; Xing, H.; Zhang, X.; Chang, J.; Yang, W.; Wu, X. Multifunctional selenium-based metal polyphenol nanoparticles impede the pathological cross-talk between reactive oxygen species and inflammation in sepsis. ACS. Mater. Lett. 2024, 6, 2434–2445. [Google Scholar] [CrossRef]
- D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: Status and controversies. Int. J. Mol. Sci. 2010, 31, 1321–1342. [Google Scholar] [CrossRef]
- Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy effects of plant polyphenols: Molecular mechanisms. Int. J. Mol. Sci. 2020, 21, 1250. [Google Scholar] [CrossRef]
- Kobayashi, S.; Higashimura, H. Oxidative polymerization of phenols revisited. Prog. Polym. Sci. 2003, 28, 1015–1048. [Google Scholar] [CrossRef]
- Hider, R.C.; Liu, Z.D.; Khodr, H.H. Metal chelation of polyphenols. Methods Enzymol. 2001, 335, 190–203. [Google Scholar] [PubMed]
- Scarano, A.; Laddomada, B.; Blando, F.; De Santis, S.; Verna, G.; Chieppa, M.; Santino, A. The chelating ability of plant polyphenols can affect iron homeostasis and gut microbiota. Antioxidants 2023, 12, 630. [Google Scholar] [CrossRef]
- Saito, K.; Sun, G.; Nishide, H. Green synthesis of soluble polyphenol: Oxidative polymerization of phenol in water. Green Chem. Lett. Rev. 2007, 1, 47–51. [Google Scholar] [CrossRef]
- Mitjans, M.; Ugartondo, V.; Martínez, V.; Touriño, S.; Torres, J.L.; Vinardell, M.P. Role of galloylation and polymerization in cytoprotective effects of polyphenolic fractions against hydrogen peroxide insult. J. Agric. Food. Chem. 2011, 59, 2113–2119. [Google Scholar] [CrossRef]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- De Graft-Johnson, J.; Nowak, D. Effect of selected plant phenolics on Fe2+–EDTA–H2O2 system mediated deoxyribose oxidation: Molecular structure-derived relationships of anti- and pro-oxidant actions. Molecules 2017, 22, 59. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Ren, L.; Xie, Y. Advances in structures required of polyphenols for xanthine oxidase inhibition. Food Front. 2020, 1, 152–167. [Google Scholar] [CrossRef]
- Álvarez, E.; Leiro, J.; Orallo, F. Effect of (−)-epigallocatechin-3-gallate on respiratory burst of rat macrophages. Int. Immunopharmacol. 2002, 2, 849–855. [Google Scholar] [CrossRef]
- Ciz, M.; Denev, P.; Kratchanova, M.; Vasicek, O.; Ambrozova, G.; Lojek, A. Flavonoids inhibit the respiratory burst of neutrophils in mammals. Oxid. Med. Cell Longev. 2012, 2012, 181295. [Google Scholar] [CrossRef]
Polyphenol | Chemical Structure with Marked in Red Structures Binding Iron | Name of Phenolic Chelating Group |
---|---|---|
Gallic acid | Catechol groupGalloyl group | |
Vanillic acid | Carboxylate group | |
Homovanillic acid | Carboxylate group | |
3,4-Dihydroxyphenylacetic acid | Carboxylate groupTwo hydroxyl groups | |
Ellagic acid | Four hydroxyl groups |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, M.; Sasak, K.; Wlodarczyk, A.; Grabska-Kobylecka, I.; Sarniak, A.; Nowak, D. A Modified Fenton’s System Fe2+–EGTA–H2O2 Reveals That Redox Activities of Simple Polyphenols Are Suppressed in Binary Mixtures. Molecules 2025, 30, 2269. https://doi.org/10.3390/molecules30112269
Nowak M, Sasak K, Wlodarczyk A, Grabska-Kobylecka I, Sarniak A, Nowak D. A Modified Fenton’s System Fe2+–EGTA–H2O2 Reveals That Redox Activities of Simple Polyphenols Are Suppressed in Binary Mixtures. Molecules. 2025; 30(11):2269. https://doi.org/10.3390/molecules30112269
Chicago/Turabian StyleNowak, Michał, Krzysztof Sasak, Anna Wlodarczyk, Izabela Grabska-Kobylecka, Agata Sarniak, and Dariusz Nowak. 2025. "A Modified Fenton’s System Fe2+–EGTA–H2O2 Reveals That Redox Activities of Simple Polyphenols Are Suppressed in Binary Mixtures" Molecules 30, no. 11: 2269. https://doi.org/10.3390/molecules30112269
APA StyleNowak, M., Sasak, K., Wlodarczyk, A., Grabska-Kobylecka, I., Sarniak, A., & Nowak, D. (2025). A Modified Fenton’s System Fe2+–EGTA–H2O2 Reveals That Redox Activities of Simple Polyphenols Are Suppressed in Binary Mixtures. Molecules, 30(11), 2269. https://doi.org/10.3390/molecules30112269