Metal-Free Graphene-Based Derivatives as Oxygen Reduction Reaction Electrocatalysts in Energy Conversion and Storage Systems: An Overview
Abstract
:1. Introduction
Four-electron pathway: | O2 + 2H2O + 4e- → 4OH- | E = 0.401 V |
Two-electron pathway: | O2 + H2O + 2e- → HO2-+ OH- | E = −0.065 V |
HO2- + H2O + 2e- → 3OH- | E = 0.867 V | |
2HO2- → 2OH- + O2 |
Four-electron pathway: | O2 + 4H+ + 4e- → 2H2O | E = +1.229 V |
Two-electron pathway: | O2 + 2H+ + 2e- → H2O2 | E = +0.67 V |
H2O2 + 2H+ + 2e- → 2H2O | E = +1.77 V |
2. Graphene Synthesis Methods
Approach | Technique and Brief Description | Advantage/Disadvantage |
---|---|---|
Top-down | Micromechanical exfoliation: exfoliation of layers from graphite by Scotch tape | Low output but simple process with high quality |
Chemical reduction of graphite derivative: exfoliation of graphite derivative in suspension and chemical reduction | Large-scale production with significant defects | |
Bottom-up | Chemical vapor deposition: decomposition of hydrocarbon on a metal substrate at high temperature | Large area graphene, but very poor yield |
On-surface synthesis: covalent fusion of molecular building blocks onto a metallic surface | Atomic precision in regularly ordered porous graphene sheets, nanographenes, and graphene nanoribbons, but poor scalability | |
Laser irradiation: conversion of carbon-based precursors induced by laser | Fast, low-cost, and energy-saving process, but inhomogeneity and difficult control of morphology | |
Pyrolysis: thermal conversion of carbon-based precursors | Large-area monolayer graphene films onto a variety of substrates. Limited yield, energy consumption | |
Epitaxial growth: evaporation of SiC on Si-wafer at high temperature | Micron-length graphene with few defects, but poor scalability and costly method |
2.1. Top-Down Graphene Synthesis
2.2. Bottom-Up Graphene Synthesis
3. Characterization of Graphene
3.1. Electron Microscopy (TEM, HRTEM, SEM, and STEM)
3.2. Scanning Probe Microscopy
3.3. Raman Spectroscopy
3.4. X-Ray Photoelectron Spectroscopy
3.5. X-Ray Diffraction
3.6. Ultraviolet–Visible Spectroscopy
3.7. X-Ray Absorption Near-Edge Structure
4. Nitrogen-Doped Graphene
5. Chalcogen (S, Se)-Doped Graphene
6. Boron-Doped Graphene
7. Phosphorus-Doped Graphene
8. Halogen-Doped Graphene
9. Multielement-Co-doped Graphene
9.1. N,Chalcogen (S,Se)-Co-doped Graphene
9.2. N,B-Co-doped Graphene
9.3. N,P-Codoped Graphene
9.4. N,Halogen-Co-Doped Graphene
9.5. Tri- and Tetra-Doped Graphenes
10. Graphene and Reduced Graphene Oxide
11. Graphene Composites
12. Conclusions
Catalyst 2 | Catalyst Loading 3 (μgcm−2) | Eonset vs. RHE 4 (V) | Electrolyte pH | Synthetic Method 5 | Ref. | |
---|---|---|---|---|---|---|
N-GQDs_3 N-doped graphene quantum dots | NGqDor | 283.08 | 0.610 | 13 | electrochemical method | [316] |
N-rGO N-doped reduced graphene oxide | N-rGO | 121.43 | 0.620 | 13 | annealing | [561] |
N/3D-GNS 850 three-dimensional N-doped graphene nanosheets | NG3DnSh 850 NG3DnSh 850 | 200 200 | 0.630 0.870 | 13 1 6 | thermal heating | [400] |
TDMAC-RGO Tridodecylmethylammonium chloride (TDMAC)-functionalized reduced graphene oxide | TDMAC-RGO TDMAC = Tridodecylmethylammonium chloride | 50.96 | 0.650 | 13 | solution process | [428] |
Nr-GO4 N-doped reduced graphene oxide | N-rGO (III) | 25 | 0.650 | 13 | annealing | [516] |
GF N-doped 3D graphene framework | NG3Dχ | 12 | 0.670 | 13 | hydrothermal process | [521] |
NG60 nitrogen-doped graphene | NG (II) | 1187.31 | 0.680 | 13 | sonochemical process | [436] |
NB-graphene Nitrobenzene-doped graphene | Nitrobenzene-G | 151.65 | 0.700 | 13 | solution process | [427] |
1F-800 N-doped graphene foam | NGFo 800 | 400 | 0.700 | 13 | carbonization | [442] |
N-rGO (E) N-doped reduced graphene oxide | N-rGO (II) | 15 | 0.710 | 13 | hydrothermal process | [570] |
NG−1 N-doped graphene | NG(I) | 40 | 0.710 | 13 | pyrolysis | [421] |
NGQDs/G N-doped graphene quantum dots supported by graphene | NGqDot/G | 283.08 | 0.710 | 13 | hydrothermal process | [283] |
run 7 N-doped reduced graphene oxide | N-rGO (II) | 1000 | 0.710 | 13 | microwave irradiation | [417] |
N-dGOA N-doped graphene oxide aerogel (GOA) | NGOAe | 27.75 | 0.720 | 13 | solution process | [529] |
NG/CCN light N-doped graphene/carbon-rich C3N4 composite | NG/C3N4 | 500 | 0.730 | 13 | calcination | [439] |
PyNG-3 Pyridine-nitrogen-doped graphene sheets | Pyridine-Gsh (II) | 141.54 | 0.738 | 13 | solution process | [358] |
N-GQDs/G-12 N-doped graphene quantum dots/graphene hybrid | NGqDot/G (I) | 70.77 | 0.740 | 13 | hydrothermal process | [319] |
N-Gr nitrogen-doped graphene | NG NG NG | 81.53 81.53 81.53 | 0.740 0.440 0.210 | 13 7 6 0.3 6 | electrochemical process | [558] |
N-FLG Nm-FLG8 nitrogen-rich few-layered graphene | NGfl (III) | 101.21 | 0.740 | 13 | annealing | [418] |
NGSH Nitrogen-doped graphene/carbon nanotube hybrids | NCswnT/NG | 254.77 | 0.740 | 13 | CVD | [541] |
NG N-doped graphene | NG | 141 | 0.744 | 13 | pyrolysis | [381] |
NHG Nitrogen-doped holey graphene | NGhl | 25 | 0.750 | 13 | hydrothermal process | [490] |
N-RGO3 N-doped reduced graphene oxide | N-rGO (III) | 70.77 | 0.750 | 13 | annealing | [310] |
G N-max N-doped graphene | NG (I) | 150 | 0.750 | 13 | thermal treatment | [473] |
HPN-MQGs high-power N-doped medium-quality graphene sheets | NGSh (III) | 200 | 0.750 | 13 | microwave plasma torch | [318] |
HT-N-RGO N-doped reduced graphene oxide | N-rGO | 600 | 0.750 | 13 | hydrothermal process | [472] |
N8,3-NGR Nitrogen-doped graphene nanoribbon | NGnR (IV) | 141.54 | 0.765 | 13 | pyrolysis | [456] |
NG N-doped graphene | NG | 142.86 | 0.765 | 13 | thermal annealing | [380] |
HTNG/GCE N-doped graphene | NG (II) | 79.62 | 0.769 | 13 | thermal annealing | [383] |
N-rGO-90 N-doped reduced graphene oxide | N-rGO 90 | 2000 | 0.770 | 13 | solution process | [443] |
N-G 900 N-doped graphene | NG | 1166.86 | 0.778 | 13 | annealing | [462] |
NG10 N-doped graphene | NG | 20.30 | 0.780 | 13 | thermal annealing | [437] |
NGnP N-doped graphene nanoplatelets | NGnPl | 76.43 | 0.780 | 13 | ball milling | [505] |
NG-2/GC N-doped graphene | NG (II) | 137.62 | 0.780 | 13 | hydrothermal process | [504] |
N-RGO10 3-D mesoporous N-doped reduced graphene oxide | N-rGO3Dmpo (II) | 160 | 0.780 | 13 | annealing | [317] |
N/G1050 N-doped graphene | NG 1050 | 128 | 0.785 | 13 | annealing | [323] |
rGO-sp3-rGO | Diaminobutano-rGO (II) | 51.02 | 0.790 | 13 | solution process | [425] |
NG-PPy N-doped graphene | NGpoL | 500 | 0.790 | 13 | carbonization | [407] |
NG nitrogen-doped graphene | NG | 243 | 0.795 | 13 | hydrothermal method | [457] |
N-rGO900 N-doped reduced graphene oxide | N-rGO | 141.54 | 0.798 | 13 | thermal annealing | [557] |
NG-NCNT Nitrogen-doped graphene/carbon nanotube nanocomposite | NCnT/NG | 50.96 | 0.799 | 13 | hydrothermal process | [538] |
NG 900 N-doped graphene | NG 900 | 141 | 0.800 | 13 | pyrolysis | [384] |
N-doped MSMG-P N-doped mechanochemically synthesized multilayer graphene | NGmL | 1530 | 0.800 | 13 | mechanochemical synthesis | [502] |
rGO N2H4 N-doped reduced graphene oxide | N-rGO | 424 | 0.800 | 13 | hydrothermal process | [120] |
NMGF nitrogen-doped mesoporous graphene framework | NGmpoχ | 255.10 | 0.801 | 13 | CVD | [497] |
N-GP 4-hr 600 °C N-doped graphene nanoplatelets | NGnPl 600 (II) | 424 | 0.805 | 13 | pyrolysis | [446] |
N-G N-doped graphene | NG | 200 | 0.808 | 13 | annealing | [128] |
G-NH3 H2O N-doped graphene | NG (II) | 204.08 | 0.810 | 13 | annealing | [313] |
GO/NH3·H2O oxo-G-derived nitrogen-doped graphene | N-rGO (III) | 100 | 0.810 | 13 | hydrothermal treatment | [499] |
PB-N-rGO 1-pyrenebutyrate functionalized N-doped graphene | 1-pyrenebutyrate-rGO | 170 | 0.810 | 13 | solution process | [320] |
N5-rGO N-doped reduced graphene oxide | N-rGO | 510 | 0.810 | 13 | hydrothermal process | [476] |
A-rGO ammonia-reduced graphene oxide | rGON | 597.13 | 0.810 | 13 | Solution process | [568] |
N-pGF pyridinic-N-doped graphene film | NGFm (II) NGFm (II) | 50 50 | 0.815 0.211 | 13 0.3 6 | solution process | [333] |
NG-750 N-doped graphene | NG 750 | 61.22 | 0.815 | 13 | thermal treatment | [392] |
NG 1 nitrogen-doped reduced graphene oxides | N-rGO (I) | 103 | 0.815 | 13 | annealing | [395] |
NGR−1000 nitrogen-doped graphene | NG 1000 | 140 | 0.815 | 13 | pyrolysis | [445] |
IRnG-A2 A2 imine-rich nitrogen-doped graphene nanosheets | [(CF3SO2)C6H4N)]-G | 200 | 0.815 | 13 | solution process | [429] |
Graphene:glycine 1:4 N-doped graphene | NG (II) | 509.55 | 0.815 | 13 | pyrolysis | [388] |
NHG nitrogen-doped holey graphene | NGhl | 10 | 0.819 | 13 | ball milling | [491] |
T 1000 N-doped graphene-wrapped carbon nanoparticles | NG 1000/NCnP | 152.87 | 0.819 | 13 | solvothermal process | [459] |
Lem-rGO (_8) N-functionalized rGO | N-rGO (I) | 51.02 | 0.820 | 13 | solution process | [533] |
NG 1 N-doped graphene | NG | 103 | 0.820 | 13 | thermal annealing | [398] |
N-rGO 800 N-doped reduced graphene oxide | N-rGO (IV) | 203.11 | 0.820 | 13 | annealing | [328] |
N-rGO-180 N-doped reduced graphene oxide | N-rGO (IV) | 492.96 | 0.820 | 13 | microwave treatment | [335] |
GD1 N-doped graphene | NG (I) | 509.55 | 0.820 | 13 | solution process | [487] |
CS@N-G/CNT carbon spheres@nitrogen-doped graphene/carbon nanotubes hybrid | CSp/NG/CnT | 570 | 0.825 | 13 | ultrasonic-assisted process | [545] |
NG 900 N-doped graphene | NG 900 | 200 | 0.828 | 13 | calcination | [338] |
N-RGO N-doped graphene | N-rGO | 190 | 0.829 | 13 | annealing | [489] |
1000-O2 N-doped graphene | NG (II) | 120 | 0.830 | 13 | annealing | [494] |
NG N-doped graphene | NG | 194 | 0.830 | 13 | microwave plasma | [438] |
GC900 three-dimensional N-doped graphene | NG3D 900 | 200 | 0.830 | 13 | pyrolysis | [405] |
N-rGO–CNT-0.2 N-doped rGO–carbon nanotube composites | N-rGO/NCnT (II) | 600 | 0.830 | 13 | annealing | [542] |
NG N-doped graphene | NG | 39.81 | 0.835 | 13 | annealing | [127] |
N-graphene N-doped reduced graphene oxide | N-rGO | 160 | 0.835 | 13 | shock synthesis of graphene material from CO2 | [559] |
NCDs-NG−12 N-doped reduced graphene oxide | NCDot/NG (II) | 79.22 | 0.840 | 13 | hydrothermal process | [326] |
3-NG N-doped graphene | NG (III) | 100 | 0.840 | 13 | pyrolysis | [311] |
N2-3DrGO N-doped three-dimensional reduced graphene oxide | N-rGO3D (II) | 101.91 | 0.840 | 13 | calcination | [464] |
N-OMMC-G N-doped graphene natively grown on hierarchical ordered porous carbon | NG/CNmamop | 416.67 | 0.840 | 13 | heating and silica etching | [522] |
N-rGO 800 N-doped reduced graphene oxide | N-rGO 800 | 1100 | 0.840 | 13 | pyrolysis | [564] |
NDG N-doped graphene | NG | 51 | 0.845 | 13 | annealing | [435] |
CN1000 N-doped graphene | NG 1000 NG 1000 | 144 144 | 0.847 0.567 | 14 7 6 | thermal treatment | [390] |
NDTG N-doped double-layer templated graphene | NG (I) | 254.8 | 0.849 | 13 | CVD | [534] |
NG−1000 nitrogen-doped graphene | NG 1000 (I) | 97.99 | 0.850 | 13 | annealing | [386] |
CHs material N-doped graphene | NGpoL | 106.16 | 0.850 | 13 | carbonization | [449] |
GN-CNT 2 N-rich graphene nanoclusters–carbon nanotube composite | NCnT/NGnCl | 106.16 | 0.850 | 13 | deflagration with NaNO3 | [477] |
PM-NGr/NCNT N-doped graphene/carbon nanotube | NG/NCnT (I) | 106.16 | 0.850 | 13 | pyrolysis | [548] |
NGM N-doped graphene mesh | NGmh NGmh | 254.78 254.78 | 0.850 0.540 | 13 1 6 | carbonization | [496] |
DNGS 480 900 dendritic N-doped graphene spheres | NGddSp (I) NGddSp (I) NGddSp (I) | 1000 1000 1000 | 0.770 0.550 0.470 | 13 0.3 6 7 6 | pyrolysis | [532] |
NG-SCCf N-doped graphene grown on carbon fibers derived from silk cocoon (SCCf) | NG/NCFb | 320 | 0.850 | 13 | thermal treatment | [524] |
G800 N-doped few-layered graphene sheets | NGfLSh | 400 | 0.850 | 13 | carbonization | [451] |
NVG-30 N-doped vertical graphene nanosheets | NGvSh | 470 | 0.850 | 13 | Plasma-enhanced CVD | [351] |
HNG-900 holey N-doped graphene | NGhl 900 | 200 | 0.860 | 13 | thermal heating | [399] |
NGF N-doped graphene framework | NGχ | 200 | 0.860 | 13 | thermal heating | [402] |
NGE 1000 nitrogen-doped graphene | NG 1000 | 225 | 0.860 | 13 | heat treatment | [416] |
N-Gr N-doped graphene | NG | 420 | 0.860 | 13 | thermal treatment | [408] |
NG-30 N-doped graphene | NG (IV) | 485 | 0.868 | 13 | microwave heating | [389] |
NG/NCNT-BR N-doped graphene from biuret | NG/NCnT (III) | 100 | 0.869 | 13 | pyrolysis | [321] |
N-MG-800 3D bicontinuous N-doped mesoporous graphene | NG3Dmpo 800 | 100 | 0.870 | 13 | thermal heating | [336] |
NGA−150 N-doped graphene aerogels | NGAe (III) | 102 | 0.870 | 13 | pyrolysis | [469] |
N-graphene 900 N-doped graphene | NG (I) | 160 | 0.870 | 13 | thermal treatment | [378] |
ENG N-doped graphene | NG (II) | 200 | 0.870 | 13 | electrochemical exfoliation | [515] |
CN 900 N-doped graphene | NG 900 | 280 | 0.870 | 13 | carbonization | [556] |
N-GNRs-A N-doped graphene nanoribbons aerogel | NGhl 900 | 80 | 0.875 | 13 | pyrolysis | [527] |
DG N-doped graphene annealed at 1150 °C | NG (II) NG(II) | 79.62 79.62 | 0.880 0.530 | 13 1 6 | annealing | [810] |
N-GNR nitrogen-doped graphene nanoribbon | NGnR | 175.07 | 0.880 | 13 | solution process | [325] |
N-RGO-PPV(c)-CNTs three-dimensional N-doped carbon nanotube/reduced graphene oxide composite | NCnT/N-rGO | 300.57 | 0.880 | 13 | pyrolysis | [546] |
N-rGO Diethyl ether N-doped reduced graphene oxide | N-rGO (III) | 600 | 0.880 | 13 | annealing | [498] |
N-GRW three-dimensional (3D) graphene nanoribbon networks | NG3DnRχ | 600 | 0.880 | 14 | pyrolysis | [396] |
N-aGS-900 N-doped activated graphene/single-wall carbon nanotube hybrid | NG/NCsWnT | 177 | 0.885 | 13 | pyrolysis/annealing | [547] |
NG-C N-doped graphene | NG (III) | 200 | 0.885 | 13 | ultrasound | [315] |
ENR-GNPs edge-nitrogen-rich graphene nanoplatelets | NGedrnPl NGedrnPl | 283 283 | 0.885 0.584 | 13 0.3 6 | ball milling | [387] |
NHGs nitrogen-doped hollow graphene microspheres | NGhwmSp | 10 | 0.890 | 13 | pyrolysis | [525] |
NMG−1/4 nitrogen-doped mesoporous graphene | NGmpo | 141.54 | 0.890 | 13 | annealing | [526] |
N-rGO/PAA-900 N-doped reduced graphene oxide | N-rGO | 394.89 | 0.890 | 13 | pyrolysis | [484] |
NOGB-800 N,O-co-doped graphene nanorings-integrated boxes | ONGnBx 800 ONGnBx 800 | 400 400 | 0.890 0.710 | 13 1 6 | calcination | [342] |
NGA N-doped three-dimensional porous graphene frameworks | NG3Dpoχ | 101.91 | 0.898 | 13 | calcination | [470] |
PHNG-800 porous holey nitrogen-doped graphene | NGpohl 800 | 254.78 | 0.900 | 13 | pyrolysis | [465] |
NG-2 N-doped graphene | NGpoL | 606.61 | 0.907 | 14 | solvothermal process | [205] |
NG1000 N-doped graphene | NG 1000 | 38.22 | 0.908 | 13 | thermal treatment | [454] |
N-GQD/rGO nitrogen-doped graphene quantum dots anchored on N-doped graphene | NGqDot/rGO | 100 | 0.910 | 13 | calcination | [410] |
NG 1000 N-doped graphene | NG 1000 NG 1000 | 152 152 | 0.910 0.750 | 13 1 6 | pyrolysis | [495] |
O,N-graphene O,N-co-doped 3D graphene hollow sphere | ONGhSp | 250 | 0.910 | 13 | annealing | [479] |
DN-UGNR 3nm 900 N-doped ultranarrow graphene nanoribbons | NGunwnR (I) | 300 | 0.910 | 13 | thermal treatment | [341] |
N-GN N-doped graphene | NG | 400 | 0.910 | 13 | thermal process | [433] |
GHN-C 900 graphene hydrogel-based nitrogen carbon materials | NC/NG 900 NC/NG 900 NC/NG 1000 | 450 450 250 | 0.910 0.640 0.620 | 13 1 6 13 | pyrolysis | [440] |
N-GPp(few layer) N-doped graphene (few layers) | NG (I) | 800 | 0.910 | 13 | electrochemical exfoliation | [343] |
Twostep N-doped graphene | NG (I) | 1900 | 0.910 | 13 | hydrothermal process | [401] |
NG 1000 nitrogen-doped graphene | NG 1000 | 283 | 0.915 | 13 | pyrolysis | [240] |
N-rGO-P N-doped reduced graphene oxide | N-rGO (II) | 100 | 0.920 | 13 | pyrolysis | [406] |
NGS_1000 porous N-doped graphene layers | NGpoL NGpoL | 204.08 204.08 | 0.920 0.680 | 13 0.3 6 | pyrolysis | [404] |
N-hG6 holey N-doped graphene | NGhl | 250 | 0.920 | 13 | annealing | [352] |
NGA950 N-doped graphene after annealing at 950 °C | NG 950 | 283.09 | 0.920 | 13 | pyrolysis | [458] |
3D-PNG three-dimensional nanoporous nitrogen-doped graphene | NG3Dnpo | 485 | 0.920 | 13 | pyrolysis and etching | [461] |
NGA N-doped graphene aerogel | NGAe | 101.91 | 0.930 | 13 | annealing | [472] |
NG 800 N-doped graphene | NG 800 | 180 | 0.930 | 13 | CVD | [304] |
N-GNRs/G N-doped graphene nanoribbons | NGnR/NG | 255 | 0.930 | 13 | pyrolysis | [482] |
Ai-HGs 3 3,4-diaminopyridine grafted N-doped holey graphene | 3,4diaminopyridine-Ghl | 305.73 | 0.930 | 13 | solution chemistry | [349] |
g-C3N4@N-G Graphitic carbon nitrides supported by N-doped graphene | g-C3N4/NG | 200 | 0.940 | 13 | carbonization | [514] |
NDGs-800 N-dominated doped defective graphene | NGdf | 204 | 0.940 | 13 | thermal heating | [339] |
NGNs-900 N-doped edge-rich graphene nanosphere | NGedrSp | 254.78 | 0.940 | 13 | pyrolysis | [483] |
N-G 1000 N-doped graphene | NG (I) NG (I) | 485 485 | 0.940 0.800 | 13 1 6 | pyrolysis | [403] |
CrG-900 N-doped crumpled graphene | NGcr 900 | 600 | 0.940 | 13 | solvothermal process | [397] |
N-SMCTs@N-rGO N-doped sub-micron carbon tubes with N-doped reduced graphene oxide | NCsμT/N-rGO | 204 | 0.950 | 13 | carbonization | [481] |
N-GNR@CNT N-doped graphene nanoribbons on carbon nanotubes | NGnR/NCnT NGnR/NCnT | 398 398 | 0.950 0.700 | 13 0.3 6 | annealing | [549] |
HPGF−1 hierarchical porous N-doped graphene foams | NGhipo-Fo (I) NGhipo-Fo (I) | 485 485 | 0.950 0.780 | 13 1 6 | calcination and silica etching | [460] |
N-rGO N-doped reduced graphene oxide | N-rGO | 170 | 0.952 | 14 | annealing | [176] |
NA-3DGFs 600 N-doped densely arranged sharp edges graphene fibers | NG3DFb (II) | 150 | 0.960 | 13 | thermal treatment | [348] |
NSAOrGO N-doped macroporous carbon materials | NSC/rGON (I) | 159.24 | 0.960 | 13 | pyrolysis | [478] |
NGS4 1000 nitrogen-doped graphene nanosheets | Nnsha 1000 | 407 | 0.960 | 13 | annealing | [350] |
N-GN15 N-doped graphene | NG (I) NG (I) | 102 102 | 0.980 0.850 | 13 1 6 | annealing | [393] |
NPG 1-05 N-doped graphene nanoporous graphene | NGpo (I) | 350 | 0.980 | 13 | pyrolysis | [330] |
NHGNs nitrogen-doped graphene sheets | NGhlnCs | 394.15 | 0.98 | 13 | hydrothermal process | [448] |
NGTB-900 high-density pyridinic-N-doped graphene− nanotube complexes with hierarchical networks | NCnT/NG 900 NCnT/NG 900 | 600 600 | 1.01 0.780 | 13 16 | annealing | [550] |
Catalyst 2 | Catalyst Loading 3 (μgcm−2) | Eonset vs. RHE 4 (V) | Electrolyte pH | Synthetic Method 5 | Ref. | |
---|---|---|---|---|---|---|
N-Gr N-doped graphene | NG NG NG | 81.53 81.53 81.53 | 0.210 0.740 0.440 | 0.3 13 6 7 6 | electrochemical process | [558] |
N-pGF pyridinic-N-doped graphene film | NGFm (II) | 50 50 | 0.211 0.815 | 0.3 13 6 | solution process | [333] |
N-GNS 800 N-doped graphene | NGnSh | 200 | 0.310 | 0.3 | pyrolysis | [434] |
N-Graphene | NG | 100 | 0.420 | 1 | annealing | [334] |
NG N-doped graphene | NG | 106 | 0.470 | 0.3 | annealing | [345] |
DG N-doped graphene | NG (II) NG (II) | 79.62 79.62 | 0.530 0.880 | 1 13 6 | annealing | [810] |
NGM N-doped graphene mesh | NGmh NGmh | 254.78 254.78 | 0.540 0.850 | 1 13 6 | carbonization | [496] |
DNGS 480 900 dendritic N-doped graphene spheres | NGddSp/Csp 900 (I) NGddSp/Csp 900 (I) NGddSp/Csp 900 (I) | 1000 1000 1000 | 0.550 0.770 0.470 | 0.3 13 6 7 6 | pyrolysis | [532] |
nitrogen-doped graphene foam | NGFo | 580 | 0.570 | 1 | solvothermal process | [492] |
ENR-GNPs edge-nitrogen-rich graphene nanoplatelets | NGedrnPl NGedrnPl | 283 283 | 0.584 0.885 | 0.3 13 6 | ball milling | [387] |
Nr-GO4 N-doped reduced graphene oxide | N-rGO (III) N-rGO (III) | 25 25 | 0.580 0.660 | 5 1 | annealing annealing | [516] |
N-MG-801 3D bicontinuous N-doped mesoporous graphene | NG3Dmpo 800 | 400 | 0.590 | 0.3 | thermal heating | [336] |
N-HPC/RGO−1 N-doped hierarchical porous carbon reduced graphene oxide | NChipo/NrGO | 101.91 | 0.625 | 0.3 | pyrolysis | [463] |
GHN-C 900 graphene hydrogel-based nitrogen/carbon materials | NC/NG 900 NC/NG 900 | 450 450 250 | 0.640 0.910 0.620 | 1 13 6 13 6 | pyrolysis | [440] |
N-Gr N-doped graphene | NG | 707.71 | 0.670 | 1 | pyrolysis | [640] |
HS-MW 1200 nanoporous N-doped reduced graphene oxide | NrGOnpo (V) | 325 | 0.680 | 1 | annealing | [503] |
N-GNR@CNT N-doped graphene nanoribbons on carbon nanotubes | NGnR/NCnT NGnR/NCnT | 398 398 | 0.700 0.950 | 0.3 13 6 | annealing | [549] |
NOGB-800 N,O-co-doped graphene nanorings-integrated boxes | ONGnBx 800 ONGnBx 800 | 400 400 | 0.710 0.890 | 1 13 6 | calcination | [342] |
GN 1000 N-doped graphene | NG 1000 NG 1000 | 152 152 | 0.750 0.910 | 1 13 6 | pyrolysis | [495] |
GCA 4 N-doped graphene–carbon nanotube self-assembly | NCnT/NG (IV) | 707.71 | 0.760 | 1 | thermal heating | [540] |
HPGF−1 hierarchical porous N-doped graphene foams | NGhipoFo (I) NGhipoFo (I) | 485 485 | 0.780 0.950 | 1 13 6 | calcination and silica etching | [460] |
NGTB-900 high-density pyridinic-N-doped graphene− nanotube complexes with hierarchical networks | NCnT/NG 900 NCnT/NG 900 | 600 600 | 0.780 1.010 | 1 13 6 | annealing | [550] |
PNGF porous N-doped graphene foam | NGpoFo | 485 | 0.790 | 1 | pyrolysis and etching | [518] |
N-G 1000 N-doped graphene | NG (I) NG (I) | 485 485 | 0.800 0.940 | 1 13 6 | pyrolysis | [403] |
NGCA N-doped graphene/CNT self-assembly | NG/CNmamop | 714 | 0.810 | 1 | pyrolysis | [539] |
CNG-3 3D interconnected carbon nitride (CNx) tetrapods wrapped with nitrogen-doped graphene | NG/CNxtPod (II) | 255 | 0.820 | 1 | annealing | [432] |
NG@MMT N-doped graphene | NG | 600 | 0.830 | 1 | pyrolysis | [452] |
N-GN15 N-doped graphene | NG (I) NG (I) | 102 102 | 0.850 0.980 | 1 13 6 | annealing | [393] |
N/3D-GNS 850 three-dimensional N-doped graphene nanosheets | NG3DnSh 850 NG3DnSh 850 | 200 200 | 0.630 0.870 | 0.3 13 6 | thermal heating | [400] |
NGS_1000 porous N-doped graphene layers | NGpoL | 204.08 204.08 | 0.680 0.920 | 0.3 13 6 | pyrolysis | [404] |
Catalyst 2 | Catalyst Loading 3 (μgcm−2) | Eonset vs. RHE 4 (V) | Electrolyte pH | Synthetic Method 5 | Ref. | |
---|---|---|---|---|---|---|
S-GNF4 N-doped graphene nanoflakes | SGnFk (I) | 100 | 0.610 | 13 | thermal plasma | [605] |
c-FLGS sulfur-containing few-layer graphene | SGfL(II) | 40 | 0.680 | 13 | plasma-assisted electrochemical exfoliation | [624] |
SG 900 S-doped graphene | SG 900 | 38.22 | 0.728 | 13 | thermal treatment | [454] |
S-rGO S-doped reduced graphene oxide | S-rGO S-rGO | 255 255 | 0.740 0.170 | 13 1 5 | solution process | [615] |
SPG S-doped porous holey graphene frameworks | SGpohoχ | 125 | 0.745 | 13 | pyrolysis | [595] |
SGnP edge-selectively sulfurized graphene nanoplatelet | GSnPl | 76.43 | 0.750 | 13 | ball milling | [587] |
S-RGO−180 sulfur-doped reduced graphene oxide | S-rGO 180 | 50 | 0.760 | 13 | hydrothermal process | [620] |
rGO H2SO4 S-doped reduced graphene oxide | S-rGO | 424 | 0.760 | 13 | hydrothermal process | [120] |
rGO_Se selenium-doped reduced graphene oxide | Se-rGO | 169.85 | 0.770 | 13 | solution process | [629] |
SDGN(10) S-doped graphene nanosheets | SGnSh (IV) | 476.19 | 0.790 | 13 | electrochemical exfoliation | [610] |
SG-700 S-doped graphene | SG 700 | 320 | 0.810 | 13 | thermal reduction | [602] |
S-doped MSMG-C mechanochemically synthesized multilayer graphene | SGmL | 1530 | 0.810 | 13 | mechanochemical synthesis | [502] |
S-GNs−1000-CB sulfur-doped graphene nanosheets/carbon black composite | SGnSh/Cb 1000 | 203.82 | 0.820 | 13 | annealing | [599] |
rGO3TP 2,2′:5′,2″-terthiophene-rGO | 3TP-rGO (I) 3TP= 2,2′:5′,2″-terthiophene | 50.96 | 0.825 | 13 | solution process | [625] |
S-GQDs/CNPs hybrid S-doped graphene quantum-dot-decorated carbon nanoparticles | SGqDot/CnP | 318.47 | 0.840 | 13 | pyrolysis | [607] |
S-G S-doped graphene | SG | 200 | 0.860 | 13 | annealing | [128] |
Se-CNTs-graphene-900 selenium-doped carbon nanotube/graphene networks | CSenT 900/GSe | 141.54 | 0.883 | 13 | annealing | [129] |
3D S-GNs 3D sulfur-doped graphene networks | SG3Dχ | 200 | 0.920 | 13 | thermal annealing | [594] |
Catalyst 2 | Catalyst Loading 3 (μgcm−2) | Eonset vs. RHE 4 (V) | Electrolyte pH | Synthetic Method 5 | Ref. | |
---|---|---|---|---|---|---|
BG B-doped graphene | GB | 39.81 | 0.790 | 13 | thermal annealing | [636] |
PN-B2G polynitrogen N8- (PN) deposited on boron-doped graphene | N8-/GB (II) N8- = polynitrogen | 141.5 | 0.828 | 13 | hydrothermal process | [653] |
B-G B-doped graphene | GB | 200 | 0.808 | 13 | annealing | [128] |
B2-3DrGO B-doped 3D-reduced graphene oxide | B-rGO3D (I) | 101.91 | 0.925 | 13 | supercritical fluid process | [651] |
GH-BGQD2 B-doped graphene quantum dots anchored on a graphene hydrogel | GBqDot/GHy | 7961.78 7961.78 | 0.940 0.860 | 13 0.3 | hydrothermal process | [638] |
Catalyst 2 | Catalyst Loading 3 (μgcm−2) | Eonset vs. RHE 4 (V) | Electrolyte pH | Synthetic Method 5 | Ref. | |
---|---|---|---|---|---|---|
PG P-doped graphene | GP | 255 | 0.760 | 13 | thermal annealing | [273] |
PG P-doped graphene | GP | 255 | 0.760 | 13 | calcination | [869] |
P-G P-doped Graphene | GP | 200 | 0.772 | 13 | annealing | [128] |
PG Graphene and Carbon black composite | Cb/GP | 50.96 | 0.828 | 13 | thermal annealing | [657] |
P-TRG Metal-free phosphorus-doped graphene nanosheets | GPnSh | 141.5 | 0.920 | 13 | thermal annealing | [656] |
Catalyst 2 | Catalyst Loading 3 (μgcm−2) | Eonset vs. RHE 4 (V) | Electrolyte pH | Synthetic Method 5 | Ref. | |
---|---|---|---|---|---|---|
ClFG Fluoro and chloro-doped graphene | FClG | 283.09 | 0.760 | 13 | pyrolysis | [674] |
HIGnP high-quality iodine-doped graphene nanoplatelets | IGnPl | 101.91 | 0.770 | 13 | annealing | [682] |
IGnP edge-selectively-iodinated graphene nanoplatelets BrGnP edge-selectively-chlorinated graphene nanoplatelets ClGnP edge-selectively-iodinated graphene nanoplatelets | IGnPl BrGnPl ClGnPl | 76.43 76.43 76.43 | 0.812 0.806 0.768 | 13 13 13 | ball milling ball milling ball milling | [675] [675] [675] |
FIIRGO Fluorinated reduced graphene oxide | F-rGO (II) | 800 | 0.830 | 13 | solution process | [672] |
I-graphene-900 Iodine-doped graphene | IG 900 | 28.31 | 0.855 | 13 | annealing | [131] |
HI-RGO/CDs Iodine-doped reduced graphene oxide/carbon dot composite | ICDot/I-rGO | 101.91 | 0.860 | 13 | solution process | [684] |
I/rGO Iodine-doped reduced graphene oxide | I-rGO | 661.38 | 0.870 | 13 | microwave heating | [688] |
FG−1100 Fluorine-doped graphene | FG 1100 | 100 | 0.940 | 13 | thermal treatment | [673] |
Catalyst 2 | Catalyst Loading 3 (μgcm−2) | Eonset vs. RHE 4 (V) | Electrolyte pH | Synthetic Method 5 | Ref. | |
---|---|---|---|---|---|---|
N–F-rGO N and F-doped reduced graphene oxide | F,N-rGO | 500 | 0.730 | 13 | hydrothermal process | [692] |
NPHG 8 N,P-enriched hierarchically porous graphene | NGPhipo | 127 | 0.735 | 13 | carbonization | [766] |
SN-rGO 900 N and S-doped reduced graphene oxide | N,S-rGO 900 | 139,795 | 0.740 | 13 | pyrolysis | [725] |
N/S co-doped graphene Nitrogen and sulfur co-doped graphene | NSG | 194.11 | 0.750 | 13 | annealing | [709] |
B&N-rGO N- and B-doped reduced graphene oxide | N,B-rGO | 324.97 | 0.770 | 13 | pyrolysis | [649] |
CNPS -900 N-, P-, S-tridoped graphene | NSGP (III) | 668.79 | 0.780 | 13 | annealing | [783] |
0.05-S, N-rGO N,S co-doped graphene | N,S-rGO (II) | 80 | 0.790 0.290 | 13 1 6 | hydrothermal process | [727] |
L-Cy-rGO heteroatom (N, O, and S)-based L-cysteine-functionalized rGO | LCy-rGO | 169.73 | 0.790 | 13 | microwave treatment | [752] |
BNG boron and nitrogen co-doped graphene | NGB | 101.91 | 0.795 | 13 | annealing | [744] |
N,S-CD/rGO nitrogen and sulfur-doped carbon dot/graphene composite | NSCDot/rGO | 353.86 | 0.800 | 13 | solvo-/hydrothermal process | [623] |
GC-NLS graphene/CnT composite doped sequentially with both nitrogen and sulfur | NSG/CSNnT (I) | 407.43 | 0.800 | 13 | pyrolysis | [598] |
NSP-G−1636,94 00 N,P,S-doped graphene | NSGP 1000 | 283.09 | 0.820 | 13 | hydrothermal process | [715] |
S-N-rGO, 180 nitrogen and phosphorus co-doped reduced graphene oxide | N,S-rGO (I) | 636.94 | 0.820 | 13 | solution process | [730] |
N-P-rGO nitrogen and phosphorus-co-doped graphene nanoribbons/CNTs composite | N,P-rGO (I) | 191.39 | 0.830 | 13 | solution process | [661] |
nGR-NF graphene co-doped with nitrogen and fluorine | FNG | 420 | 0.830 | 13 | mechanochemical treatment | [777] |
B,N-graphene B- and N-co-doped graphene | NGB | 282.69 | 0.835 | 13 | annealing | [639] |
NSG cv S and N-doped graphene | NSG (I) | 128 | 0.840 | 13 | freeze drying | [618] |
NS-3DrGO 950 nitrogen and sulfur dual-doped three-dimensional reduced graphene oxide | N,S-rGO3D 950 | 203.82 | 0.840 | 13 | pyrolysis | [735] |
BNG 1000 boron and nitrogen-dual-self-doped graphene sheets | NBGSh 1000 | 607.15 | 0.840 | 13 | pyrolysis | [750] |
NPG−1000 N,P-co-doped graphene | NGP 1000 | 80 | 0.845 | 13 | pyrolysis | [760] |
N,S-GQDs/rGO defect-rich nitrogen and sulfur-co-doped graphene quantum dots | NSGqDot/rGO | 50.96 | 0.850 | 13 | hydrothermal process | [619] |
BCN 4 B, N-co-doped graphene | NGB (III) | 100 | 0.850 | 13 | pyrolysis | [646] |
F,N,S-rGO fluorine, nitrogen, and sulfur-doped graphene | F,N,S-rGO F,N,S-rGO | 255 255 | 0.850 0.640 | 13 1 6 | pyrolysis | [616] |
carbonaceous rGO/E. coli nitrogen and phosphorus-doped graphene–bacteria composite | NCP/N,P-rGO | 509.55 | 0.85 | 13 | annealing | [867] |
N-S/Gr1000 N- and S-doped graphene | NSG 1000 | 600 400 200 100 | 0.850 0.850 0.830 0.740 | 13 | annealing | [720] |
SNGL-20 S, N co-doped, few-layered graphene oxides | NSGOfL | 306 | 0.855 | 13 | CVD | [593] |
PN-rGO N and P-doped reduced graphene oxide | N,P-rGO | 500 | 0.858 | 13 | thermal annealing | [761] |
N–S-GAs 900 nitrogen and sulfur dual-doped three-dimensional (3D) graphene aerogels | NSG3DAe (I) | 425 | 0.859 | 13 | pyrolysis | [714] |
NBGHS boron and nitrogen co-doped hollow graphene microspheres | NGBhwmSp | 130 | 0.860 | 13 | calcination and etching | [643] |
NPS-G1 nitrogen, Sulfur, and Phosphorus co-doped graphene | NSGP | 255 | 0.860 | 13 | pyrolysis | [784] |
NS-G nitrogen, sulfur-doped graphene nanoribbon | GSN | 283 | 0.860 | 13 | pyrolysis | [713] |
BNr-GO(S) N- and B-doped reduced graphene oxide | N,B-rGOedr | 408 | 0.860 | 13 | freeze drying | [746] |
N,S-GNRs-2s N and S-doped graphene nanoribbons | NSGnR (III) | 161.62 | 0.870 | 13 | Solution process | [732] |
N, S-GCNT N-doped graphene Sulfur, nitrogen co-doped nanocomposite of graphene and carbon nanotube | NSCnT/NSG | 230 | 0.870 | 13 | annealing | [608] |
HRBNG highly reduced boron and nitrogen co-doped graphene | N,B-rGO | 203.82 | 0.870 | 13 | ball milling | [435] |
NPG nitrogen and phosphorus-doped graphene | NGP | 320 | 0.870 | 13 | solvothermal process | [208] |
C/oMUS nitrogen- and sulfur-co-doped carbon | NSCnT/NSG | 400 | 0.870 | 13 | pyrolysis | [702] |
BN-rGO N and B-doped reduced graphene oxide | N,B-rGO | 1019.11 | 0.870 | 13 | annealing | [453] |
CDs/M-rGO N,S, and P-doped carbon decorated reduced graphene oxide | NSCPDot/N,S,P-rGO | 101.92 | 0.879 | 13 | hydrothermal process | [862] |
BN-GAs-2 boron and nitrogen co-doped graphene aerogels | NGBAe (II) | 140 | 0.880 | 13 | freeze drying | [751] |
NPCGF-7:3 carbon nanotubes (C) loaded on graphene microfolds | N,P-CnT/NGP | 300 | 0.880 | 13 | annealing | [764] |
inG Iodine/nitrogen co-doped graphene | NIG | 509.55 | 0.880 | 13 | annealing | [678] |
N, P-GDs/N-3DG nitrogen and phosphorus co-doped graphene dots supported on nitrogen-doped three-dimensional graphene | NGPDot/GN3D | 800 | 0.880 | 13 | annealing | [663] |
N,P-CGHNs nitrogen and phosphorous-doped CNTs and graphene hybrid nanospheres | (NPCnT/NGP)nSp (NPCnT/NGP)nSp | 300 600 | 0.890 0.830 | 13 1 6 | annealing | [758] |
GSP pyrolyzed PG with SO3*Py | NSGpo (II) | 300 | 0.890 | 13 | pyrolysis | [721] |
Gl300G-900 N,S,B, P-doped graphene | NSGPB (I) | 300 | 0.890 | 13 | pyrolysis | [786] |
NFG nitrogen-doped fluorinated graphene | FNG | 283 | 0.898 | 13 | annealing | [669] |
BNPGA−1000−15 boron, nitrogen, phosphorus ternary doped graphene aerogels | NGPBAe 1000 (I) | 600 | 0.900 | 13 | thermal treatment | [691] |
N,B-GA-900 nitrogen and boron co-doped graphene aerogel | NGBAe 900 | 212 | 0.909 | 13 | pyrolysis | [645] |
NSGCB carbon black incorporated nitrogen and sulfur co-doped graphene | NSG/NSCb | 306.12 | 0.910 | 13 | pyrolysis | [708] |
PNGF_ADP(op) N and P co-doped graphene framework | NGPχ (IV) | 100.57 | 0.910 | 13 | calcination | [768] |
BN-Gas N and B-three-dimensional graphene aerogels | NGB3DAe | 160 | 0.910 | 13 | thermal reduction | [748] |
N-F/rGO nitrogen and fluorine-doped reduced graphene oxide | F,N-rGO | 500 | 0.910 | 13 | thermal annealing | [776] |
N/S-G-7d nitrogen/sulfur doped graphene | NSG (III) | 242.64 | 0.911 | 13 | annealing | [719] |
NH2-G-F5 amino (NH2)-/fluoro (F)-cofunctionalized graphene | NH2-FG (II) | 236 | 0.915 | 13 | solution process | [774] |
NF–MG3 nitrogen and fluorine-dual-doped mesoporous graphene | FNGmpo (III) | 400 | 0.920 | 13 | pyrolysis | [670] |
NB-3DGN N and B-doped Three-dimensional graphene networks | NGB3Dχ | 16 | 0.928 | 13 | electrochemical doping | [655] |
tdgc-900 three-dimensional (3D DOPED graphene-based carbon (interconnected porous foam) | NCP 900/NGP3DpoFo | 153 | 0.930 | 13 | pyrolysis | [726] |
CNx/CSx-GNRs 1000 2.5h nitrogen/sulfur co-doped graphene nanoribbons | NSGhenR 1000 NSGhenR 1000 | 81.53 81.53 | 0.930 0.500 | 13 0.3 6 | thermal annealing | [604] |
NSG@CNT-2 N/S co-doped CNT-graphene hybrids | NSG/CnT (II) | 180 | 0.930 | 13 | pyrolysis | [701] |
NSG nitrogen and sulfur dual-doped graphene | NSG | 230 | 0.930 | 13 | pyrolysis | [609] |
NP + NPY/PG nitrogen and phosphorus co-doped graphene | NGP | 600 | 0.930 | 13 | pyrolysis | [769] |
NS/G-AA N,S co-doped graphene nanosheets | NGnSh (II) | 600 | 0.930 | 13 | pyrolysis | [734] |
BN-GQD/G-30 boron- and nitrogen-doped graphene quantum | NGBqDot/G (II) | 81.53 | 0.935 | 13 | CVD | [747] |
NSG three-dimensional hierarchical porous nitrogen and sulfur co-dopedgraphene nanosheets | NSG3DhiponSh NSG3DhiponSh | 102 102 | 0.935 0.685 | 13 0.3 6 | pyrolysis | [606] |
N-S-G 1000 nitrogen and sulfur co-doped graphene | NSG 1000 | 566 | 0.939 | 13 | solution polymerization | [705] |
N,S-PGN 700 rGO nitrogen/sulfur co-doped porous graphene networks | NSGpoχ 700 (III) | 300 | 0.940 | 13 | annealing | [729] |
NS graphene (1:1) N and S-doped graphene | NSG (IV) | 600 | 0.940 | 13 | pyrolysis | [733] |
BNG etched boron, nitrogen-doped graphene | NGB (I) | 80.95 | 0.945 | 13 | annealing | [745] |
N,P-GCNS nitrogen and phosphorus dual-doped graphene/carbon nanosheets | NCP/NGPnSh | 141 | 0.950 | 13 | electrochemical preparation | [759] |
P–N-GFs-HMPA high performancemetal-free P,N-doped carbon catalysts | NCPnT/NGPFo (I) NCPnT/NGPFo (I) | 360 600 | 0.950 0.880 | 13 1 6 | solution process | [660] |
FN3SG N,F, and S tri-doped porous graphene | FNSGpo FNSGpo | 200 200 | 0.960 0.710 | 13 0.3 6 | pyrolysis | [778] |
B,N-PG-O−15 boron and nitrogen-doped porous graphene | N,B-rGOpo (I) | 255 255 | 0.960 0.760 | 13 0.3 6 | annealing | [742] |
GNF-H/N-F heteroatom (N,F)-doped various graphitic carbon nanofibers | FNCFb/FNGnSh(III) | 500 | 0.980 | 13 | pyrolysis | [779] |
Catalyst 2 | Catalyst Loading 3 (μgcm−2) | Eonset vs. RHE 4 (V) | Electrolyte pH | Synthetic Method 5 | Ref. | |
---|---|---|---|---|---|---|
EG-AQ 1 electrochemical grafted anthraquinone functionalized graphene sheets | AQ-GSh (I) AQ = anthraquinone C14H8O2 | 102.04 102.04 | 0.140 0.729 | 1 13 6 | electrochemical grafting and functionalization | [793] |
GNR1 graphene nanoribbons | GnR (I) GnR (I) GnR (I) | 80 80 80 | 0.170 0.450 0.760 | 1 7 6 13 6 | solution process | [447] |
S-rGO S-doped reduced graphene oxide | S-rGO S-rGO | 255 255 | 0.170 0.740 | 1 13 5 | solution process | [615] |
GP-BM graphene prepared via ball milling | G | 310.70 | 0.269 | 1 | ball milling | [795] |
0.05-S, N-rGO N,S co-doped graphene | N,S-rGO (II) N,S-rGO (II) | 80 | 0.290 0.790 | 1 13 6 | hydrothermal process | [727] |
S-rGO S-doped reduced graphene oxide | S-rGO | 255 | 0.300 | 1 6 | reflux solution | [615] |
P(1,5-DAAQ)/RGO Poly(1,5- diaminoanthraquinone)/reduced graphene oxide nanohybrid | P(1,5-DAAQ)/rGO P(1,5-DAAQ) = Poly(1,5- Diaminoanthraquinone) = (C4H7O2N2)n | 200 | 0.327 | 0.3 | potentiodynamic deposition | [792] |
CNx/CSx-GNRs 1000 2.5h nitrogen/sulfur co-doped graphene nanoribbons | NSGhenR 1000 NSGhenR 1000 | 81.53 81.53 | 0.500 0.930 | 0.3 13 6 | thermal annealing | [604] |
rGO/PANI/PVA | PANI/PVA/rGO PVA = polyvinyl alcohol (C2H4O)n PANI = POYLANILINE [C6H4NH]n | 9 | 0.610 | 0.3 | chemical reduction in solution | [881] |
F,N,S-rGO fluorine nitrogen and sulfurl-doped graphene | F,N,S-rGO F,N,S-rGO | 255 255 | 0.640 0.850 | 1 13 6 | pyrolysis | [616] |
NSG three-dimensional hierarchical porous nitrogen and sulfur-codoped graphene nanosheets | NSG3DhiponSh NSG3DhiponSh | 102 102 | 0.685 0.935 | 0.3 13 6 | pyrolysis | [606] |
FN3SG N, F, S tri-doped porous graphene | FNSGpo FNSGpo | 200 200 | 0.710 0.960 | 0.3 13 6 | Reflux solution | [778] |
NPC/G N, P dual-doped carbon/graphene | G/NCP (I) | 255 | 0.730 | 1 | calcination | [869] |
B,N-PG-O-15 Boron and nitrogen-doped porous graphene | N,B-rGOpo (I) N,B-rGOpo (I) | 255 255 | 0.760 0.960 | 0.3 13 6 | annealing | [742] |
N-HC@G-900 ultrathin N-doped holey carbon/graphene hybrid | CNhl 900/G CNhl 900/G | 250 250 | 0.770 0.940 | 0.3 13 6 | calcination | [842] |
PNGr phosphorous and nitrogen-doped graphene | NGP | 707.71 | 0.770 | 1 | pyrolysis | [640] |
NSG@CNT-3 hybrid N,S-doped CNT-graphene nanocomposites | NSG/CnT (III) | 300 | 0.820 | 1 | pyrolysis | [701] |
N,P-CGHNs nitrogen and phosphorous doped CNTs and graphene hybrid nanospheres | (NCPnT/NGP)nSp (NCPnT/NGP)nSp | 600 300 | 0.830 0.890 | 1 13 6 | annealing | [758] |
GH-BGQD2 B-doped graphene quantum dots anchored on a graphene hydrogel | GBqDot/GHy (II) GBqDot/GHy (II) | 7961.78 7961.78 | 0.860 0.940 | 0.3 13 6 | pyrolysis | [638] |
P–N-GFs-HMPA high performancemetal-free P,N-doped carbon catalysts | NCPnT/NGPFo (I) NCPnT/NGPFo (I) | 600 0.360 | 0.880 0.950 | 1 13 6 | solution process | [660] |
Catalyst 2 | Catalyst Loading 3 (μgcm−2) | Eonset vs. RHE 4 (V) | Electrolyte pH | Synthetic Method 5 | Ref. | |
---|---|---|---|---|---|---|
AQS/RGO anthraquinone monosulfonate sodium/reduced graphene oxide nanocomposite | AQS/rGO AQS = C14H7NaO5S | 5.67 | 0.440 | 7 | solution process | [889] |
N/S-G nitrogen and sulfur dual-doped graphene | NSG | 141.54 | 0.441 | 7 | pyrolysis | [731] |
RGSs reduced graphene oxide sheets amino-functionalized graphene | rGOSh | 200 | 0.460 | 7 | electrochemical reduction | [790] |
DNGS 480 900 dendritic N-doped graphene spheres | NGddSp 900 NGddSp 900 NGddSp 900 | 1000 1000 1000 | 0.470 0.550 0.770 | 7 0.3 6 13 6 | pyrolysis | [532] |
CN 1000 N-doped graphene | NG 1000 NG 1000 | 144 144 | 0.567 0.847 | 7,4 146 | thermal treatment | [390] |
GNR1 graphene nanoribbons | GnR GnR GnR | 80 80 80 | 0.450 0.760 0.170 | 7 13 6 1 6 | solution process | [447] |
NG/CB 10 porous N-doped graphene/carbon black composite | NG/Cb (IV) | 100 | 0.780 | 7,4 | pyrolysis | [344] |
5rG@NHCS reduced GO-modified ultra-thin nitrogen-doped hollow carbon sphere composites | rGO/CNhwnSp (II) rGO/CNhwnSp (II) | 1400 1400 | 0.851 0.882 | 7 13 6 | pyrolysis | [845] |
I-NG N-doped graphene with implantation of nitrogen active sites via C3N4 | C3N4/NG | 283.09 | 0.990 | 7 | sonochemical process | [312] |
Catalyst 2 | Catalyst Loading 3 (μgcm−2) | Eonset vs. RHE 4 (V) | Electrolyte pH | Synthetic Method 5 | Ref. | |
---|---|---|---|---|---|---|
LIG-O oxidized laser-induced graphene | G (I) | 150.98 | 0.690 | 13 | plasma treatment | [802] |
Gdots graphene quantum dts | GqDot | 100.90 | 0.539 | 13 | electrochemical process | [775] |
GO 1000 edge-rich non-doped graphene | Gedr 800 | 40 | 0.640 | 13 | pyrolysis | [801] |
H-rGO-sp heat-treated reduced graphene oxide-based hollow spheres | rGOhwSp | 141.54 | 0.710 | 13 | solution process | [444] |
EG-AQ 2 electrochemical-grafted anthraquinone functionalized graphene sheets | AQ-GSh (II) AQ = anthraquinone | 102.04 102.04 | 0.729 0.140 | 13 1 6 | electrochemical grafting and functionalization | [793] |
Graphene | G | 90.8 453.9 | 0.740 0.770 | 13 13 | thermal treatment | [814] |
G graphene | G | 121.46 | 0.740 | 13 | pyrolysis | [816] |
graphene–C60 hybrid | C60-G | 50 | 0.750 | 13 | freeze drying | [794] |
10K graphene nanosheets | GnSh (III) | 283 | 0.758 | 13 | solution process | [506] |
rGO pH 10 reduced graphene oxide nanoscrolls | rGOnSc | 60 | 0.760 | 13 | freeze casting process | [530] |
GNR1 graphene nanoribbon | GnR (I) GnR (I) GnR (I) | 80 80 80 | 0.760 0.170 0.450 | 13 1 6 7 6 | solution process | [447] |
GC/Graphene1 | G(I) | 100 | 0.780 | 13 | solution process | [813] |
DMG−10 doping-free, multi-defect graphene | Gdf (I) | 253.44 | 0.810 | 13 | hydrothermal process | [805] |
DTG 3D double-layer templated graphene | G3D | 255 | 0.820 | 13 | CVD | [798] |
MC-G700 mechanochemically synthesized multilayer graphene | GmL (II) | 1530 | 0.820 | 14 | thermal treatment | [806] |
H-rGO hydrazine-reduced graphene oxide | rGO | 151.65 | 0.840 | 13 | solution process | [500] |
P-G plasma-treated graphene | G(I) | 151.65 | 0.840 | 13 | Plasma treatment | [797] |
GP-BM graphene prepared via ball milling | G | 310.70 | 0.867 | 14 | ball milling | [795] |
8Co/G 700-HCl holey graphene | G 700 (V) | 152.8 | 0.870 | 13 | chemical etching | [799] |
F-graphene graphene fragments | GFg (I) | 283.09 | 0.880 | 13 | grinding | [800] |
3D-PGM−1150 3D interconnected hierarchical porous graphene mesh | G3Dhipomh 1150 | 100 | 0.930 | 13 | self-assembly and chemical etching | [807] |
Catalyst 2 | Catalyst Loading 3 (μgcm−2) | Eonset vs. RHE 4 (V) | Electrolyte pH 5 | Synthetic Method 6 | Ref. | |
---|---|---|---|---|---|---|
C50 vertical graphene sheets on separated papillary granules formed nanocrystalline diamond films | Gv/CDdFm (III) | 80 | 0.670 | 13 | plasma etching | [827] |
Si–GQD1.0 NCs hybrid silicon nanosheets (NSs)–graphene quantum dot nanocomposites | SinSh/GqDot | 1040 | 0.670 | 13 | solution process | [825] |
GOBN5 700 reduced graphene oxide/boron nitride composite annealed at 700 | BNhg/rGO | 42.26 | 0.680 | 13 | annealing | [888] |
NCGO0.05 1000 nitrogen-doped carbon graphene composite | CNposhell/rGOcore 1000 | 127 | 0.700 | 13 | thermal treatment | [831] |
C3N4@rGO graphitic carbon nitride on reduced graphene oxide | C3N4/rGO | 849 | 0.720 | 13 | pyrolysis | [859] |
N-DC/G three-dimensional honeycomb-like nitrogen-doped carbon nanosheet/graphene | NC3DhcnSh/G | 99.8 | 0.735 | 13 | carbonization | [839] |
CNx/G-600 carbon-nitrogen/graphene composite | NC 600/rGO | 509.55 | 0.760 | 13 | pyrolysis | [832] |
GH-GQD 90 graphene quantum dots/graphene hydrogel composites | GqDot/GHy (II) | 100 | 0.780 | 13 | hydrothermal process | [804] |
NCNTs/G three-dimensional (3D) nitrogen-doped carbon nanotubes/graphene | NCnT/G3D | 1000 | 0.780 | 13 | pyrolysis | [866] |
MCN−1_G3 triazole-based mesoporous C3N5 a graphene hybrid | C3N5mpo/G (I) | 13.876 | 0.780 | 13 | calcination and etching | [849] |
PEDOT/rGO/H2SO4 PEDOT:PSS/Graphene Composite | PEDOT + PSS/rGO (I) PEDOT = Poly(3,4-ethylenedioxythiophene) PSS = Polystyrene | 120 | 0.785 | 13 | heating in solution | [878] |
g-C3N4/rGO ultrathin g-C3N4 nanosheets and reduced graphene oxide hybrid | g-C3N4uth/rGO (I) | 300 | 0.795 | 13 | photoreduction | [855] |
G-PMF1−1 graphene-based composite sheets | NC/G/NC (II) | 80 | 0.799 | 13 | annealing | [833] |
N-CDs/G nitrogen-doped carbon dots decorated on the graphene surface | NCtDot/G | 50.95 | 0.820 | 13 | hydrothermal process | [860] |
hp-GSGCN_2x hierarchically porous graphene sheets/graphitic carbon nitride intercalated composites | GSh/g-C3N4 (I) | 283.08 | 0.825 | 13 | thermal annealing | [854] |
HMCG Cys heteroatom (N and S) doped mesoporous carbon/graphene | NSCmpo/G (I) | 200 | 0.838 | 13 | nanocasting approach | [865] |
0.47% boron-doped carbon catalysts on graphene | BC/G (I) | 223 | 0.840 | 13 | liquid-phase electrodeposition | [830] |
A/graphene adenine functionalized graphene | A/G A = adenine | 250 | 0.840 | 13 | ultrasound | [877] |
N-VA-CNTs/GF free-standing vertically aligned nitrogen-doped carbon nanotube supported by graphene foam | NCvalnT/GFo | 143.31 | 0.850 | 13 | PECVD | [884] |
P-T/rGO covalently linked pyridine and thiophene molecule (P-T) polymer composite with reduced graphene oxide | (C45H74N4B2F2S)n/rGO | 521.13 | 0.850 | 13 | sonication | [879] |
GMC-s graphene-based microporous carbons | SC/G/SCL | 600 | 0.850 | 13 | pyrolysis | [834] |
FPCFs@rGO fullerene-derived porous carbon fibers (FPCFs)/reduced graphene oxide composite | C60poFb/rGO (II) | 250 | 0.870 | 13 | calcination | [828] |
NS-CD@gf_a900 carbon dot-embedded porous graphene | NSCDot 900/rGO | 280 | 0.870 | 13 | annealing | [863] |
G-CN 800 graphene-based carbon nitride nanosheets | CNx 800/G | 70,7 | 0.878 | 13 | pyrolysis | [852] |
5rG@NHCS reduced GO (rG) modified ultra-thin nitrogen-doped hollow carbon sphere (NHCS) composites | rGO/NCuthwnSp (II) rGO/NCuthwnSp (II) | 1400 1400 | 0.882 0.851 | 13 76 | pyrolysis | [845] |
N-APC-Gr-900 N-doped hybrid carbons | NC 900/G | 400 | 0.890 | 13 | carbonization | [848] |
mNC/rGO mesoporous nitrogen-doped carbon/reduced graphene oxide | NCmpo/rGO | 240 | 0.900 | 13 | annealing | [843] |
NPC/G N, P dual-doped carbon/graphene | G/NCP (I) | 255 | 0.900 | 13 | calcination | [869] |
rGO@PN\C-2 phosphorus- and nitrogen-doped carbon nanosheets | (NCP/rGO/NPC)nSh (II) | 200 | 0.910 | 13 | carbonization | [870] |
MTCG monoatomic-thick g-C3N4dots@ graphene | C3N4mtDot/G | 80 | 0.915 | 13 | hydrothermal process | [856] |
N-PC@G-0.02 N-doped porous carbon@graphene composites | NCpo/G/NCpo (I) | 407.64 | 0.920 | 13 | pyrolysis | [838] |
N-MCS@rGO N-doped mesoporous carbon spheres loaded on reduced graphene oxide nanosheets | NCmpoSp/rGOnSh | 720 | 0.920 | 13 | carbonization | [847] |
rGO/PANI/PVA reduced GO polyvinyl alcohol polyaniline nanocomposites | PANI/PVA/rGO PVA = polyvinyl alcohol PANI = polyaniline | 9 | 0.930 | 13.7 | chemical reduction in solution | [881] |
PANRGO700 porous carbon nanoballs on graphene composite | NCnBl 700/rGO | 200 | 0.930 | 13 | pyrolysis | [846] |
N-HC@G-900 ultrathin N-doped holey carbon/graphene hybrid | CNhl900/G CNhl900/G | 250 250 | 0.940 0.770 | 13 0.3 6 | calcination | [842] |
N-MC/rGO-800 graphene-supported nitrogen-doped mesoporous carbons | NCmpo/rGO/NCmpo 900 | 204 | 0.950 | 13 | pyrolysis | [840] |
NPCS-850 2D nitrogen-doped porous carbon sheet | NC2DpoSh 850/G | 250 | 0.970 | 13 | pyrolysis | [841] |
G-GCN graphitic carbon nitride immobilized on graphene | g-C3N4/G | 714.29 | 0.979 | 13 | solution chemistry | [851] |
Supplementary Materials
Funding
Conflicts of Interest
References
- Wang, M.; Wang, S.Y.; Yang, H.Q.; Ku, W.; Yang, S.C.; Liu, Z.N.; Lu, G.L. Carbon-Based Electrocatalysts Derived from Biomass for Oxygen Reduction Reaction: A Minireview. Front. Chem. 2020, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Bhuvanendran, N.; Ravichandran, S.; Xu, Q.; Maiyalagan, T.; Su, H. A Quick Guide to the Assessment of Key Electrochemical Performance Indicators for the Oxygen Reduction Reaction: A Comprehensive Review. Int. J. Hydrogen Energy 2022, 47, 7113–7138. [Google Scholar] [CrossRef]
- Zhu, Y.S.; Zhang, B.S. NanoCarbon-Based Metal-Free and Non-Precious Metal Bifunctional Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. J. Energy Chem. 2021, 58, 610–628. [Google Scholar] [CrossRef]
- Dai, L.M. Functionalization of Graphene for Efficient Energy Conversion and Storage. Acc. Chem. Res. 2013, 46, 31–42. [Google Scholar] [CrossRef]
- Lv, W.; Li, Z.J.; Deng, Y.Q.; Yang, Q.H.; Kang, F.Y. Graphene-Based Materials for Electrochemical Energy Storage Devices: Opportunities and Challenges. Energy Storage Mater. 2016, 2, 107–138. [Google Scholar] [CrossRef]
- Yang, L.J.; Shui, J.L.; Du, L.; Shao, Y.Y.; Liu, J.; Dai, L.M.; Hu, Z. Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Adv. Mater. 2019, 31, 20. [Google Scholar] [CrossRef]
- Deng, J.; Fang, S.Y.; Fang, Y.; Hao, Q.Q.; Wang, L.; Hu, Y.H. Multiple Roles of Graphene in Electrocatalysts for Metal-Air Batteries. Catal. Today 2023, 409, 2–22. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Wang, Q.; Shao, H.Y.; Jin, Z. Dendritic Solid Polymer Electrolytes: A New Paradigm for High-Performance Lithium-Based Batteries. Adv. Mater. 2023, 35, 35. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Zeng, Q.H.; Guan, J.Z.; Gao, H.Q.; Zhang, L.Y.; Zhong, J.; Lai, W.Y.; Wang, Q. Designing Polymer Electrolytes via Ring-Opening Polymerization for Advanced Lithium Batteries. Adv. Energy Mater. 2024, 14, 37. [Google Scholar] [CrossRef]
- Xiao, S.J.; Ren, L.T.; Liu, W.; Zhang, L.; Wang, Q. High-Voltage Polymer Electrolytes: Challenges and Progress. Energy Storage Mater. 2023, 63, 35. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Abdulrahman, G.A.Q. A Recent Comprehensive Review of Fuel Cells: History, Types, and Applications. Int. J. Energy Res. 2024, 2024, 36. [Google Scholar] [CrossRef]
- Zhou, X.J.; Qiao, J.L.; Yang, L.; Zhang, J.J. A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions. Adv. Energy. Mater. 2014, 4, 25. [Google Scholar] [CrossRef]
- Li, F.J.; Chan, S.H.; Tu, Z.K. Recent Development of Anion Exchange Membrane Fuel Cells and Performance Optimization Strategies: A Review. Chem. Rec. 2024, 24, 31. [Google Scholar] [CrossRef] [PubMed]
- ElMekawy, A.; Hegab, H.M.; Losic, D.; Saint, C.P.; Pant, D. Applications of Graphene in Microbial Fuel Cells: The Gap between Promise and Reality. Renew. Sustain. Energy Rev. 2017, 72, 1389–1403. [Google Scholar] [CrossRef]
- Lu, J.H.; Jaumaux, P.; Wang, T.Y.; Wang, C.Y.; Wang, G.X. Recent Progress in Quasi-Solid and Solid Polymer Electrolytes for Multivalent Metal-Ion Batteries. J. Mater. Chem. A 2021, 9, 24175–24194. [Google Scholar] [CrossRef]
- Liu, Q.F.; Pan, Z.F.; Wang, E.D.; An, L.; Sun, G.Q. Aqueous Metal-Air Batteries: Fundamentals and Applications. Energy Storage Mater. 2020, 27, 478–505. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Yang, Y.K.; Han, C.P.; Jiang, B.B.; Iocozzia, J.; He, C.G.; Shi, D.; Jiang, T.; Lin, Z.Q. Graphene-Based Materials with Tailored Nanostructures for Energy Conversion and Storage. Mater. Sci. Eng. R Rep. 2016, 102, 1–72. [Google Scholar] [CrossRef]
- Chang, D.W.; Baek, J.B. Eco-Friendly Synthesis of Graphene Nanoplatelets. J. Mater. Chem. A 2016, 4, 15281–15293. [Google Scholar] [CrossRef]
- Mitra, S.; Banerjee, S.; Datta, A.; Chakravorty, D. A Brief Review on Graphene/Inorganic Nanostructure Composites: Materials for the Future. Indian J. Phys. 2016, 90, 1019–1032. [Google Scholar] [CrossRef]
- Coleman, J.N. Liquid Exfoliation of Defect-Free Graphene. Acc. Chem. Res. 2013, 46, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Hao, R.; Hou, Y.L.; Tian, Y.; Shen, C.M.; Gao, H.J.; Liang, X.L. Solvothermal-Assisted Exfoliation Process to Produce Graphene with High Yield and High Quality. Nano Res. 2009, 2, 706–712. [Google Scholar] [CrossRef]
- Hossain, M.M.; Hahn, J.R.; Ku, B.C. Synthesis of Highly Dispersed and Conductive Graphene Sheets by Exfoliation of Preheated Graphite in a Sealed Bath and Its Applications to Polyimide Nanocomposites. Bull. Korean Chem. Soc. 2014, 35, 2049–2056. [Google Scholar] [CrossRef]
- Wang, S.; Yi, M.; Shen, Z.G. The Effect of Surfactants and Their Concentration on the Liquid Exfoliation of Graphene. RSC Adv. 2016, 6, 56705–56710. [Google Scholar] [CrossRef]
- Lotya, M.; Hernandez, Y.; King, P.J.; Smith, R.J.; Nicolosi, V.; Karlsson, L.S.; Blighe, F.M.; De, S.; Wang, Z.M.; McGovern, I.T.; et al. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620. [Google Scholar] [CrossRef]
- Badri, M.A.S.; Salleh, M.M.; Noor, N.F.M.; Abd Rahman, M.Y.; Umar, A.A. Green Synthesis of Few-Layered Graphene from Aqueous Processed Graphite Exfoliation for Graphene Thin Film Preparation. Mater. Chem. Phys. 2017, 193, 212–219. [Google Scholar] [CrossRef]
- Chaban, V.V.; Fileti, E.E.; Prezhdo, O.V. Exfoliation of Graphene in Ionic Liquids: Pyridinium versus Pyrrolidinium. J. Phys. Chem. C 2017, 121, 911–917. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Han, Z.; Zhang, Y.B.; Dong, B.; Kong, A.G.; Shan, Y.K. Synthesis of High-Quality Graphene Sheets in Task-Specific Ionic Liquids and Their Photocatalytic Performance. N. J. Chem. 2016, 40, 3147–3154. [Google Scholar] [CrossRef]
- Chaban, V.V.; Fileti, E.E. Graphene Exfoliation in Ionic Liquids: Unified Methodology. RSC Adv. 2015, 5, 81229–81234. [Google Scholar] [CrossRef]
- Najafabadi, A.T.; Gyenge, E. High-Yield Graphene Production by Electrochemical Exfoliation of Graphite: Novel Ionic Liquid (IL)-Acetonitrile Electrolyte with Low IL Content. Carbon 2014, 71, 58–69. [Google Scholar] [CrossRef]
- Liu, N.; Luo, F.; Wu, H.; Liu, Y.; Zhang, C.; Chen, J. One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite. Adv. Funct. Mater. 2008, 18, 1518–1525. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mallik, A. Fundamentals of Fascinating Graphene Nanosheets: A Comprehensive Study. Nano 2019, 14, 1930003. [Google Scholar] [CrossRef]
- Yang, S.; Lohe, M.R.; Müllen, K.; Feng, X. New-Generation Graphene from Electrochemical Approaches: Production and Applications. Adv. Mater. 2016, 28, 6213–6221. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.T.; Hsueh, J.H. Electrochemical Exfoliation of Graphene Sheets from a Natural Graphite Flask in the Presence of Sulfate Ions at Different Temperatures. RSC Adv. 2016, 6, 64826–64831. [Google Scholar] [CrossRef]
- Gee, C.M.; Tseng, C.C.; Wu, F.Y.; Chang, H.P.; Li, L.J.; Hsieh, Y.P.; Lin, C.T.; Chen, J.C. Flexible Transparent Electrodes Made of Electrochemically Exfoliated Graphene Sheets from Low-Cost Graphite Pieces. Displays 2013, 34, 315–319. [Google Scholar] [CrossRef]
- Munuera, J.M.; Paredes, J.I.; Villar-Rodil, S.; Ayán-Varela, M.; Pagán, A.; Aznar-Cervantes, S.D.; Cenis, J.L.; Martínez-Alonso, A.; Tascón, J.M.D. High Quality, Low Oxygen Content and Biocompatible Graphene Nanosheets Obtained by Anodic Exfoliation of Different Graphite Types. Carbon 2015, 94, 729–739. [Google Scholar] [CrossRef]
- Huang, X.; Li, S.; Qi, Z.; Zhang, W.; Ye, W.; Fang, Y. Low Defect Concentration Few-Layer Graphene Using a Two-Step Electrochemical Exfoliation. Nanotechnology 2015, 26, 105602. [Google Scholar] [CrossRef]
- Liu, J.; Poh, C.K.; Zhan, D.; Lai, L.; Lim, S.H.; Wang, L.; Liu, X.; Gopal Sahoo, N.; Li, C.; Shen, Z.; et al. Improved Synthesis of Graphene Flakes from the Multiple Electrochemical Exfoliation of Graphite Rod. Nano Energy 2013, 2, 377–386. [Google Scholar] [CrossRef]
- Punith Kumar, M.K.; Nidhi, M.; Srivastava, C. Electrochemical Exfoliation of Graphite to Produce Graphene Using Tetrasodium Pyrophosphate. RSC Adv. 2015, 5, 24846–24852. [Google Scholar] [CrossRef]
- Hofmann, M.; Chiang, W.Y.; Nguyn, T.D.; Hsieh, Y.P. Controlling the Properties of Graphene Produced by Electrochemical Exfoliation. Nanotechnology 2015, 26, 335607. [Google Scholar] [CrossRef]
- Wei, D.; Grande, L.; Chundi, V.; White, R.; Bower, C.; Andrew, P.; Ryhänen, T. Graphene from Electrochemical Exfoliation and Its Direct Applications in Enhanced Energy Storage Devices. Chem. Commun. 2012, 48, 1239–1241. [Google Scholar] [CrossRef] [PubMed]
- Sima, M.; Enculescu, I.; Sima, A. Preparation of Graphene and Its Application in Dye-Sensitized Solar Cells. Optoelectron. Adv. Mater. Rapid Commun. 2011, 5, 414–418. [Google Scholar]
- Tang, J.; Chen, S.; Yuan, Y.; Cai, X.; Zhou, S. In Situ Formation of Graphene Layers on Graphite Surfaces for Efficient Anodes of Microbial Fuel Cells. Biosens. Bioelectron. 2015, 71, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Yang, J.X.; Wang, J.; Lim, A.; Wang, S.; Loh, K.P. One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano 2009, 3, 2367–2375. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shi, Z.; Zhang, X.; Haarberg, G.M. Mechanism of Graphene Formation by Graphite Electro-Exfoliation in Ionic Liquids-Water Mixtures. Mater. Res. Express 2015, 1, 045606. [Google Scholar] [CrossRef]
- Parvez, K.; Wu, Z.S.; Li, R.; Liu, X.; Graf, R.; Feng, X.; Müllen, K. Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. J. Am. Chem. Soc. 2014, 136, 6083–6091. [Google Scholar] [CrossRef]
- Su, C.Y.; Lu, A.Y.; Xu, Y.; Chen, F.R.; Khlobystov, A.N.; Li, L.J. High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano 2011, 5, 2332–2339. [Google Scholar] [CrossRef]
- Wang, J.; Manga, K.K.; Bao, Q.; Loh, K.P. High-Yield Synthesis of Few-Layer Graphene Flakes through Electrochemical Expansion of Graphite in Propylene Carbonate Electrolyte. J. Am. Chem. Soc. 2011, 133, 8888–8891. [Google Scholar] [CrossRef]
- Zhou, M.; Tang, J.; Cheng, Q.; Xu, G.; Cui, P.; Qin, L.C. Few-Layer Graphene Obtained by Electrochemical Exfoliation of Graphite Cathode. Chem. Phys. Lett. 2013, 572, 61–65. [Google Scholar] [CrossRef]
- Cooper, A.J.; Wilson, N.R.; Kinloch, I.A.; Dryfe, R.A.W. Single Stage Electrochemical Exfoliation Method for the Production of Few-Layer Graphene via Intercalation of Tetraalkylammonium Cations. Carbon 2014, 66, 340–350. [Google Scholar] [CrossRef]
- Pang, Y.X.; Yew, M.; Yan, Y.X.; Khine, P.; Filbert, A.; Manickam, S.; Foo, D.C.Y.; Sharmin, N.; Lester, E.; Wu, T.; et al. Application of Supercritical Fluid in the Synthesis of Graphene Materials: A Review. J. Nanopart. Res. 2021, 23, 204. [Google Scholar] [CrossRef]
- Rangappa, D.; Sone, K.; Wang, M.S.; Gautam, U.K.; Golberg, D.; Itoh, H.; Ichihara, M.; Honma, I. Rapid and Direct Conversion of Graphite Crystals into High-Yielding, Good-Quality Graphene by Supercritical Fluid Exfoliation. Chem.-Eur. J. 2010, 16, 6488–6494. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S.S.; Raj, J.A.; Karnan, M.; Sathish, M. Supercritical Fluid Assisted Synthesis of S-Doped Graphene and Its Symmetric Supercapacitor Performance Evaluation Using Different Electrolytes. Synth. Met. 2019, 255, 116111. [Google Scholar] [CrossRef]
- Tomai, T.; Kawaguchi, Y.; Honma, I. Nanographene Production from Platelet Carbon Nanofiber by Supercritical Fluid Exfoliation. Appl. Phys. Lett. 2012, 100, 233110. [Google Scholar] [CrossRef]
- Ibarra, R.M.; Goto, M.; García-Serna, J.; Montes, S.M.G. Graphene Exfoliation with Supercritical Fluids. Carbon Lett. 2021, 31, 99–105. [Google Scholar] [CrossRef]
- Pu, N.W.; Wang, C.A.; Sung, Y.; Liu, Y.M.; Ger, M.D. Production of Few-Layer Graphene by Supercritical CO2 Exfoliation of Graphite. Mater. Lett. 2009, 63, 1987–1989. [Google Scholar] [CrossRef]
- Sim, H.S.; Kim, T.A.; Lee, K.H.; Park, M. Preparation of Graphene Nanosheets through Repeated Supercritical Carbon Dioxide Process. Mater. Lett. 2012, 89, 343–346. [Google Scholar] [CrossRef]
- Wang, W.C.; Wang, Y.; Gao, Y.H.; Zhao, Y.P. Control of Number of Graphene Layers Using Ultrasound in Supercritical CO2 and Their Application in Lithium-Ion Batteries. J. Supercrit. Fluids 2014, 85, 95–101. [Google Scholar] [CrossRef]
- Xu, Q.Q.; Zhao, W.; Zhi, J.T.; Yin, J.Z. Exfoliation of Graphite in CO2 Expanded Organic Solvents Combined with Low Speed Shear Mixing. Carbon 2018, 135, 180–186. [Google Scholar] [CrossRef]
- Maraschin, T.G.; Gonçalves, R.V.; de Vargas, M.C.; Correa, R.; Basso, N.R.S.; Galland, G.B.; Cassel, E. Few-Layer Graphene Production through Graphite Exfoliation in Pressurized CO2 Assisted by Natural Surfactant. FlatChem 2024, 45, 12. [Google Scholar] [CrossRef]
- Gao, Y.H.; Shi, W.; Wang, W.C.; Wang, Y.; Zhao, Y.P.; Lei, Z.H.; Miao, R.R. Ultrasonic-Assisted Production of Graphene with High Yield in Supercritical CO2 and Its High Electrical Conductivity Film. Ind. Eng. Chem. Res. 2014, 53, 2839–2845. [Google Scholar] [CrossRef]
- Gai, Y.Z.; Wang, W.C.; Xiao, D.; Tan, H.J.; Lin, M.Y.; Zhao, Y.P. Exfoliation of Graphite into Graphene by a Rotor-Stator in Supercritical CO2: Experiment and Simulation. Ind. Eng. Chem. Res. 2018, 57, 8220–8229. [Google Scholar] [CrossRef]
- Tan, H.J.; Navik, R.; Liu, Z.Y.; Xiang, Q.X.; Zhao, Y.P. Scalable Massive Production of Defect-Free Few-Layer Graphene by Ball-Milling in Series with Shearing Exfoliation in Supercritical CO2. J. Supercrit. Fluids 2022, 181, 9. [Google Scholar] [CrossRef]
- Sasikala, S.P.; Huang, K.; Giroire, B.; Prabhakaran, P.; Henry, L.; Penicaud, A.; Poulin, P.; Aymonier, C. Simultaneous Graphite Exfoliation and N Doping in Supercritical Ammonia. ACS Appl. Mater. Interfaces 2016, 8, 30964–30971. [Google Scholar] [CrossRef]
- Chen, J.; Yao, B.; Li, C.; Shi, G. An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide. Carbon 2013, 64, 225–229. [Google Scholar] [CrossRef]
- Gao, W.; Alemany, L.B.; Ci, L.; Ajayan, P.M. New Insights into the Structure and Reduction of Graphite Oxide. Nat. Chem. 2009, 1, 403–408. [Google Scholar] [CrossRef]
- Bai, H.; Li, C.; Shi, G. Functional Composite Materials Based on Chemically Converted Graphene. Adv. Mater. 2011, 23, 1089–1115. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef]
- Higginbotham, A.L.; Kosynkin, D.V.; Sinitskii, A.; Sun, Z.; Tour, J.M. Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano 2010, 4, 2059–2069. [Google Scholar] [CrossRef]
- Liou, Y.J.; Tsai, B.D.; Huang, W.J. An Economic Route to Mass Production of Graphene Oxide Solution for Preparing Graphene Oxide Papers. Mater. Sci. Eng. B 2015, 193, 37–40. [Google Scholar] [CrossRef]
- Hu, Y.; Song, S.; Lopez-Valdivieso, A. Effects of Oxidation on the Defect of Reduced Graphene Oxides in Graphene Preparation. J. Colloid Interface Sci. 2015, 450, 68–73. [Google Scholar] [CrossRef]
- Sun, J.; Yang, N.; Sun, Z.; Zeng, M.; Fu, L.; Hu, C.; Hu, S. Fully Converting Graphite into Graphene Oxide Hydrogels by Preoxidation with Impure Manganese Dioxide. ACS Appl. Mater. Interfaces 2015, 7, 21356–21363. [Google Scholar] [CrossRef]
- Peng, L.; Xu, Z.; Liu, Z.; Wei, Y.; Sun, H.; Li, Z.; Zhao, X.; Gao, C. An Iron-Based Green Approach to 1-h Production of Single-Layer Graphene Oxide. Nat. Commun. 2015, 6, 5716. [Google Scholar] [CrossRef]
- Yu, C.; Wang, C.F.; Chen, S. Facile Access to Graphene Oxide from Ferro-Induced Oxidation. Sci. Rep. 2016, 6, 17071. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-Efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143. [Google Scholar] [CrossRef]
- Eda, G.; Chhowalla, M. Chemically Derived Graphene Oxide: Towards Large-Area Thin-Film Electronics and Optoelectronics. Adv. Mater. 2010, 22, 2392–2415. [Google Scholar] [CrossRef]
- Si, Y.; Samulski, E.T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679–1682. [Google Scholar] [CrossRef]
- Wan, X.; Huang, Y.; Chen, Y. Focusing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale. Acc. Chem. Res. 2012, 45, 598–607. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Chemical Reduction of Graphene Oxide: A Synthetic Chemistry Viewpoint. Chem. Soc. Rev. 2014, 43, 291–312. [Google Scholar] [CrossRef]
- Hofmann, U.; Frenzel, A. Die Reduktion von Graphitoxyd mit Schwefelwasserstoff. Kolloid Z. 1934, 68, 149–151. [Google Scholar] [CrossRef]
- De Silva, K.K.H.; Huang, H.H.; Joshi, R.K.; Yoshimura, M. Chemical Reduction of Graphene Oxide Using Green Reductants. Carbon 2017, 119, 190–199. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Xu, Y.; Sheng, K.; Li, C.; Shi, G. Highly Conductive Chemically Converted Graphene Prepared from Mildly Oxidized Graphene Oxide. J. Mater. Chem. 2011, 21, 7376–7380. [Google Scholar] [CrossRef]
- Park, S.; An, J.; Potts, J.R.; Velamakanni, A.; Murali, S.; Ruoff, R.S. Hydrazine-Reduction of Graphite- and Graphene Oxide. Carbon 2011, 49, 3019–3023. [Google Scholar] [CrossRef]
- Zhang, C.; Lv, W.; Zhang, W.; Zheng, X.; Wu, M.B.; Wei, W.; Tao, Y.; Li, Z.; Yang, Q.H. Reduction of Graphene Oxide by Hydrogen Sulfide: A Promising Strategy for Pollutant Control and as an Electrode for Li-s Batteries. Adv. Energy Mater. 2014, 4, 1301565. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, K.K.; Benayad, A.; Yoon, S.M.; Park, H.K.; Jung, I.S.; Jin, M.H.; Jeong, H.K.; Kim, J.M.; Choi, J.Y.; et al. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Adv. Funct. Mater. 2009, 19, 1987–1992. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Reduction of Graphene Oxide with Substituted Borohydrides. J. Mater. Chem. A Mater. 2013, 1, 1892–1898. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Zhang, D.; Yu, P.; Ma, Y. High Performance Supercapacitors Based on Reduced Graphene Oxide in Aqueous and Ionic Liquid Electrolytes. Carbon 2011, 49, 573–580. [Google Scholar] [CrossRef]
- Cui, P.; Lee, J.; Hwang, E.; Lee, H. One-Pot Reduction of Graphene Oxide at Subzero Temperatures. Chem. Commun. 2011, 47, 12370–12372. [Google Scholar] [CrossRef]
- Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.M. Direct Reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids. Carbon 2010, 48, 4466–4474. [Google Scholar] [CrossRef]
- Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H.M. Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. ACS Nano 2010, 4, 5245–5252. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of Exfoliated Graphite Oxide Under Alkaline Conditions: A Green Route to Graphene Preparation. Adv. Mater. 2008, 20, 4490–4493. [Google Scholar] [CrossRef]
- Chen, W.; Yan, L.; Bangal, P.R. Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds. J. Phys. Chem. C 2010, 114, 19885–19890. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, F.; Liu, K.; Deng, H.; Zhang, Q.; Feng, J.; Fu, Q. A Simple and Efficient Method to Prepare Graphene by Reduction of Graphite Oxide with Sodium Hydrosulfite. Nanotechnology 2011, 22, 045704. [Google Scholar] [CrossRef]
- Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano 2010, 4, 2429–2437. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, M.H.; Min, D.H. Biocompatible Reduced Graphene Oxide Prepared by Using Dextran as a Multifunctional Reducing Agent. Chem. Commun. 2011, 47, 3195–3197. [Google Scholar] [CrossRef]
- Xu, C.; Shi, X.; Ji, A.; Shi, L.; Zhou, C.; Cui, Y. Fabrication and Characteristics of Reduced Graphene Oxide Produced with Different Green Reductants. PLoS ONE 2015, 10, e0144842. [Google Scholar] [CrossRef]
- Fernández-Merino, M.J.; Guardia, L.; Paredes, J.I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J.M.D. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. J. Phys. Chem. C 2010, 114, 6426–6432. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Reduction of Graphene Oxide Vial-Ascorbic Acid. Chem. Commun. 2010, 46, 1112–1114. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Escherichia coli Bacteria Reduce Graphene Oxide to Bactericidal Graphene in a Self-Limiting Manner. Carbon 2012, 50, 1853–1860. [Google Scholar] [CrossRef]
- Salas, E.C.; Sun, Z.; Lüttge, A.; Tour, J.M. Reduction of Graphene Oxide via Bacterial Respiration. ACS Nano 2010, 4, 4852–4856. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, L.; Guo, L. An Environment-Friendly Preparation of Reduced Graphene Oxide Nanosheets via Amino Acid. Nanotechnology 2011, 22, 325601. [Google Scholar] [CrossRef]
- Bose, S.; Kuila, T.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Dual Role of Glycine as a Chemical Functionalizer and a Reducing Agent in the Preparation of Graphene: An Environmentally Friendly Method. J. Mater. Chem. 2012, 22, 9696–9703. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Wu, T.; Liu, Y.; Guo, Y.; Li, R.; Sun, X.; Wu, F.; Li, C.; Gao, J.; et al. Reduction of Graphene Oxide with L-Lysine to Prepare Reduced Graphene Oxide Stabilized with Polysaccharide Polyelectrolyte. J. Mater. Chem. A Mater. 2013, 1, 2192–2201. [Google Scholar] [CrossRef]
- Yang, L.; Wang, T.; Wu, D. Porous Nitrogen-Doped Reduced Graphene Oxide Gels as Efficient Supercapacitor Electrodes and Oxygen Reduction Reaction Electrocatalysts. Chin. J. Chem. 2020, 38, 1123–1131. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Z.; Yin, J. Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites. ACS Appl. Mater. Interfaces 2011, 3, 1127–1133. [Google Scholar] [CrossRef]
- Lei, Y.; Tang, Z.; Liao, R.; Guo, B. Hydrolysable Tannin as Environmentally Friendly Reducer and Stabilizer for Graphene Oxide. Green Chem. 2011, 13, 1655–1658. [Google Scholar] [CrossRef]
- Tavakoli, F.; Salavati-Niasari, M.; Badiei, A.; Mohandes, F. Green Synthesis and Characterization of Graphene Nanosheets. Mater. Res. Bull. 2015, 63, 51–57. [Google Scholar] [CrossRef]
- Zikalala, N.E.; Azizi, S.; Mpeta, L.S.; Ahmed, R.; Dube, A.; Mketo, N.; Zinatizadeh, A.A.; Mokrani, T.; Maaza, M.M. Green Synthesis of Reduced Graphene Oxide Using Persea americana Mill. Extract: Characterization, Oxygen Reduction Reaction and Antibacterial Application. Diam. Relat. Mater. 2024, 149, 13. [Google Scholar] [CrossRef]
- Park, S.; Ruoff, R.S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. 2009, 4, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Sasikala, S.P.; Poulin, P.; Aymonier, C. Advances in Subcritical Hydro-/Solvothermal Processing of Graphene Materials. Adv. Mater. 2017, 29, 1605473. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Navarro, C.; Coronado, E.; Martí-Gastaldo, C.; Sánchez-Royo, J.F.; Gómez, M.G. Influence of the PH on the Synthesis of Reduced Graphene Oxide Under Hydrothermal Conditions. Nanoscale 2012, 4, 3977–3982. [Google Scholar] [CrossRef]
- Ding, J.N.; Liu, Y.B.; Yuan, N.Y.; Ding, G.Q.; Fan, Y.; Yu, C.T. The Influence of Temperature, Time and Concentration on the Dispersion of Reduced Graphene Oxide Prepared by Hydrothermal Reduction. Diam. Relat. Mater. 2012, 21, 11–15. [Google Scholar] [CrossRef]
- Liu, Z.; Duan, X.; Qian, G.; Zhou, X.; Yuan, W. Eco-Friendly One-Pot Synthesis of Highly Dispersible Functionalized Graphene Nanosheets with Free Amino Groups. Nanotechnology 2013, 24, 045609. [Google Scholar] [CrossRef]
- Hong, Z.; Jiao, X.; Gao, Q.; Zhang, Y.; He, C.; Yang, J.; Liu, Y. Tuning the Band Gap of Stable and Dispersible Graphene Aqueous Solution via Hydrothermal Reduction Method. Integr. Ferroelectr. 2013, 145, 115–121. [Google Scholar] [CrossRef]
- Díez, N.; ͆liwak, A.; Gryglewicz, S.; Grzyb, B.; Gryglewicz, G. Enhanced Reduction of Graphene Oxide by High-Pressure Hydrothermal Treatment. RSC Adv. 2015, 5, 81831–81837. [Google Scholar] [CrossRef]
- Johra, F.T.; Jung, W.G. Hydrothermally Reduced Graphene Oxide as a Supercapacitor. Appl. Surf. Sci. 2015, 357, 1911–1914. [Google Scholar] [CrossRef]
- Mei, X.; Meng, X.; Wu, F. Hydrothermal Method for the Production of Reduced Graphene Oxide. Phys. E Low Dimens. Syst. Nanostruct. 2015, 68, 81–86. [Google Scholar] [CrossRef]
- Hayes, W.I.; Joseph, P.; Mughal, M.Z.; Papakonstantinou, P. Production of Reduced Graphene Oxide via Hydrothermal Reduction in an Aqueous Sulphuric Acid Suspension and Its Electrochemical Behaviour. J. Solid State Electrochem. 2015, 19, 361–380. [Google Scholar] [CrossRef]
- Long, D.; Li, W.; Ling, L.; Miyawaki, J.; Mochida, I.; Yoon, S.H. Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide. Langmuir 2010, 26, 16096–16102. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhi, L.; Müllen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323–327. [Google Scholar] [CrossRef]
- Becerril, H.A.; Mao, J.; Liu, Z.; Stoltenberg, R.M.; Bao, Z.; Chen, Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano 2008, 2, 463–470. [Google Scholar] [CrossRef]
- Acik, M.; Lee, G.; Mattevi, C.; Chhowalla, M.; Cho, K.; Chabal, Y.J. Unusual Infrared-Absorption Mechanism in Thermally Reduced Graphene Oxide. Nat. Mater. 2010, 9, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Guo, F.; Hurt, R.; Külaots, I. Explosive Thermal Reduction of Graphene Oxide-Based Materials: Mechanism and Safety Implications. Carbon 2014, 72, 215–223. [Google Scholar] [CrossRef]
- Zhang, H.B.; Wang, J.W.; Yan, Q.; Zheng, W.G.; Chen, C.; Yu, Z.Z. Vacuum-Assisted Synthesis of Graphene from Thermal Exfoliation and Reduction of Graphite Oxide. J. Mater. Chem. 2011, 21, 5392–5397. [Google Scholar] [CrossRef]
- Sheng, Z.H.; Shao, L.; Chen, J.J.; Bao, W.J.; Wang, F.B.; Xia, X.H. Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano 2011, 5, 4350–4358. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts: A Roadnnap to Achieve the Best Performance. J. Am. Chem. Soc. 2014, 136, 4394–4403. [Google Scholar] [CrossRef]
- Jin, Z.P.; Nie, H.G.; Yang, Z.; Zhang, J.; Liu, Z.; Xu, X.J.; Huang, S.M. Metal-Free Selenium Doped Carbon Nanotube/Graphene Networks as a Synergistically Improved Cathode Catalyst for Oxygen Reduction Reaction. Nanoscale 2012, 4, 6455–6460. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Li, P.; He, J.; Zhang, W.; Guo, Z.; Li, Y.; Dong, M. Synthesis of Silicon-Doped Reduced Graphene Oxide and Its Applications in Dye-Sensitive Solar Cells and Supercapacitors. RSC Adv. 2016, 6, 15080–15086. [Google Scholar] [CrossRef]
- Yao, Z.; Nie, H.G.; Yang, Z.; Zhou, X.M.; Liu, Z.; Huang, S.M. Catalyst-Free Synthesis of Iodine-Doped Graphene via a Facile Thermal Annealing Process and Its Use for Electrocatalytic Oxygen Reduction in an Alkaline Medium. Chem. Commun. 2012, 48, 1027–1029. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.; Sharma, N.N. Arc Discharge Synthesis of Carbon Nanotubes: Comprehensive Review. Diam. Relat. Mater. 2014, 50, 135–150. [Google Scholar] [CrossRef]
- Dallas, P.; Meysami, S.S.; Grobert, N.; Porfyrakis, K. Classification of Carbon Nanostructure Families Occurring in a Chemically Activated Arc Discharge Reaction. RSC Adv. 2016, 6, 24912–24920. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, P. Carbon Nano-Onions: Large-Scale Preparation, Functionalization and Their Application as Anode Material for Rechargeable Lithium Ion Batteries. RSC Adv. 2016, 6, 92285–92298. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, B.; Ma, Y.; Huang, Y.; Li, N.; Zhang, F.; Chen, Y. Efficient and Large-Scale Synthesis of Few-Layered Graphene Using an Arc-Discharge Method and Conductivity Studies of the Resulting Films. Nano Res. 2010, 3, 661–669. [Google Scholar] [CrossRef]
- Veena, C.; Singh, B.P.; Mathur, R.B. Carbon Nanotubes and Their Composites. In Syntheses and Applications of Carbon Nanotubes and Their Composites; Suzuki, S., Ed.; Intechopen: Rijeka, Croatia, 2013; pp. 193–222. [Google Scholar]
- Kumar, R.; Singh, R.K.; Dubey, P.K.; Kumar, P.; Tiwari, R.S.; Oh, I.K. Pressure-Dependent Synthesis of High-Quality Few-Layer Graphene by Plasma-Enhanced Arc Discharge and Their Thermal Stability. J. Nanoparticle Res. 2013, 15, 1847. [Google Scholar] [CrossRef]
- Karmakar, S.; Nawale, A.B.; Lalla, N.P.; Sathe, V.G.; Kolekar, S.K.; Mathe, V.L.; Das, A.K.; Bhoraskar, S.V. Gas Phase Condensation of Few-Layer Graphene with Rotational Stacking Faults in an Electric-Arc. Carbon 2013, 55, 209–220. [Google Scholar] [CrossRef]
- Wang, Z.; Li, N.; Shi, Z.; Gu, Z. Low-Cost and Large-Scale Synthesis of Graphene Nanosheets by Arc Discharge in Air. Nanotechnology 2010, 21, 175602. [Google Scholar] [CrossRef]
- Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Large Scale Synthesis of N-Doped Multi-Layered Graphene Sheets by Simple Arc-Discharge Method. Carbon 2010, 48, 255–259. [Google Scholar] [CrossRef]
- Qin, B.; Zhang, T.; Chen, H.; Ma, Y. The Growth Mechanism of Few-Layer Graphene in the Arc Discharge Process. Carbon 2016, 102, 494–498. [Google Scholar] [CrossRef]
- Shen, B.; Ding, J.; Yan, X.; Feng, W.; Li, J.; Xue, Q. Influence of Different Buffer Gases on Synthesis of Few-Layered Graphene by Arc Discharge Method. Appl. Surf. Sci. 2012, 258, 4523–4531. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Sheng, L.; Yu, L.; An, K.; Xu, J.; Ando, Y.; Zhao, X. Mass-Production of Highly-Crystalline Few-Layer Graphene Sheets by Arc Discharge in Various H 2-Inert Gas Mixtures. Chem. Phys. Lett. 2012, 538, 72–76. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Yang, H.; Shi, Z. Large-Scale Synthesis of High-Quality Graphene Sheets by an Improved Alternating Current Arc-Discharge Method. RSC Adv. 2016, 6, 93119–93124. [Google Scholar] [CrossRef]
- Subrahmanyam, K.S.; Panchakarla, L.S.; Govindaraj, A.; Rao, C.N.R. Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method. J. Phys. Chem. C 2009, 113, 4257–4259. [Google Scholar] [CrossRef]
- Wu, Z.S.; Ren, W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; Tang, D.; Yu, B.; Jiang, C.; Cheng, H.M. Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation. ACS Nano 2009, 3, 411–417. [Google Scholar] [CrossRef]
- Li, B.; Song, X.; Zhang, P. Raman-Assessed Structural Evolution of as-Deposited Few-Layer Graphene by He/H2 Arc Discharge during Rapid-Cooling Thinning Treatment. Carbon 2014, 66, 426–435. [Google Scholar] [CrossRef]
- Compagnini, G.; Sinatra, M.; Russo, P.; Messina, G.C.; Puglisi, O.; Scalese, S. Deposition of Few Layer Graphene Nanowalls at the Electrodes during Electric Field-Assisted Laser Ablation of Carbon in Water. Carbon 2012, 50, 2362–2365. [Google Scholar] [CrossRef]
- Kim, S.; Song, Y.; Wright, J.; Heller, M.J. Graphene Bi- and Trilayers Produced by a Novel Aqueous Arc Discharge Process. Carbon 2016, 102, 339–345. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Q.; Xu, K.; Kaneko, T.; Hatakeyama, R. Synthesis of Graphene Nanosheets from Petroleum Asphalt by Pulsed Arc Discharge in Water. Chem. Eng. J. 2013, 215–216, 45–49. [Google Scholar] [CrossRef]
- Seo, D.H.; Rider, A.E.; Kumar, S.; Randeniya, L.K.; Ostrikov, K. Vertical Graphene Gas- and Bio-Sensors via Catalyst-Free, Reactive Plasma Reforming of Natural Honey. Carbon 2013, 60, 221–228. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Li, J.; Jia, D. To Promote the Nucleation and Growth of Graphene in Arc Discharge Process by Magnetic Field and H2. Mater. Lett. 2015, 159, 43–46. [Google Scholar] [CrossRef]
- Roslan, M.S.; Chaudary, K.T.; Haider, Z.; Zin, A.F.M.; Ali, J. Effect of Magnetic Field on Carbon Nanotubes and Graphene Structure Synthesized at Low Pressure via Arc Discharge Process. In Proceedings of the International Conference on Plasma Science and Applications (ICPSA 2016), Langkawi, Malaysia, 28–30 November 2016; Chaudhary, K.T., Ali, J., Rizvi, S.Z.H., Poznanski, R.R., Eds.; American Institute of Physics Inc.: College Park, MD, USA, 2017; Volume 1824. [Google Scholar]
- Huang, L.; Wu, B.; Chen, J.; Xue, Y.; Geng, D.; Guo, Y.; Yu, G.; Liu, Y. Gram-Scale Synthesis of Graphene Sheets by a Catalytic Arc-Discharge Method. Small 2013, 9, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Poorali, M.S.; Bagheri-Mohagheghi, M.M. Synthesis and Physical Properties of Multi-Layered Graphene Sheets by Arc-Discharge Method with TiO2 and ZnO Catalytic. J. Mater. Sci. Mater. Electron. 2017, 28, 6186–6193. [Google Scholar] [CrossRef]
- Panchakarla, L.S.; Subrahmanyam, K.S.; Saha, S.K.; Govindaraj, A.; Krishnamurthy, H.R.; Waghmare, U.V.; Rao, C.N.R. Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Adv. Mater. 2009, 21, 4726–4730. [Google Scholar] [CrossRef]
- Shen, B.; Chen, J.; Yan, X.; Xue, Q. Synthesis of Fluorine-Doped Multi-Layered Graphene Sheets by Arc-Discharge. RSC Adv. 2012, 2, 6761–6764. [Google Scholar] [CrossRef]
- Shah, S.A.; Cui, L.; Lin, K.; Xue, T.; Guo, Q.; Li, L.; Zhang, L.; Zhang, F.; Hu, F.; Wang, X.; et al. Preparation of Novel Silicon/Nitrogen-Doped Graphene Composite Nanosheets by DC Arc Discharge. RSC Adv. 2015, 5, 29230–29237. [Google Scholar] [CrossRef]
- Qing, F.; Jia, R.; Li, B.W.; Liu, C.; Li, C.; Peng, B.; Deng, L.; Zhang, W.; Li, Y.; Ruoff, R.S.; et al. Graphene Growth with “no” Feedstock. 2D Mater. 2017, 4, 025089. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef]
- Iwasaki, T.; Park, H.J.; Konuma, M.; Lee, D.S.; Smet, J.H.; Starke, U. Long-Range Ordered Single-Crystal Graphene on High-Quality Heteroepitaxial Ni Thin Films Grown on MgO(111). Nano Lett. 2011, 11, 79–84. [Google Scholar] [CrossRef]
- Lin, X.; Liu, P.; Wei, Y.; Li, Q.; Wang, J.; Wu, Y.; Feng, C.; Zhang, L.; Fan, S.; Jiang, K. Development of an Ultra-Thin Film Comprised of a Graphene Membrane and Carbon Nanotube Vein Support. Nat. Commun. 2013, 4, 2920. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Solís-Fernández, P.; Yunus, R.M.; Hibino, H.; Ago, H. Behavior and Role of Superficial Oxygen in Cu for the Growth of Large Single-Crystalline Graphene. Appl. Surf. Sci. 2017, 408, 142–149. [Google Scholar] [CrossRef]
- Marchena, M.; Song, Z.; Senaratne, W.; Li, C.; Liu, X.; Baker, D.; Ferrer, J.C.; Mazumder, P.; Soni, K.; Lee, R.; et al. Direct Growth of 2D and 3D Graphene Nano-Structures over Large Glass Substrates by Tuning a Sacrificial Culate Layer. 2D Mater. 2017, 4, 025088. [Google Scholar] [CrossRef]
- Yan, Z.; Lin, J.; Peng, Z.; Sun, Z.; Zhu, Y.; Li, L.; Xiang, C.; Samuel, E.L.; Kittrell, C.; Tour, J.M. Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. ACS Nano 2012, 6, 9110–9117. [Google Scholar] [CrossRef]
- Ma, T.; Ren, W.; Liu, Z.; Huang, L.; Ma, L.P.; Ma, X.; Zhang, Z.; Peng, L.M.; Cheng, H.M. Repeated Growth-Etching-Regrowth for Large-Area Defect-Free Single-Crystal Graphene by Chemical Vapor Deposition. ACS Nano 2014, 8, 12806–12813. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, W.J.; Liu, L.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. Chemical Vapour Deposition Growth of Large Single Crystals of Monolayer and Bilayer Graphene. Nat. Commun. 2013, 4, 2096. [Google Scholar] [CrossRef]
- Gan, L.; Luo, Z. Turning off Hydrogen to Realize Seeded Growth of Subcentimeter Single-Crystal Graphene Grains on Copper. ACS Nano 2013, 7, 9480–9488. [Google Scholar] [CrossRef]
- Hao, Y.; Bharathi, M.S.; Wang, L.; Liu, Y.; Chen, H.; Nie, S.; Wang, X.; Chou, H.; Tan, C.; Fallahazad, B.; et al. The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science 2013, 342, 720–723. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.Y.; Liu, X.R.; Jin, Z.; Wang, D.; Wan, L.J. Facile Growth of Centimeter-Sized Single-Crystal Graphene on Copper Foil at Atmospheric Pressure. J. Mater. Chem. C Mater. 2015, 3, 3530–3535. [Google Scholar] [CrossRef]
- Gottardi, S.; Müller, K.; Bignardi, L.; Moreno-López, J.C.; Pham, T.A.; Ivashenko, O.; Yablonskikh, M.; Barinov, A.; Björk, J.; Rudolf, P.; et al. Comparing Graphene Growth on Cu(111) versus Oxidized Cu(111). Nano Lett. 2015, 15, 917–922. [Google Scholar] [CrossRef]
- Magnuson, C.W.; Kong, X.; Ji, H.; Tan, C.; Li, H.; Piner, R.; Ventrice, C.A., Jr.; Ruoff, R.S. Copper Oxide as a “Self-Cleaning” Substrate for Graphene Growth. J. Mater. Res. 2014, 29, 403–409. [Google Scholar] [CrossRef]
- Guo, W.; Jing, F.; Xiao, J.; Zhou, C.; Lin, Y.; Wang, S. Oxidative-Etching-Assisted Synthesis of Centimeter-Sized Single-Crystalline Graphene. Adv. Mater. 2016, 28, 3152–3158. [Google Scholar] [CrossRef] [PubMed]
- Li, X.S.; Zhu, Y.W.; Cai, W.W.; Borysiak, M.; Han, B.Y.; Chen, D.; Piner, R.D.; Colombo, L.; Ruoff, R.S. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9, 4359–4363. [Google Scholar] [CrossRef]
- Lu, Z.J.; Bao, S.J.; Gou, Y.T.; Cai, C.J.; Ji, C.C.; Xu, M.W.; Song, J.; Wang, R.Y. Nitrogen-Doped Reduced-Graphene Oxide as an Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. RSC Adv. 2013, 3, 3990–3995. [Google Scholar] [CrossRef]
- Xue, Y.H.; Yu, D.S.; Dai, L.M.; Wang, R.G.; Li, D.Q.; Roy, A.; Lu, F.; Chen, H.; Liu, Y.; Qu, J. Three-Dimensional B,N-Doped Graphene Foam as a Metal-Free Catalyst for Oxygen Reduction Reaction. Phys. Chem. Chem. Phys. 2013, 15, 12220–12226. [Google Scholar] [CrossRef]
- Zhao, L.Y.; He, R.; Rim, K.T.; Schiros, T.; Kim, K.S.; Zhou, H.; Gutierrez, C.; Chockalingam, S.P.; Arguello, C.J.; Palova, L.; et al. Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science 2011, 333, 999–1003. [Google Scholar] [CrossRef]
- Sui, Y.P.; Zhu, B.; Zhang, H.R.; Shu, H.B.; Chen, Z.Y.; Zhang, Y.H.; Zhang, Y.Q.; Wang, B.; Tang, C.M.; Xie, X.M.; et al. Temperature-Dependent Nitrogen Configuration of N-Doped Graphene by Chemical Vapor Deposition. Carbon 2015, 81, 814–820. [Google Scholar] [CrossRef]
- Li, J.Y.; Ren, Z.Y.; Zhou, Y.X.; Wu, X.J.; Xu, X.L.; Qi, M.; Li, W.L.; Bai, J.T.; Wang, L. Scalable Synthesis of Pyrrolic N-Doped Graphene by Atmospheric Pressure Chemical Vapor Deposition and Its Terahertz Response. Carbon 2013, 62, 330–336. [Google Scholar] [CrossRef]
- Komissarov, I.V.; Kovalchuk, N.G.; Labunov, V.A.; Girel, K.V.; Korolik, O.V.; Tivanov, M.S.; Lazauskas, A.; Andrulevicius, M.; Tamulevicius, T.; Grigaliunas, V.; et al. Nitrogen-Doped Twisted Graphene Grown on Copper by Atmospheric Pressure CVD from a Decane Precursor. Beilstein J. Nanotechnol. 2017, 8, 145–158. [Google Scholar] [CrossRef]
- Terasawa, T.; Saiki, K. Synthesis of Nitrogen-Doped Graphene by Plasma-Enhanced Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2012, 51, 4. [Google Scholar] [CrossRef]
- Wang, C.D.; Zhou, Y.A.; He, L.F.; Ng, T.W.; Hong, G.; Wu, Q.H.; Gao, F.; Lee, C.S.; Zhang, W.J. In Situ Nitrogen-Doped Graphene Grown from Polydimethylsiloxane by Plasma Enhanced Chemical Vapor Deposition. Nanoscale 2013, 5, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Bepete, G.; Voiry, D.; Chhowalla, M.; Chiguvare, Z.; Coville, N.J. Incorporation of Small BN Domains in Graphene during CVD Using Methane, Boric Acid and Nitrogen Gas. Nanoscale 2013, 5, 6552–6557. [Google Scholar] [CrossRef]
- Qu, L.T.; Liu, Y.; Baek, J.B.; Dai, L.M. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4, 1321–1326. [Google Scholar] [CrossRef]
- Reddy, A.L.M.; Srivastava, A.; Gowda, S.R.; Gullapalli, H.; Dubey, M.; Ajayan, P.M. Synthesis of Nitrogen-Doped Graphene Films for Lithium Battery Application. ACS Nano 2010, 4, 6337–6342. [Google Scholar] [CrossRef]
- Imamura, G.; Saiki, K. Synthesis of Nitrogen-Doped Graphene on Pt(111) by Chemical Vapor Deposition. J. Phys. Chem. C 2011, 115, 10000–10005. [Google Scholar] [CrossRef]
- Jin, Z.; Yao, J.; Kittrell, C.; Tour, J.M. Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets. ACS Nano 2011, 5, 4112–4117. [Google Scholar] [CrossRef]
- Xue, Y.Z.; Wu, B.; Jiang, L.; Guo, Y.L.; Huang, L.P.; Chen, J.Y.; Tan, J.H.; Geng, D.C.; Luo, B.R.; Hu, W.P.; et al. Low Temperature Growth of Highly Nitrogen-Doped Single Crystal Graphene Arrays by Chemical Vapor Deposition. J. Am. Chem. Soc. 2012, 134, 11060–11063. [Google Scholar] [CrossRef]
- Zabet-Khosousi, A.; Zhao, L.Y.; Palova, L.; Hybertsen, M.S.; Reichman, D.R.; Pasupathy, A.N.; Flynn, G.W. Segregation of Sublattice Domains in Nitrogen-Doped Graphene. J. Am. Chem. Soc. 2014, 136, 1391–1397. [Google Scholar] [CrossRef]
- Capasso, A.; Dikonimos, T.; Sarto, F.; Tamburrano, A.; De Bellis, G.; Sarto, M.S.; Faggio, G.; Malara, A.; Messina, G.; Lisi, N. Nitrogen-Doped Graphene Films from Chemical Vapor Deposition of Pyridine: Influence of Process Parameters on the Electrical and Optical Properties. Beilstein J. Nanotechnol. 2015, 6, 2028–2038. [Google Scholar] [CrossRef]
- Gao, H.; Song, L.; Guo, W.H.; Huang, L.; Yang, D.Z.; Wang, F.C.; Zuo, Y.L.; Fan, X.L.; Liu, Z.; Gao, W.; et al. A Simple Method to Synthesize Continuous Large Area Nitrogen-Doped Graphene. Carbon 2012, 50, 4476–4482. [Google Scholar] [CrossRef]
- Nang, L.V.; Duy, N.V.; Hoa, N.D.; Hieu, N.V. Nitrogen-Doped Graphene Synthesized from a Single Liquid Precursor for a Field Effect Transistor. J. Electron. Mater. 2016, 45, 839–845. [Google Scholar] [CrossRef]
- Wu, T.R.; Shen, H.L.; Sun, L.; Cheng, B.; Liu, B.; Shen, J.C. Nitrogen and Boron Doped Monolayer Graphene by Chemical Vapor Deposition Using Polystyrene, Urea and Boric Acid. New J. Chem. 2012, 36, 1385–1391. [Google Scholar] [CrossRef]
- Zhang, C.K.; Lin, W.Y.; Zhao, Z.J.; Zhuang, P.P.; Zhan, L.J.; Zhou, Y.H.; Cai, W.W. CVD Synthesis of Nitrogen-Doped Graphene Using Urea. Sci. China Phys. Mech. Astron. 2015, 58, 6. [Google Scholar] [CrossRef]
- Bao, J.F.; Kishi, N.; Soga, T. Synthesis of Nitrogen-Doped Graphene by the Thermal Chemical Vapor Deposition Method from a Single Liquid Precursor. Mater. Lett. 2014, 117, 199–203. [Google Scholar] [CrossRef]
- Feng, X.M.; Zhang, Y.; Zhou, J.H.; Li, Y.; Chen, S.F.; Zhang, L.; Ma, Y.W.; Wang, L.H.; Yan, X.H. Three-Dimensional Nitrogen-Doped Graphene as an Ultrasensitive Electrochemical Sensor for the Detection of Dopamine. Nanoscale 2015, 7, 2427–2432. [Google Scholar] [CrossRef]
- Shinde, S.M.; Kano, E.; Kalita, G.; Takeguchi, M.; Hashimoto, A.; Tanemura, M. Grain Structures of Nitrogen-Doped Graphene Synthesized by Solid Source-Based Chemical Vapor Deposition. Carbon 2016, 96, 448–453. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, D.; Jiang, N. Synthesis of the Nitrogen-doped CVD Graphene through Triazine. J. Inorg. Mater. 2017, 32, 517–522. [Google Scholar] [CrossRef]
- Cattelan, M.; Agnoli, S.; Favaro, M.; Garoli, D.; Romanato, F.; Meneghetti, M.; Barinov, A.; Dudin, P.; Granozzi, G. Microscopic View on a Chemical Vapor Deposition Route to Boron-Doped Graphene Nanostructures. Chem. Mater. 2013, 25, 1490–1495. [Google Scholar] [CrossRef]
- Mastrapa, G.C.; da Costa, M.; Larrude, D.G.; Freire, F.L. Synthesis and Characterization of Graphene Layers Prepared by Low-Pressure Chemical Vapor Deposition Using Triphenylphosphine as Precursor. Mater. Chem. Phys. 2015, 166, 37–41. [Google Scholar] [CrossRef]
- Li, X.G.; Qiu, Y.F.; Hu, P.A. Three Dimensional P-Doped Graphene Synthesized by Eco-Friendly Chemical Vapor Deposition for Oxygen Reduction Reactions. J. Nanosci. Nanotechnol. 2016, 16, 6216–6222. [Google Scholar] [CrossRef]
- Choi, H.; Jo, H.H.; Hwang, S.; Jeon, M.; Kim, J.H. Synthesis of Sulfur-Doped Graphene by Using Near-Infrared Chemical-Vapor Deposition. J. Korean Phys. Soc. 2016, 68, 1257–1261. [Google Scholar] [CrossRef]
- Hassani, F.; Tavakol, H.; Keshavarzipour, F.; Javaheri, A. A Simple Synthesis of Sulfur-Doped Graphene Using Sulfur Powder by Chemical Vapor Deposition. RSC Adv. 2016, 6, 27158–27163. [Google Scholar] [CrossRef]
- Deng, D.H.; Pan, X.L.; Yu, L.A.; Cui, Y.; Jiang, Y.P.; Qi, J.; Li, W.X.; Fu, Q.A.; Ma, X.C.; Xue, Q.K.; et al. Toward N-Doped Graphene via Solvothermal Synthesis. Chem. Mater. 2011, 23, 1188–1193. [Google Scholar] [CrossRef]
- Lu, X.J.; Wu, J.J.; Lin, T.Q.; Wan, D.Y.; Huang, F.Q.; Xie, X.M.; Jiang, M.H. Low-Temperature Rapid Synthesis of High-Quality Pristine or Boron-Doped Graphene via Wurtz-Type Reductive Coupling Reaction. J. Mater. Chem. 2011, 21, 10685–10689. [Google Scholar] [CrossRef]
- Jung, S.M.; Lee, E.K.; Choi, M.; Shin, D.; Jeon, I.Y.; Seo, J.M.; Jeong, H.Y.; Park, N.; Oh, J.H.; Baek, J.B. Direct Solvothermal Synthesis of B/N-Doped Graphene. Angew. Chem. Int. Ed. 2014, 53, 2398–2401. [Google Scholar] [CrossRef]
- Ma, R.G.; Xia, B.Y.; Zhou, Y.; Li, P.X.; Chen, Y.F.; Liu, Q.; Wang, J.C. Ionic Liquid-Assisted Synthesis of Dual-Doped Graphene as Efficient Electrocatalysts for Oxygen Reduction. Carbon 2016, 102, 58–65. [Google Scholar] [CrossRef]
- Xing, Z.; Ju, Z.C.; Zhao, Y.L.; Wan, J.L.; Zhu, Y.B.; Qiang, Y.H.; Qian, Y.T. One-Pot Hydrothermal Synthesis of Nitrogen-Doped Graphene as High-Performance Anode Materials for Lithium Ion Batteries. Sci. Rep. 2016, 6, 10. [Google Scholar] [CrossRef]
- Sinitskii, A. A Recipe for Nanoporous Graphene Nanoporous Graphene Created from Molecular Precursors Shows Promise for Electronic Applications. Science 2018, 360, 154–155. [Google Scholar] [CrossRef]
- Moreno, C.; Vilas-Varela, M.; Kretz, B.; Garcia-Lekue, A.; Costache, M.V.; Paradinas, M.; Panighel, M.; Ceballos, G.; Valenzuela, S.O.; Peña, D.; et al. Bottom-up Synthesis of Multifunctional Nanoporous Graphene. Science 2018, 360, 199–203. [Google Scholar] [CrossRef]
- Bieri, M.; Treier, M.; Cai, J.M.; Aït-Mansour, K.; Ruffieux, P.; Gröning, O.; Gröning, P.; Kastler, M.; Rieger, R.; Feng, X.L.; et al. Porous Graphenes: Two-Dimensional Polymer Synthesis with Atomic Precision. Chem. Commun. 2009, 45, 6919–6921. [Google Scholar] [CrossRef]
- Khatun, S.; Samanta, S.; Sahoo, S.; Mukherjee, I.; Maity, S.; Pradhan, A. Bottom-Up Porous Graphene Synthesis and Its Applications. Chem. Eur. J. 2024, 30, 14. [Google Scholar] [CrossRef]
- Talirz, L.; Ruffieux, P.; Fasel, R. On-Surface Synthesis of Atomically Precise Graphene Nanoribbons. Adv. Mater. 2016, 28, 6222–6231. [Google Scholar] [CrossRef]
- Gu, Y.W.; Qiu, Z.J.; Müllen, K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J. Am. Chem. Soc. 2022, 144, 11499–11524. [Google Scholar] [CrossRef]
- Jacobse, P.H.; McCurdy, R.D.; Jiang, J.W.; Rizzo, D.J.; Veber, G.; Butler, P.; Zuzak, R.; Louie, S.G.; Fischer, F.R.; Crommie, M.F. Bottom-up Assembly of Nanoporous Graphene with Emergent Electronic States. J. Am. Chem. Soc. 2020, 142, 13507–13514. [Google Scholar] [CrossRef]
- Ajayakumar, M.R.; Di Giovannantonio, M.; Pignedoli, C.A.; Yang, L.; Ruffieux, P.; Ma, J.; Fasel, R.; Feng, X.L. On-Surface Synthesis of Porous Graphene Nanoribbons Containing Nonplanar 14 Annulene Pores. J. Polym. Sci. 2022, 60, 1912–1917. [Google Scholar] [CrossRef]
- Qin, T.C.; Guo, D.Z.; Xiong, J.J.; Li, X.Y.; Hu, L.; Yang, W.S.; Chen, Z.J.; Wu, Y.L.; Ding, H.H.; Hu, J.; et al. Synthesis of a Porous 14 Annulene Graphene Nanoribbon and a Porous 30 Annulene Graphene Nanosheet on Metal Surfaces. Angew. Chem. Int. Ed. 2023, 62, 11. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.W.; Liu, Y.Y.; Ruiz-Zepeda, F.; Ye, R.Q.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-Induced Porous Graphene Films from Commercial Polymers. Nat. Commun. 2014, 5, 8. [Google Scholar] [CrossRef]
- Le, T.S.D.; Phan, H.P.; Kwon, S.; Park, S.; Jung, Y.; Min, J.; Chun, B.J.; Yoon, H.; Ko, S.H.; Kim, S.W.; et al. Recent Advances in Laser-Induced Graphene: Mechanism, Fabrication, Properties, and Applications in Flexible Electronics. Adv. Funct. Mater. 2022, 32, 39. [Google Scholar] [CrossRef]
- Alhajji, E.; Zhang, F.; Alshareef, H.N. Status and Prospects of Laser-Induced Graphene for Battery Applications. Energy Technol. 2021, 9, 15. [Google Scholar] [CrossRef]
- Avinash, K.; Patolsky, F. Laser-Induced Graphene Structures: From Synthesis and Applications to Future Prospects. Mater. Today 2023, 70, 104–136. [Google Scholar] [CrossRef]
- Li, Y.L.; Luong, D.X.; Zhang, J.B.; Tarkunde, Y.R.; Kittrell, C.; Sargunaraj, F.; Ji, Y.S.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces. Adv. Mater. 2017, 29, 8. [Google Scholar] [CrossRef]
- Ye, R.; James, D.K.; Tour, J.M. Laser-Induced Graphene. Acc. Chem. Res. 2018, 51, 1609–1620. [Google Scholar] [CrossRef]
- Singh, S.P.; Li, Y.L.; Zhang, J.B.; Tour, J.M.; Arnusch, C.J. Sulfur-Doped Laser-Induced Porous Graphene Derived from Polysulfone-Class Polymers and Membranes. ACS Nano 2018, 12, 289–297. [Google Scholar] [CrossRef]
- Chyan, Y.; Ye, R.Q.; Li, Y.L.; Singh, S.P.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 2018, 12, 2176–2183. [Google Scholar] [CrossRef]
- Ye, R.Q.; Chyan, Y.; Zhang, J.B.; Li, Y.L.; Han, X.; Kittrell, C.; Tour, J.M. Laser-Induced Graphene Formation on Wood. Adv. Mater. 2017, 29, 7. [Google Scholar] [CrossRef]
- Zhang, H.W.; Li, Q.W.; Hammond, K.D.; He, X.Q.; Lin, J.; Wan, C.X. Probing Laser-Induced Structural Transformation of Lignin into Few-Layer Graphene. Green Chem. 2024, 26, 5921–5932. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Song, M.M.; Hao, J.X.; Wu, K.B.; Li, C.Y.; Hu, C.G. Visible Light Laser-Induced Graphene from Phenolic Resin: A New Approach for Directly Writing Graphene-Based Electrochemical Devices on Various Substrates. Carbon 2018, 127, 287–296. [Google Scholar] [CrossRef]
- Movaghgharnezhad, S.; Kang, P.L.Y. Laser-Induced Graphene: Synthesis Advances, Structural Tailoring, Enhanced Properties, and Sensing Applications. J. Mater. Chem. C 2024, 12, 6718–6742. [Google Scholar] [CrossRef]
- Peng, Z.W.; Ye, R.Q.; Mann, J.A.; Zakhidov, D.; Li, Y.L.; Smalley, P.R.; Lin, J.; Tour, J.M. Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors. ACS Nano 2015, 9, 5868–5875. [Google Scholar] [CrossRef]
- Han, S.; Liu, C.; Li, N.A.; Zhang, S.D.; Song, Y.P.; Chen, L.Q.; Xi, M.; Yu, X.L.; Wang, W.B.; Kong, M.G.; et al. One-Step Fabrication of Nitrogen-Doped Laser-Induced Graphene Derived from Melamine/Polyimide for Enhanced Flexible Supercapacitors. CrystEngComm 2022, 24, 1866–1876. [Google Scholar] [CrossRef]
- Yang, W.W.; Liu, Y.; Li, Q.S.; Wei, J.; Li, X.L.; Zhang, Y.; Liu, J.P. In Situ Formation of Phosphorus-Doped Porous Graphene via Laser Induction. RSC Adv. 2020, 10, 23953–23958. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, F.F.; Hong, R.Y.; Lv, X.S.; Zheng, Y.; Chen, H.Y. High-Purity Few-Layer Graphene from Plasma Pyrolysis of Methane as Conductive Additive for LiFePO4 Lithium Ion Battery. J. Mater. Res. Technol. 2020, 9, 10004–10015. [Google Scholar] [CrossRef]
- Tatarova, E.; Dias, A.; Henriques, J.; do Rego, A.M.B.; Ferraria, A.M.; Abrashev, M.V.; Luhrs, C.C.; Phillips, J.; Dias, F.M.; Ferreira, C.M. Microwave Plasmas Applied for the Synthesis of Free Standing Graphene Sheets. J. Phys. D Appl. Phys. 2014, 47, 11. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Cao, T.; Cao, C.B.; Ma, X.L.; Xu, X.Y.; Li, Y.D. A General Synthetic Strategy to Monolayer Graphene. Nano Res. 2018, 11, 3088–3095. [Google Scholar] [CrossRef]
- Wu, Y.J.; Yuan, Y.F.; Shuang, W.; Wang, L.G.; Yang, L.; Bai, Z.Y.; Lu, J. Reducing Carbonaceous Salts for Facile Fabrication of Monolayer Graphene. Small Methods 2023, 7, 9. [Google Scholar] [CrossRef]
- Speyer, L.; Fontana, S.; Cahen, S.; Hérold, C. Simple Production of High-Quality Graphene Foams by Pyrolysis of Sodium Ethoxide. Mater. Chem. Phys. 2018, 219, 57–66. [Google Scholar] [CrossRef]
- Yan, Y.X.; Nashath, F.Z.; Chen, S.R.; Manickam, S.; Lim, S.S.; Zhao, H.T.; Lester, E.; Wu, T.; Pang, C.H. Synthesis of Graphene: Potential Carbon Precursors and Approaches. Nanotechnol. Rev. 2020, 9, 1284–1314. [Google Scholar] [CrossRef]
- Pan, F.P.; Jin, J.T.; Fu, X.G.; Liu, Q.; Zhang, J.Y. Advanced Oxygen Reduction Electrocatalyst Based on Nitrogen-Doped Graphene Derived from Edible Sugar and Urea. ACS Appl. Mater. Interfaces 2013, 5, 11108–11114. [Google Scholar] [CrossRef]
- Zhao, Y.; Wen, M.Y.; He, C.H.; Liu, C.L.; Li, Z.R.; Liu, Y. Preparation of Graphene by Catalytic Pyrolysis of Lignin and Its Electrochemical Properties. Mater. Lett. 2020, 274, 3. [Google Scholar] [CrossRef]
- Prekodravac, J.R.; Kepic, D.P.; Colmenares, J.C.; Giannakoudakis, D.A.; Jovanovic, S.P. A Comprehensive Review on Selected Graphene Synthesis Methods: From Electrochemical Exfoliation through Rapid Thermal Annealing towards Biomass Pyrolysis. J. Mater. Chem. C 2021, 9, 6722–6748. [Google Scholar] [CrossRef]
- Roy, A.; Kar, S.; Ghosal, R.; Naskar, K.; Bhowmick, A.K. Facile Synthesis and Characterization of Few-Layer Multifunctional Graphene from Sustainable Precursors by Controlled Pyrolysis, Understanding of the Graphitization Pathway, and Its Potential Application in Polymer Nanocomposites. ACS Omega 2021, 6, 1809–1822. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Sun, S.; Zhang, B. Recent Advancements in the Development of Graphene-Based Materials for Catalytic Applications. ChemCatChem 2024, 16, 13. [Google Scholar] [CrossRef]
- Zhang, B.X.; Zhang, E.H.; Wang, S.Y.; Zhang, Y.Y.; Ma, Z.; Qiu, Y.F. Bifunctional Oxygen Electrocatalyst Derived from Photochlorinated Graphene for Rechargeable Solid-State Zn-Air Battery. J. Colloid. Interface Sci. 2019, 543, 84–95. [Google Scholar] [CrossRef]
- Radtke, M.; Ignaszak, A. Grafting of the Carbon Allotropes and Polypyrrole via a Kevlar-Type Organic Linker: The Correlation of Carbon Structure/Morphology with Electrochemistry of the Composite Electrode. Mater. Renew. Sustain. Energy 2017, 6, 1. [Google Scholar] [CrossRef]
- Gomez-Navarro, C.; Meyer, J.C.; Sundaram, R.S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010, 10, 1144–1148. [Google Scholar] [CrossRef]
- Girit, C.O.; Meyer, J.C.; Erni, R.; Rossell, M.D.; Kisielowski, C.; Yang, L.; Park, C.H.; Crommie, M.F.; Cohen, M.L.; Louie, S.G.; et al. Graphene at the Edge: Stability and Dynamics. Science 2009, 323, 1705–1708. [Google Scholar] [CrossRef]
- Jinschek, J.R.; Yucelen, E.; Calderon, H.A.; Freitag, B. Quantitative Atomic 3D Imaging of Single/Double Sheet Graphene Structure. Carbon 2011, 49, 556–562. [Google Scholar] [CrossRef]
- Vicarelli, L.; Heerema, S.J.; Dekker, C.; Zandbergen, H.W. Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices. ACS Nano 2015, 9, 3428–3435. [Google Scholar] [CrossRef]
- Jian, Y.H.; Ding, F.; Yakobson, B.I.; Lu, P.; Qi, L.; Li, J. In Situ Observation of Graphene Sublimation and Multi-Layer Edge Reconstructions. Proc. Natl. Acad. Sci. USA 2009, 106, 10103–10108. [Google Scholar] [CrossRef]
- Bachmatiuk, A.; Zhao, J.; Gorantla, S.M.; Martinez, I.G.G.; Wiedermann, J.; Lee, C.; Eckert, J.; Rummeli, M.H. Low Voltage Transmission Electron Microscopy of Graphene. Small 2015, 11, 515–542. [Google Scholar] [CrossRef]
- Huang, P.Y.; Ruiz-Vargas, C.S.; Van Der Zande, A.M.; Whitney, W.S.; Levendorf, M.P.; Kevek, J.W.; Garg, S.; Alden, J.S.; Hustedt, C.J.; Zhu, Y.; et al. Grains and Grain Boundaries in Single-Layer Graphene Atomic Patchwork Quilts. Nature 2011, 469, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Bangert, U.; Eberlein, T.; Nair, R.R.; Jones, R.; Gass, M.; Bleloch, A.L.; Novoselov, K.S.; Geim, A.; Briddon, P.R. STEM Plasmon Spectroscopy of Free Standing Graphene. Phys. Status Solidi A Appl. Mater. Sci. 2008, 205, 2265–2269. [Google Scholar] [CrossRef]
- Zhou, W.; Oxley, M.P.; Lupini, A.R.; Krivanek, O.L.; Pennycook, S.J.; Idrobo, J.C. Single Atom Microscopy. Microsc. Microanal. 2012, 18, 1342–1354. [Google Scholar] [CrossRef] [PubMed]
- Eda, G.; Chhowalla, M. Graphene-Based Composite Thin Films for Electronics. Nano Lett. 2009, 9, 814–818. [Google Scholar] [CrossRef]
- Paredes, J.I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J.M.D. Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide. Langmuir 2009, 25, 5957–5968. [Google Scholar] [CrossRef]
- Giannazzo, F.; Sonde, S.; Raineri, V.; Patanè, G.; Compagnini, G.; Aliotta, F.; Ponterio, R.; Rimini, E. Optical, Morphological and Spectroscopic Characterization of Graphene on SiO2. Phys. Status Solidi (C) 2010, 7, 1251–1255. [Google Scholar] [CrossRef]
- Nemes-Incze, P.; Osváth, Z.; Kamarás, K.; Biró, L.P. Anomalies in Thickness Measurements of Graphene and Few Layer Graphite Crystals by Tapping Mode Atomic Force Microscopy. Carbon 2008, 46, 1435–1442. [Google Scholar] [CrossRef]
- Shen, Z.; Li, J.; Yi, M.; Zhang, X.; Ma, S. Preparation of Graphene by Jet Cavitation. Nanotechnology 2011, 22, 365306. [Google Scholar] [CrossRef]
- Jang, Y.R.; Kim, K.Y.; Yoo, K.H. Accurate Measurement of Thickness of Large-Area Graphene Layers by Neutron Reflectometry. J. Mater. Sci. 2016, 51, 10059–10065. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, R.; Chen, W. Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications. Chem. Rev. 2014, 114, 5117–5160. [Google Scholar] [CrossRef]
- Mkhoyan, K.A.; Contryman, A.W.; Silcox, J.; Stewart, D.A.; Eda, G.; Mattevi, C.; Miller, S.; Chhowalla, M. Atomic and Electronic Structure of Graphene-Oxide. Nano Lett. 2009, 9, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Bao, H.; Liu, S.; Liu, X.; Ma, D.; Ma, F.; Xu, K. Near-Free-Standing Epitaxial Graphene on Rough SiC Substrate by Flash Annealing at High Temperature. Carbon 2017, 120, 219–225. [Google Scholar] [CrossRef]
- Günther, S.; Dänhardt, S.; Ehrensperger, M.; Zeller, P.; Schmitt, S.; Wintterlin, J. High-Temperature Scanning Tunneling Microscopy Study of the Ordering Transition of an Amorphous Carbon Layer into Graphene on Ruthenium(0001). ACS Nano 2013, 7, 154–164. [Google Scholar] [CrossRef]
- Rozada, R.; Paredes, J.I.; López, M.J.; Villar-Rodil, S.; Cabria, I.; Alonso, J.A.; Martínez-Alonso, A.; Tascón, J.M.D. From Graphene Oxide to Pristine Graphene: Revealing the Inner Workings of the Full Structural Restoration. Nanoscale 2015, 7, 2374–2390. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef]
- Lucchese, M.M.; Stavale, F.; Ferreira, E.H.M.; Vilani, C.; Moutinho, M.V.O.; Capaz, R.B.; Achete, C.A.; Jorio, A. Quantifying Ion-Induced Defects and Raman Relaxation Length in Graphene. Carbon 2010, 48, 1592–1597. [Google Scholar] [CrossRef]
- Cançado, L.G.; Reina, A.; Kong, J.; Dresselhaus, M.S. Geometrical Approach for the Study of G′ Band in the Raman Spectrum of Monolayer Graphene, Bilayer Graphene, and Bulk Graphite. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 245408. [Google Scholar] [CrossRef]
- Molina-Garcia, M.A.; Rees, N.V. “Metal-Free” Electrocatalysis: Quaternary-Doped Graphene and the Alkaline Oxygen Reduction Reaction. Appl. Catal. A Gen. 2018, 553, 107–116. [Google Scholar] [CrossRef]
- Poh, H.L.; Šaněk, F.; Ambrosi, A.; Zhao, G.; Sofer, Z.; Pumera, M. Graphenes Prepared by Staudenmaier, Hofmann and Hummers Methods with Consequent Thermal Exfoliation Exhibit Very Different Electrochemical Properties. Nanoscale 2012, 4, 3515–3522. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.S.; He, X.Y.; Wu, R.; Jin, Y.; Bian, Y.W.; Chen, S.G.; Wei, Z.D. Communication-Controlling Highly Dominated N Configuration in N-Doped Graphene as Oxygen Reduction Catalyst. J. Electrochem. Soc. 2017, 164, F256–F258. [Google Scholar] [CrossRef]
- Guo, H.L.; Wang, X.F.; Qian, Q.Y.; Wang, F.B.; Xia, X.H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009, 3, 2653–2659. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, W.; Wang, J.; Yan, H.; Yao, Y.; Ma, J.; Wang, B.; Zhang, M.; Liu, L. Electrochemical Synthesis of Layer-by-Layer Reduced Graphene Oxide Sheets/Polyaniline Nanofibers Composite and Its Electrochemical Performance. Electrochim. Acta 2013, 91, 185–194. [Google Scholar] [CrossRef]
- Moon, I.K.; Lee, J.; Ruoff, R.S.; Lee, H. Reduced Graphene Oxide by Chemical Graphitization. Nat. Commun. 2010, 1, 73. [Google Scholar] [CrossRef]
- Feng, H.; Cheng, R.; Zhao, X.; Duan, X.; Li, J. A Low-Temperature Method to Produce Highly Reduced Graphene Oxide. Nat. Commun. 2013, 4, 1539. [Google Scholar] [CrossRef]
- Das, P.; Ibrahim, S.; Chakraborty, K.; Ghosh, S.; Pal, T. Stepwise Reduction of Graphene Oxide and Studies on Defect-Controlled Physical Properties. Sci. Rep. 2024, 14, 10. [Google Scholar] [CrossRef]
- Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J.M. Growth of Graphene from Solid Carbon Sources. Nature 2010, 468, 549–552. [Google Scholar] [CrossRef]
- Kumar, P.V.; Bardhan, N.M.; Tongay, S.; Wu, J.Q.; Belcher, A.M.; Grossman, J.C. Scalable Enhancement of Graphene Oxide Properties by Thermally Driven Phase Transformation. Nat. Chem. 2014, 6, 151–158. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Cheng, H.H.; Hu, Y.; Shi, G.Q.; Dai, L.M.; Qu, L.T. Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. J. Am. Chem. Soc. 2012, 134, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, Y.; Zhao, Y.; Shi, G.; Deng, L.; Hou, Y.; Qu, L. An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics. Adv. Mater. 2011, 23, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.Y.; Li, Y.G.; Wang, H.L.; Dai, H.J. Strongly Coupled Lnorganic/NanoCarbon Hybrid Materials for Advanced Electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036. [Google Scholar] [CrossRef]
- Liang, X.; Zhong, J.; Shi, Y.; Guo, J.; Huang, G.; Hong, C.; Zhao, Y. Hydrothermal Synthesis of Highly Nitrogen-Doped Few-Layer Graphene via Solid-Gas Reaction. Mater. Res. Bull. 2015, 61, 252–258. [Google Scholar] [CrossRef]
- Pacilé, D.; Papagno, M.; Rodríguez, A.F.; Grioni, M.; Papagno, L.; Girit, C.; Meyer, J.C.; Begtrup, G.E.; Zettl, A. Near-Edge X-Ray Absorption Fine-Structure Investigation of Graphene. Phys. Rev. Lett. 2008, 101. [Google Scholar] [CrossRef]
- Liang, X.; Pan, D.; Lao, M.; Liang, S.; Huang, D.; Zhou, W.; Guo, J. Structural Evolution of Fluorinated Graphene upon Molten-Alkali Treatment Probed by X-Ray Absorption near-Edge Structure Spectroscopy. Appl. Surf. Sci. 2017, 404, 1–6. [Google Scholar] [CrossRef]
- Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M.T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of Catalytic Sites for Oxygen Reduction in Iron- and Nitrogen-Doped Graphene Materials. Nat. Mater. 2015, 14, 937–942. [Google Scholar] [CrossRef]
- Soin, N.; Ray, S.C.; Sarma, S.; Mazumder, D.; Sharma, S.; Wang, Y.F.; Pong, W.F.; Roy, S.S.; Strydom, A.M. Tuning the Electronic and Magnetic Properties of Nitrogen-Functionalized Few-Layered Graphene Nanoflakes. J. Phys. Chem. C 2017, 121, 14073–14082. [Google Scholar] [CrossRef]
- Ray, S.C.; Pong, W.F.; Papakonstantinou, P. Electronic Structure and Field Emission Properties of Nitrogen Doped Graphene Nano-Flakes (GNFs:N) and Carbon Nanotubes (CNTs:N). Appl. Surf. Sci. 2016, 380, 301–304. [Google Scholar] [CrossRef]
- Zhang, L.S.; Liang, X.Q.; Song, W.G.; Wu, Z.Y. Identification of the Nitrogen Species on N-Doped Graphene Layers and Pt/NG Composite Catalyst for Direct Methanol Fuel Cell. Phys. Chem. Chem. Phys. 2010, 12, 12055–12059. [Google Scholar] [CrossRef]
- Favaro, M.; Carraro, F.; Cattelan, M.; Colazzo, L.; Durante, C.; Sambi, M.; Gennaro, A.; Agnoli, S.; Granozzi, G. Multiple Doping of Graphene Oxide Foams and Quantum Dots: New Switchable Systems for Oxygen Reduction and Water Remediation. J. Mater. Chem. A Mater. 2015, 3, 14334–14347. [Google Scholar] [CrossRef]
- Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009, 323, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Xue, Y.; Feng, L.; Elbatal, H.; Wang, P.; Moorefiel, C.N.; Newkome, G.R.; Dai, L. Reversible Self-Assembly of Terpyridine-Functionalized Graphene Oxide for Energy Conversion. Angew. Chem. Int. Ed. 2014, 53, 1415–1419. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, J.; Dai, L.; Xia, Z. Effect of Microstructure of Nitrogen-Doped Graphene on Oxygen Reduction Activity in Fuel Cells. Langmuir 2012, 28, 7542–7550. [Google Scholar] [CrossRef]
- Feng, Y.X.; Li, F.F.; Hu, Z.P.; Luo, X.G.; Zhang, L.X.; Zhou, X.F.; Wang, H.T.; Xu, J.J.; Wang, E.G. Tuning the Catalytic Property of Nitrogen-Doped Graphene for Cathode Oxygen Reduction Reaction. Phys. Rev. B 2012, 85, 155454. [Google Scholar] [CrossRef]
- Studt, F. The Oxygen Reduction Reaction on Nitrogen-Doped Graphene. Catal. Lett. 2013, 143, 58–60. [Google Scholar] [CrossRef]
- Zhang, L.P.; Xia, Z.H. Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. J. Phys. Chem. C 2011, 115, 11170–11176. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Son, Y.W. Oxygen Reduction Reactions on Pure and Nitrogen-Doped Graphene: A First-Principles Modeling. Nanoscale 2012, 4, 417–420. [Google Scholar] [CrossRef]
- Jadhav, P.; Joshi, G.M. Recent Trends in Nitrogen Doped Polymer Composites: A Review. J. Polym. Res. 2021, 28, 16. [Google Scholar] [CrossRef]
- Park, S.; Srivastava, D.; Cho, K. Generalized Chemical Reactivity of Curved Surfaces: Carbon Nanotubes. Nano Lett. 2003, 3, 1273–1277. [Google Scholar] [CrossRef]
- Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-Doped Carbon Materials. Carbon 2018, 132, 104–140. [Google Scholar] [CrossRef]
- Wu, J.J.; Ma, L.L.; Yadav, R.M.; Yang, Y.C.; Zhang, X.; Vajtai, R.; Lou, J.; Ajayan, P.M. Nitrogen-Doped Graphene with Pyridinic Dominance as a Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Appl. Mater. Interfaces 2015, 7, 14763–14769. [Google Scholar] [CrossRef]
- Matter, P.H.; Zhang, L.; Ozkan, U.S. The Role of Nanostructure in Nitrogen-Containing Carbon Catalysts for the Oxygen Reduction Reaction. J. Catal. 2006, 239, 83–96. [Google Scholar] [CrossRef]
- Montoya, A.; Mondragón, F.; Truong, T.N. Kinetics of Nitric Oxide Desorption from Carbonaceous Surfaces. Fuel Process. Technol. 2002, 77–78, 453–458. [Google Scholar] [CrossRef]
- Subramanian, N.P.; Li, X.; Nallathambi, V.; Kumaraguru, S.P.; Colon-Mercado, H.; Wu, G.; Lee, J.W.; Popov, B.N. Nitrogen-Modified Carbon-Based Catalysts for Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. J. Power Sources 2009, 188, 38–44. [Google Scholar] [CrossRef]
- Luo, Z.Q.; Lim, S.H.; Tian, Z.Q.; Shang, J.Z.; Lai, L.F.; MacDonald, B.; Fu, C.; Shen, Z.X.; Yu, T.; Lin, J.Y. Pyridinic N Doped Graphene: Synthesis, Electronic Structure, and Electrocatalytic Property. J. Mater. Chem. 2011, 21, 8038–8044. [Google Scholar] [CrossRef]
- Yasuda, S.; Yu, L.; Kim, J.; Murakoshi, K. Selective Nitrogen Doping in Graphene for Oxygen Reduction Reactions. Chem. Commun. 2013, 49, 9627–9629. [Google Scholar] [CrossRef]
- Park, M.; Lee, T.; Kim, B.S. Covalent Functionalization Based Heteroatom Doped Graphene Nanosheet as a Metal-Free Electrocatalyst for Oxygen Reduction Reaction. Nanoscale 2013, 5, 12255–12260. [Google Scholar] [CrossRef]
- Vikkisk, M.; Kruusenberg, I.; Joost, U.; Shulga, E.; Kink, I.; Tammeveski, K. Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene in Alkaline Media. Appl. Catal. B Environ. 2014, 147, 369–376. [Google Scholar] [CrossRef]
- Feng, L.Y.; Yang, L.Q.; Huang, Z.J.; Luo, J.Y.; Li, M.; Wang, D.B.; Chen, Y.G. Enhancing Electrocatalytic Oxygen Reduction on Nitrogen-Doped Graphene by Active Sites Implantation. Sci. Rep. 2013, 3, 3306. [Google Scholar] [CrossRef]
- Xing, T.; Zheng, Y.; Li, L.H.; Cowie, B.C.C.; Gunzelmann, D.; Qiao, S.Z.; Huang, S.; Chen, Y. Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene. ACS Nano 2014, 8, 6856–6862. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Hui, K.S.; Hui, K.N. Synthesis of Nitrogen-Doped Multilayer Graphene from Milk Powder with Melamine and Their Application to Fuel Cells. Carbon 2014, 76, 1–9. [Google Scholar] [CrossRef]
- Liao, Y.L.; Gao, Y.; Zhu, S.M.; Zheng, J.S.; Chen, Z.X.; Yin, C.; Lou, X.H.; Zhang, D. Facile Fabrication of N-Doped Graphene as Efficient Electrocatalyst for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces. 2015, 7, 19619–19625. [Google Scholar] [CrossRef] [PubMed]
- Shinde, D.B.; Dhavale, V.M.; Kurungot, S.; Pillai, V.K. Electrochemical Preparation of Nitrogen-Doped Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for Oxygen Reduction. Bull. Mater. Sci. 2015, 38, 435–442. [Google Scholar] [CrossRef]
- Farzaneh, A.; Saghatoleslami, N.; Goharshadi, E.K.; Gharibi, H.; Ahmadzadeh, H. 3-D Mesoporous Nitrogen-Doped Reduced Graphene Oxide as an Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction in Alkaline Fuel Cells: Role of Pi and Lone Pair Electrons. Electrochim. Acta 2016, 222, 608–618. [Google Scholar] [CrossRef]
- Chi, Y.W.; Hu, C.C.; Huang, K.P.; Shen, H.H.; Muniyandi, R. Manipulation of Defect Density and Nitrogen Doping on Few-Layer Graphene Sheets Using the Plasma Methodology for Electrochemical Applications. Electrochim. Acta 2016, 221, 144–153. [Google Scholar] [CrossRef]
- Fan, M.M.; Zhu, C.L.; Yang, J.Z.; Sun, D.P. Facile Self-Assembly N-Doped Graphene Quantum Dots/Graphene for Oxygen Reduction Reaction. Electrochim. Acta 2016, 216, 102–109. [Google Scholar] [CrossRef]
- Mohapatra, B.D.; Mantry, S.P.; Behera, N.; Behera, B.; Rath, S.; Varadwaj, K.S.K. Stimulation of Electrocatalytic Oxygen Reduction Activity on Nitrogen Doped Graphene through Noncovalent Molecular Functionalisation. Chem. Commun. 2016, 52, 10385–10388. [Google Scholar] [CrossRef]
- Ratso, S.; Kruusenberg, I.; Joost, U.; Saar, R.; Tammeveski, K. Enhanced Oxygen Reduction Reaction Activity of Nitrogen-Doped Graphene/Multi-Walled Carbon Nanotube Catalysts in Alkaline Media. Int. J. Hydrogen Energy 2016, 41, 22510–22519. [Google Scholar] [CrossRef]
- Sun, J.G.; Wang, L.; Song, R.R.; Yanga, S.B. Enhancing Pyridinic Nitrogen Level in Graphene to Promote Electrocatalytic Activity for Oxygen Reduction Reaction. Nanotechnology 2016, 27, 055404. [Google Scholar] [CrossRef]
- Bera, B.; Chakraborty, A.; Kar, T.; Leuaa, P.; Neergat, M. Density of States, Carrier Concentration, and Flat Band Potential Derived from Electrochemical Impedance Measurements of N-Doped Carbon and Their Influence on Electrocatalysis of Oxygen Reduction Reaction. J. Phys. Chem. C 2017, 121, 20850–20856. [Google Scholar] [CrossRef]
- Gao, X.C.; Wang, L.W.; Ma, J.Z.; Wang, Y.Q.; Zhang, J.T. Facile Preparation of Nitrogen-Doped Graphene as an Efficient Oxygen Reduction Electrocatalyst. Inorg. Chem. Front. 2017, 4, 1582–1590. [Google Scholar] [CrossRef]
- Kundu, S.; Malik, B.; Pattanayak, D.K.; Pillai, V.K. Effect of Dimensionality and Doping in Quasi—“One-Dimensional (1D)” Nitrogen-Doped Graphene Nanoribbons on the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2017, 9, 38409–38418. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhao, Q.S.; Liu, J.Y.; Ma, X.; Rao, Y.; Shao, X.D.; Li, Z.T.; Wu, W.T.; Ning, H.; Wu, M.B. Synergistically Enhanced Activity of Nitrogen-Doped Carbon Dots/Graphene Composites for Oxygen Reduction Reaction. Appl. Surf. Sci. 2017, 423, 909–916. [Google Scholar] [CrossRef]
- Lu, X.W.; Li, Z.F.; Yin, X.Y.; Wang, S.W.; Liu, Y.R.; Wang, Y.X. Controllable Synthesis of Three-Dimensional Nitrogen-Doped Graphene as a High Performance Electrocatalyst for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2017, 42, 17504–17513. [Google Scholar] [CrossRef]
- Miao, H.; Li, S.H.; Wang, Z.H.; Sun, S.S.; Kuang, M.; Liu, Z.P.; Yuan, J.L. Enhancing the Pyridinic N Content of Nitrogen-Doped Graphene and Improving Its Catalytic Activity for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2017, 42, 28298–28308. [Google Scholar] [CrossRef]
- Sun, L.; Luo, Y.; Li, M.; Hu, G.H.; Xu, Y.J.; Tang, T.; Wen, J.F.; Li, X.Y.; Wang, L. Role of Pyridinic-N for Nitrogen-Doped Graphene Quantum Dots in Oxygen Reaction Reduction. J. Colloid. Interface Sci. 2017, 508, 154–158. [Google Scholar] [CrossRef]
- Yadegari, A.; Samiee, L.; Tasharrofi, S.; Tajik, S.; Rashidi, A.; Shoghi, F.; Rasoulianboroujeni, M.; Tahriri, M.; Rowley-Neale, S.J.; Banks, C.E. Nitrogen Doped Nanoporous Graphene: An Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. RSC Adv. 2017, 7, 55555–55566. [Google Scholar] [CrossRef]
- Hibino, T.; Kobayashi, K.; Heo, P. Oxygen Reduction Reaction over Nitrogen-Doped Graphene Oxide Cathodes in Acid and Alkaline Fuel Cells at Intermediate Temperatures. Electrochim. Acta 2013, 112, 82–89. [Google Scholar] [CrossRef]
- Ito, Y.; Qiu, H.J.; Fujita, T.; Tanabe, Y.; Tanigaki, K.; Chen, M.W. Bicontinuous Nanoporous N-Doped Graphene for the Oxygen Reduction Reaction. Adv. Mater. 2014, 26, 4145–4150. [Google Scholar] [CrossRef]
- Bang, G.S.; Shim, G.W.; Shin, G.H.; Jung, D.Y.; Park, H.; Hong, W.G.; Choi, J.; Lee, J.; Choi, S.Y. Pyridinic-N-Doped Graphene Paper from Perforated Graphene Oxide for Efficient Oxygen Reduction. ACS Omega 2018, 3, 5522–5530. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, Z.X.; Chen, Y.G.; Yang, L.J.; Yang, X.D.; Ye, J.Y.; Xia, H.P.; Zhou, Z.Y.; Sun, S.G. Identifying the Active Site of N-Doped Graphene for Oxygen Reduction by Selective Chemical Modification. ACS Energy Lett. 2018, 3, 986–991. [Google Scholar] [CrossRef]
- Sudhakar, S.; Jaiswal, K.K.; Ramaswamy, A.P. The Role of Microwave Irradiation Temperature on Nitrogen Doping in Metal-Free Graphene Catalysts for an Efficient Oxygen Reduction Reaction in an Alkaline Condition. ChemistrySelect 2018, 3, 8962–8972. [Google Scholar] [CrossRef]
- Han, J.H.; Huang, G.; Wang, Z.L.; Lu, Z.; Du, J.; Kashani, H.; Chen, M.W. Low-Temperature Carbide-Mediated Growth of Bicontinuous Nitrogen-Doped Mesoporous Graphene as an Efficient Oxygen Reduction Electrocatalyst. Adv. Mater. 2018, 30, 1803588. [Google Scholar] [CrossRef]
- Hang, C.; Zhang, J.; Zhu, J.W.; Li, W.Q.; Kou, Z.K.; Huang, Y.H. In Situ Exfoliating and Generating Active Sites on Graphene Nanosheets Strongly Coupled with Carbon Fiber toward Self-Standing Bifunctional Cathode for Rechargeable Zn-Air Batteries. Adv. Energy Mater. 2018, 8, 1703539. [Google Scholar] [CrossRef]
- She, Y.Y.; Chen, J.F.; Zhang, C.X.; Lu, Z.G.; Ni, M.; Sit, P.H.L.; Leung, M.K.H. Nitrogen-Doped Graphene Derived from Ionic Liquid as Metal-Free Catalyst for Oxygen Reduction Reaction and Its Mechanisms. Appl. Energy 2018, 225, 513–521. [Google Scholar] [CrossRef]
- Wang, Q.C.; Ji, Y.J.; Lei, Y.P.; Wang, Y.B.; Wang, Y.D.; Li, Y.Y.; Wang, S.Y. Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn-Air Batteries. ACS Energy Lett. 2018, 3, 1183–1191. [Google Scholar] [CrossRef]
- Xiang, Q.; Liu, Y.P.; Zou, X.F.; Hu, B.B.; Qiang, Y.J.; Yu, D.M.; Yin, W.; Chen, C.G. Hydrothermal Synthesis of a New Kind of N-Doped Graphene Gel-like Hybrid As an Enhanced ORR Electrocatalyst. ACS Appl. Mater. Interfaces 2018, 10, 10842–10850. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.M.; Zhu, J.W.; Gao, Z.H.; Li, S.Z.; Mu, S.C.; Huang, Y.H. Ultranarrow Graphene Nanoribbons toward Oxygen Reduction and Evolution Reactions. Adv. Sci. 2018, 5, 1801375. [Google Scholar] [CrossRef]
- Hu, Q.; Li, G.M.; Li, G.D.; Liu, X.F.; Zhu, B.; Chai, X.Y.; Zhang, Q.L.; Liu, J.; He, C. Trifunctional Electrocatalysis on Dual-Doped Graphene Nanorings-Integrated Boxes for Efficient Water Splitting and Zn-Air Batteries. Adv. Energy Mater. 2019, 9, 1803867. [Google Scholar] [CrossRef]
- Komba, N.; Wei, Q.L.; Zhang, G.X.; Rosei, F.; Sun, S.H. Controlled Synthesis of Graphene via Electrochemical Route and Its Use as Efficient Metal-Free Catalyst for Oxygen Reduction. Appl. Catal. B Environ. 2019, 243, 373–380. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.M.; Liu, H.; Liao, M.L. Novel Porous Nitrogen Doped Graphene/Carbon Black Composites as Efficient Oxygen Reduction Reaction Electrocatalyst for Power Generation in Microbial Fuel Cell. Nanomaterials 2019, 9, 836. [Google Scholar] [CrossRef] [PubMed]
- Peediyakkal, H.P.; Yu, L.; Munakata, H.; Kanamura, K. Highly Durable Non-Platinum Catalyst for Protic Ionic Liquid Based Intermediate Temperature PEFCs. Electrochemistry 2019, 87, 35–46. [Google Scholar] [CrossRef]
- Ramirez-Barria, C.S.; Fernandes, D.M.; Freire, C.; Villaro-Abalos, E.; Guerrero-Ruiz, A.; Rodriguez-Ramos, I. Upgrading the Properties of Reduced Graphene Oxide and Nitrogen-Doped Reduced Graphene Oxide Produced by Thermal Reduction toward Efficient ORR Electrocatalysts. Nanomaterials 2019, 9, 1761. [Google Scholar] [CrossRef]
- Yeddala, M.; Gorle, D.B.; Kulandainathan, M.A.; Ragupathy, P.; Pillai, V.K. Solid-State Thermal Exfoliation of Graphite Nano-Fibers to Edge-Nitrogenized Graphene Nanosheets for Oxygen Reduction Reaction. J. Colloid. Interface Sci. 2019, 545, 71–81. [Google Scholar] [CrossRef]
- Zeng, J.; Mu, Y.B.; Ji, X.X.; Lin, Z.J.; Lin, Y.H.; Ma, Y.H.; Zhang, Z.X.; Wang, S.G.; Ren, Z.H.; Yu, J. N,O-Codoped 3D Graphene Fibers with Densely Arranged Sharp Edges as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. J. Mater. Sci. 2019, 54, 14495–14503. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, L.X.; Zhu, Z.J.; Chen, S.; Dou, Y.H.; Liu, P.R.; Wang, Y.; Yin, H.J.; Tang, Z.Y.; Zhao, H.J. Wet-Chemistry Grafted Active Pyridinic Nitrogen Sites on Holey Graphene Edges as High Performance ORR Electrocatalyst for Zn-Air Batteries. Mater. Today Energy 2019, 11, 24–29. [Google Scholar] [CrossRef]
- Romero, A.; Lavín-López, M.P.; de la Osa, A.R.; Ordoñez, S.; de Lucas-Consuegra, A.; Valverde, J.L.; Patón, A. Different Strategies to Simultaneously N-Doping and Reduce Graphene Oxide for Electrocatalytic Applications. J. Electroanal. Chem. 2020, 857, 113695. [Google Scholar] [CrossRef]
- Wu, Z.H.; Zhang, Y.S.; Li, L.; Zhao, Y.G.; Shen, Y.L.; Wang, S.B.; Shao, G.S. Nitrogen-Doped Vertical Graphene Nanosheets by High-Flux Plasma Enhanced Chemical Vapor Deposition as Efficient Oxygen Reduction Catalysts for Zn-Air Batteries. J. Mater. Chem. A Mater. 2020, 8, 23248–23256. [Google Scholar] [CrossRef]
- Bian, Y.R.; Wang, H.; Hu, J.T.; Liu, B.W.; Liu, D.; Dai, L.M. Nitrogen-Rich Holey Graphene for Efficient Oxygen Reduction Reaction. Carbon 2020, 162, 66–73. [Google Scholar] [CrossRef]
- Li, D.N.; Chen, H.B.; Zhang, Y.Y.; Yang, J.Z.; Yuan, H.R.; Chen, Y. Upcycling Biomass Tar into Highly Porous, Defective and Pyridinic-n-Enriched Graphene Nanohybrid as Efficient Bifunctional Catalyst for Zn-Air Battery. Electrochim. Acta 2020, 364, 137319. [Google Scholar] [CrossRef]
- Manzhos, R.A.; Baskakov, S.A.; Kabachkov, E.N.; Korepanov, V.I.; Dremova, N.N.; Baskakova, Y.V.; Krivenko, A.G.; Shulga, Y.M.; Gutsev, G.L. Reduced Graphene Oxide Aerogel inside Melamine Sponge as an Electrocatalyst for the Oxygen Reduction Reaction. Materials 2021, 14, 322. [Google Scholar] [CrossRef]
- Xi, Z.Y.; Han, J.H.; Jin, Z.Y.; Hu, K.L.; Qiu, H.J.; Ito, Y. All-Solid-State Mg-Air Battery Enhanced with Free-Standing N-Doped 3D Nanoporous Graphene. Small 2023, 20, 2308045. [Google Scholar] [CrossRef]
- Chen, Z.; Higgins, D.; Tao, H.S.; Hsu, R.S.; Chen, Z.W. Highly Active Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction in Fuel Cell Applications. J. Phys. Chem. C 2009, 113, 21008–21013. [Google Scholar] [CrossRef]
- Rao, C.V.; Cabrera, C.R.; Ishikawa, Y. In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction. J. Phys. Chem. Lett. 2010, 1, 2622–2627. [Google Scholar] [CrossRef]
- Zhong, X.; Yu, H.Y.; Zhuang, G.L.; Li, Q.; Wang, X.D.; Zhu, Y.S.; Liu, L.; Li, X.N.; Dong, M.D.; Wang, J.G. Pyridyne Cycloaddition of Graphene: “External” Active Sites for Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2014, 2, 897–901. [Google Scholar] [CrossRef]
- Jhi, S.H.; Louie, S.G.; Cohen, M.L. Electronic Properties of Oxidized Carbon Nanotubes. Phys. Rev. Lett. 2000, 85, 1710–1713. [Google Scholar] [CrossRef]
- Nandhini, S.; Rajkamal, A.; Saha, B.; Thapa, R. First-Principles Identification of Site Dependent Activity of Graphene Based Electrocatalyst. Mol. Catal. 2017, 432, 242–249. [Google Scholar] [CrossRef]
- Huang, S.F.; Terakura, K.; Ozaki, T.; Ikeda, T.; Boero, M.; Oshima, M.; Ozaki, J.; Miyata, S. First-Principles Calculation of the Electronic Properties of Graphene Clusters Doped with Nitrogen and Boron: Analysis of Catalytic Activity for the Oxygen Reduction Reaction. Phys. Rev. B 2009, 80, 235410. [Google Scholar] [CrossRef]
- Ni, S.; Li, Z.Y.; Yang, J.L. Oxygen Molecule Dissociation on Carbon Nanostructures with Different Types of Nitrogen Doping. Nanoscale 2012, 4, 1184–1189. [Google Scholar] [CrossRef]
- Saidi, W.A. Oxygen Reduction Electrocatalysis Using N-Doped Graphene Quantum-Dots. J. Phys. Chem. Lett. 2013, 4, 4160–4165. [Google Scholar] [CrossRef]
- Ikeda, T.; Hou, Z.F.; Chai, G.L.; Terakura, K. Possible Oxygen Reduction Reactions for Graphene Edges from First Principles. J. Phys. Chem. C 2014, 118, 17616–17625. [Google Scholar] [CrossRef]
- Radovic, L.R.; Salgado-Casanova, A.J.A.; Mora-Vilches, C. V On the Active Sites for the Oxygen Reduction Reaction Catalyzed by Graphene-Based Materials. Carbon 2020, 156, 389–398. [Google Scholar] [CrossRef]
- Chen, M.F.; Chao, T.H.; Shen, M.H.; Lu, Q.; Cheng, M.J. Evaluating Potential Catalytic Active Sites on Nitrogen-Doped Graphene for the Oxygen Reduction Reaction: An Approach Based on Constant Electrode Potential Density Functional Theory Calculations. J. Phys. Chem. C 2020, 124, 25675–25685. [Google Scholar] [CrossRef]
- Yu, L.; Pan, X.L.; Cao, X.M.; Hu, P.; Bao, X.H. Oxygen Reduction Reaction Mechanism on Nitrogen-Doped Graphene: A Density Functional Theory Study. J. Catal. 2011, 282, 183–190. [Google Scholar] [CrossRef]
- Reda, M.; Hansen, H.A.; Vegge, T. DFT Study of Stabilization Effects on N-Doped Graphene for ORR Catalysis. Catal. Today 2018, 312, 118–125. [Google Scholar] [CrossRef]
- Matsuyama, H.; Akaishi, A.; Nakamura, J. Effect of Water on the Manifestation of the Reaction Selectivity of Nitrogen-Doped Graphene Nanoclusters toward Oxygen Reduction Reaction. ACS Omega 2019, 4, 3832–3838. [Google Scholar] [CrossRef]
- Ma, J.; Gong, L.; Shen, Y.; Sun, D.; Liu, B.; Zhang, J.; Liu, D.; Zhang, L.; Xia, Z. Detrimental Effects and Prevention of Acidic Electrolytes on Oxygen Reduction Reaction Catalytic Performance of Heteroatom-Doped Graphene Catalysts. Front. Mater. 2019, 6, 294. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, Q.; Yang, X.J.; Hou, X.L.; Mi, J.L.; Liu, L.; Dong, M.D. Size Effect of Oxygen Reduction Reaction on Nitrogen-Doped Graphene Quantum Dots. RSC Adv. 2018, 8, 531–536. [Google Scholar] [CrossRef]
- Wang, X.; Hou, Z.; Ikeda, T.; Huang, S.F.; Terakura, K.; Boero, M.; Oshima, M.; Kakimoto, M.A.; Miyata, S. Selective Nitrogen Doping in Graphene: Enhanced Catalytic Activity for the Oxygen Reduction Reaction. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 84, 245434. [Google Scholar] [CrossRef]
- Kim, H.; Lee, K.; Woo, S.I.; Jung, Y. On the Mechanism of Enhanced Oxygen Reduction Reaction in Nitrogen-Doped Graphene Nanoribbons. Phys. Chem. Chem. Phys. 2011, 13, 17505–17510. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.L.; Hu, Q.; Zhang, P.; Mi, J.L. Oxygen Reduction Reaction on Nitrogen-Doped Graphene Nanoribbons: A Density Functional Theory Study. Chem. Phys. Lett. 2016, 663, 123–127. [Google Scholar] [CrossRef]
- Ekspong, J.; Boulanger, N.; Gracia-Espino, E. Surface Activation of Graphene Nanoribbons for Oxygen Reduction Reaction by Nitrogen Doping and Defect Engineering: An Ab Initio Study. Carbon 2018, 137, 349–357. [Google Scholar] [CrossRef]
- Goswami, M.; Mandal, S.; Pillai, V.K. Effect of Hetero-Atom Doping on the Electrocatalytic Properties of Graphene Quantum Dots for Oxygen Reduction Reaction. Sci. Rep. 2023, 13, 10. [Google Scholar] [CrossRef]
- Scardamaglia, M.; Susi, T.; Struzzi, C.; Snyders, R.; Di Santo, G.; Petaccia, L.; Bittencourt, C. Spectroscopic Observation of Oxygen Dissociation on Nitrogen-Doped Graphene. Sci. Rep. 2017, 7, 7960. [Google Scholar] [CrossRef] [PubMed]
- Geng, D.S.; Chen, Y.; Chen, Y.G.; Li, Y.L.; Li, R.Y.; Sun, X.L.; Ye, S.Y.; Knights, S. High Oxygen-Reduction Activity and Durability of Nitrogen-Doped Graphene. Energy Environ. Sci. 2011, 4, 760–764. [Google Scholar] [CrossRef]
- Huan, T.N.; Khai, T.V.; Kang, Y.; Shim, K.B.; Chung, H. Enhancement of Quaternary Nitrogen Doping of Graphene Oxide via Chemical Reduction Prior to Thermal Annealing and an Investigation of Its Electrochemical Properties. J. Mater. Chem. 2012, 22, 14756–14762. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Song, M.K.; Ding, Y.; Liu, Y.; Liu, M.L.; Wong, C.P. Facile Preparation of Nitrogen-Doped Graphene as a Metal-Free Catalyst for Oxygen Reduction Reaction. Phys. Chem. Chem. Phys. 2012, 14, 3381–3387. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Waller, G.; Liu, Y.; Liu, M.L.; Wong, C.P. Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and Its Electrocatalytic Activity toward the Oxygen-Reduction Reaction. Adv. Energy Mater. 2012, 2, 884–888. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Waller, G.H.; Liu, Y.; Liu, M.L.; Wong, C.P. Simple Preparation of Nanoporous Few-Layer Nitrogen-Doped Graphene for Use as an Efficient Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Carbon 2013, 53, 130–136. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, J.; Wang, F.B.; Xia, X.H. Synthesis of Nitrogen Doped Graphene with High Electrocatalytic Activity toward Oxygen Reduction Reaction. Electrochem. Commun. 2013, 28, 24–26. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Waller, G.H.; Liu, Y.; Liu, M.L.; Wong, C.P. 3D Nitrogen-Doped Graphene Prepared by Pyrolysis of Graphene Oxide with Polypyrrole for Electrocatalysis of Oxygen Reduction Reaction. Nano Energy 2013, 2, 241–248. [Google Scholar] [CrossRef]
- Xu, X.; Yuan, T.; Zhou, Y.K.; Li, Y.W.; Lu, J.M.; Tian, X.H.; Wang, D.L.; Wang, J. Facile Synthesis of Boron and Nitrogen-Doped Graphene as Efficient Electrocatalyst for the Oxygen Reduction Reaction in Alkaline Media. Int. J. Hydrogen Energy 2014, 39, 16043–16052. [Google Scholar] [CrossRef]
- Cong, H.P.; Wang, P.; Gong, M.; Yu, S.H. Facile Synthesis of Mesoporous Nitrogen-Doped Graphene: An Efficient Methanol-Tolerant Cathodic Catalyst for Oxygen Reduction Reaction. Nano Energy 2014, 3, 55–63. [Google Scholar] [CrossRef]
- Fu, X.G.; Jin, J.T.; Liu, Y.R.; Wei, Z.Y.; Pan, F.P.; Zhang, J.Y. Efficient Oxygen Reduction Electrocatalyst Based on Edge-Nitrogen-Rich Graphene Nanoplatelets: Toward a Large-Scale Synthesis. ACS Appl. Mater. Interfaces 2014, 6, 3930–3936. [Google Scholar] [CrossRef]
- Ouyang, W.P.; Zeng, D.R.; Yu, X.; Xie, F.Y.; Zhang, W.H.; Chen, J.; Yan, J.; Xie, F.J.; Wang, L.; Meng, H.; et al. Exploring the Active Sites of Nitrogen-Doped Graphene as Catalysts for the Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2014, 39, 15996–16005. [Google Scholar] [CrossRef]
- Wang, Z.W.; Li, B.; Xin, Y.C.; Liu, J.G.; Yao, Y.F.; Zou, Z.G. Rapid Synthesis of Nitrogen-Doped Graphene by Microwave Heating for Oxygen Reduction Reactions in Alkaline Electrolyte. Chin. J. Catal. 2014, 35, 509–513. [Google Scholar] [CrossRef]
- Qazzazie, D.; Beckert, M.; Mulhaupt, R.; Yurchenko, O.; Urban, G. A Nitrogen-Doped Graphene Electrocatalyst for Selective Oxygen Reduction in Presence of Glucose and D-Gluconic Acid in PH-Neutral Media. Electrochim. Acta 2015, 186, 579–590. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, J.; Li, W.Z.; Li, Y.M.; Zhan, F.Q.; Tang, H.; Chen, Q.Y. Exploring the Nitrogen Species of Nitrogen Doped Graphene as Electrocatalysts for Oxygen Reduction Reaction in Al-Air Batteries. Int. J. Hydrogen Energy 2016, 41, 10354–10365. [Google Scholar] [CrossRef]
- Haque, E.; Sarkar, S.; Hassan, M.; Hossain, M.S.; Minett, A.I.; Dou, S.X.; Gomes, V.G. Tuning Graphene for Energy and Environmental Applications: Oxygen Reduction Reaction and Greenhouse Gas Mitigation. J. Power Sources 2016, 328, 472–481. [Google Scholar] [CrossRef]
- Bayram, E.; Yilmaz, G.; Mukerjee, S. A Solution-Based Procedure for Synthesis of Nitrogen Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reactions in Acidic and Alkaline Electrolytes. Appl. Catal. B Environ. 2016, 192, 26–34. [Google Scholar] [CrossRef]
- Cui, H.J.; Yu, H.M.; Zheng, J.F.; Wang, Z.J.; Zhu, Y.Y.; Jia, S.P.; Jia, J.; Zhu, Z.P. N-Doped Graphene Frameworks with Superhigh Surface Area: Excellent Electrocatalytic Performance for Oxygen Reduction. Nanoscale 2016, 8, 2795–2803. [Google Scholar] [CrossRef] [PubMed]
- Soo, L.T.; Loh, K.S.; Mohamad, A.B.; Daud, W.R.W.; Wong, W.Y. Effect of Nitrogen Precursors on the Electrochemical Performance of Nitrogen-Doped Reduced Graphene Oxide towards Oxygen Reduction Reaction. J. Alloys Compd. 2016, 677, 112–120. [Google Scholar] [CrossRef]
- Yang, H.B.; Miao, J.W.; Hung, S.F.; Chen, J.Z.; Tao, H.B.; Wang, X.Z.; Zhang, L.P.; Chen, R.; Gao, J.J.; Chen, H.M.; et al. Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-Doped Graphene Materials: Development of Highly Efficient Metal-Free Bifunctional Electrocatalyst. Sci. Adv. 2016, 2, 1501122. [Google Scholar] [CrossRef]
- Zhang, G.X.; Jin, X.Y.; Li, H.Y.; Wang, L.; Hu, C.J.; Sun, X.M. N-Doped Crumpled Graphene: Bottom-up Synthesis and Its Superior Oxygen Reduction Performance. Sci. China Mater. 2016, 59, 337–347. [Google Scholar] [CrossRef]
- Soo, L.T.; Loh, K.S.; Mohamad, A.; Daud, W.R.W. The Effect of Varying N/C Ratios of Nitrogen Precursors during Non-Metal Graphene Catalyst Synthesis. Int. J. Hydrogen Energy 2017, 42, 9069–9076. [Google Scholar] [CrossRef]
- Cui, H.J.; Jiao, M.G.; Chen, Y.N.; Guo, Y.B.; Yang, L.P.; Xie, Z.J.; Zhou, Z.; Guo, S.J. Molten-Salt-Assisted Synthesis of 3D Holey N-Doped Graphene as Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries. Small Methods 2018, 2, 1800144. [Google Scholar] [CrossRef]
- Kabir, S.; Artyushkova, K.; Serov, A.; Atanassov, P. Role of Nitrogen Moieties in N-Doped 3D-Graphene Nanosheets for Oxygen Electroreduction in Acidic and Alkaline Media. ACS Appl. Mater. Interfaces 2018, 10, 11623–11632. [Google Scholar] [CrossRef]
- Rahsepar, M.; Nobakht, M.R.; Kim, H.; Pakshir, M. Facile Enhancement of the Active Catalytic Sites of N-Doped Graphene as a High Performance Metal-Free Electrocatalyst for Oxygen Reduction Reaction. Appl. Surf. Sci. 2018, 447, 182–190. [Google Scholar] [CrossRef]
- Shi, J.L.; Tang, C.; Huang, J.Q.; Zhu, W.C.; Zhang, Q. Effective Exposure of Nitrogen Heteroatoms in 3D Porous Graphene Framework for Oxygen Reduction Reaction and Lithium-Sulfur Batteries. J. Energy Chem. 2018, 27, 167–175. [Google Scholar] [CrossRef]
- Lu, X.Y.; Wang, D.; Ge, L.P.; Xiao, L.H.; Zhang, H.Y.; Liu, L.L.; Zhang, J.Q.; An, M.Z.; Yang, P.X. Enriched Graphitic N in Nitrogen-Doped Graphene as a Superior Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. N. J. Chem. 2018, 42, 19665–19670. [Google Scholar] [CrossRef]
- Chen, X.F.; Liang, Y.; Wan, L.; Xie, Z.L.; Easton, C.D.; Bourgeois, L.; Wang, Z.Y.; Bao, Q.L.; Zhu, Y.G.; Tao, S.W.; et al. Construction of Porous N-Doped Graphene Layer for Efficient Oxygen Reduction Reaction. Chem. Eng. Sci. 2019, 194, 36–44. [Google Scholar] [CrossRef]
- Maouche, C.; Zhou, Y.Z.; Li, B.; Cheng, C.; Wu, Y.Y.; Li, J.H.; Gao, S.; Yang, J. Thermal Treated Three-Dimensional N-Doped Graphene as Efficient Metal Free-Catalyst for Oxygen Reduction Reaction. J. Electroanal. Chem. 2019, 853, 113536. [Google Scholar] [CrossRef]
- Guo, J.H.; Zhang, S.L.; Zheng, M.X.; Tang, J.; Liu, L.; Chen, J.M.; Wang, X.C. Graphitic-N-Rich N-Doped Graphene as a High Performance Catalyst for Oxygen Reduction Reaction in Alkaline Solution. Int. J. Hydrogen Energy 2020, 45, 32402–32412. [Google Scholar] [CrossRef]
- Mohmad, G.; Sarkar, S.; Biswas, A.; Roy, K.; Dey, R.S. Polymer-Assisted Electrophoretic Synthesis of N-Doped Graphene-Polypyrrole Demonstrating Oxygen Reduction with Excellent Methanol Crossover Impact and Durability. Chem. A Eur. J. 2020, 26, 12664–12673. [Google Scholar] [CrossRef]
- Posudievsky, O.Y.; Kondratyuk, A.S.; Kozarenko, O.A.; Cherepanov, V.V.; Karbivskiy, V.L.; Koshechko, V.G.; Pokhodenko, V.D. Boosting Graphene Electrocatalytic Efficiency in Oxygen Reduction Reaction by Mechanochemically Induced Low-Temperature Nitrogen Doping. Electrochim. Acta 2021, 399, 9. [Google Scholar] [CrossRef]
- Yan, W.; Wang, L.; Chen, C.; Zhang, D.; Li, A.J.; Yao, Z.; Shi, L.Y. Polystyrene Microspheres-Templated Nitrogen-Doped Graphene Hollow Spheres as Metal-Free Catalyst for Oxygen Reduction Reaction. Electrochim. Acta 2016, 188, 230–239. [Google Scholar] [CrossRef]
- Zhang, B.; Xiao, C.H.; Xiang, Y.; Dong, B.T.; Ding, S.J.; Tang, Y.H. Nitrogen-Doped Graphene Quantum Dots Anchored on Thermally Reduced Graphene Oxide as an Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem 2016, 3, 864–870. [Google Scholar] [CrossRef]
- Sjoberg, P.; Murray, J.S.; Brinck, T.; Politzer, P. Average Local Ionization Energies on the Molecular-Surfaces of Aromatic Systems as Guides to Chemical-Reactivity. Can. J. Chem. Rev. Can. Chim. 1990, 68, 1440–1443. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Quantitative Analysis of Molecular Surface Based on Improved Marching Tetrahedra Algorithm. J. Mol. Graph. Model 2012, 38, 314–323. [Google Scholar] [CrossRef]
- Rahsepar, M.; Pakshir, M.; Kim, H. Synthesis of Multiwall Carbon Nanotubes with a High Loading of Pt Bya Microwave-Assisted Impregnation Method for Use in the Oxygenreduction Reaction. Electrochim. Acta 2013, 108, 769–775. [Google Scholar] [CrossRef]
- Rahsepar, M.; Kim, H. Microwave-Assisted Synthesis and Characterization of Bimetallic PtRu Alloy Nanoparticles Supported on Carbon Nanotubes. J. Alloys Compd. 2015, 649, 1323–1328. [Google Scholar] [CrossRef]
- Kim, I.T.; Song, M.J.; Kim, Y.B.; Shin, M.W. Microwave-Hydrothermal Synthesis of Boron/Nitrogen Co-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2016, 41, 22026–22033. [Google Scholar] [CrossRef]
- Unni, S.M.; Devulapally, S.; Karjule, N.; Kurungot, S. Graphene Enriched with Pyrrolic Coordination of the Doped Nitrogen as an Efficient Metal-Free Electrocatalyst for Oxygen Reduction. J. Mater. Chem 2012, 22, 23506–23513. [Google Scholar] [CrossRef]
- Liu, C.L.; Hu, C.C.; Wu, S.H.; Wu, T.H. Electron Transfer Number Control of the Oxygen Reduction Reaction on Nitrogen-Doped Reduced-Graphene Oxides Using Experimental Design Strategies. J. Electrochem. Soc. 2013, 160, H547–H552. [Google Scholar] [CrossRef]
- Li, L.Q.; Tang, C.; Zheng, Y.; Xia, B.Q.; Zhou, X.L.; Xu, H.L.; Qiao, S.Z. Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolic-Nitrogen-Carbon. Adv. Energy Mater. 2020, 10, 2000789. [Google Scholar] [CrossRef]
- Zhang, Y.; Melchionna, M.; Medved, M.; Blonski, P.; Stekly, T.; Bakandritsos, A.; Kment, S.; Zboril, R.; Otyepka, M.; Fornasiero, P.; et al. Enhanced On-Site Hydrogen Peroxide Electrosynthesis by a Selectively Carboxylated N-Doped Graphene Catalyst. ChemCatChem 2021, 13, 4372–4383. [Google Scholar] [CrossRef]
- Koh, K.H.; Kim, Y.J.; Mostaghim, A.H.B.; Siahrostami, S.; Han, T.H.; Chen, Z. Elaborating Nitrogen and Oxygen Dopants Configurations within Graphene Electrocatalysts for Two-Electron Oxygen Reduction. ACS Mater. Lett. 2022, 4, 320–328. [Google Scholar] [CrossRef]
- Peng, Y.Y.; Bian, Z.Y.; Zhang, W.H.; Wang, H. Identifying the Key N Species for Electrocatalytic Oxygen Reduction Reaction on N-Doped Graphene. Nano Res. 2023, 16, 6642–6651. [Google Scholar] [CrossRef]
- Naveen, M.H.; Noh, H.B.; Al Hossain, M.S.; Kim, J.H.; Shim, Y.B. Facile Potentiostatic Preparation of Functionalized Polyterthiophene-Anchored Graphene Oxide as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2015, 3, 5426–5433. [Google Scholar] [CrossRef]
- Navaee, A.; Salimi, A. Efficient Amine Functionalization of Graphene Oxide through the Bucherer Reaction: An Extraordinary Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. RSC Adv. 2015, 5, 59874–59880. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Jiang, Z.J.; Tian, X.N.; Chen, W.H. Amine-Functionalized Holey Graphene as a Highly Active Metal-Free Catalyst for the Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2014, 2, 441–450. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Kim, Y.B. 3D Graphene Preparation via Covalent Amide Functionalization for Efficient Metal-Free Electrocatalysis in Oxygen Reduction. Sci. Rep. 2017, 7, 43279. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Hao, R.; Liao, H.B.; Hou, Y.L. Synthesis of Amino-Functionalized Graphene as Metal-Free Catalyst and Exploration of the Roles of Various Nitrogen States in Oxygen Reduction Reaction. Nano Energy 2013, 2, 88–97. [Google Scholar] [CrossRef]
- Dou, S.; Shen, A.L.; Tao, L.; Wang, S.Y. Molecular Doping of Graphene as Metal-Free Electrocatalyst for Oxygen Reduction Reaction. Chem. Commun. 2014, 50, 10672–10675. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Jeon, S. New Functionalized Graphene Sheets for Enhanced Oxygen Reduction as Metal-Free Cathode Electrocatalysts. J. Power Sources 2012, 218, 168–173. [Google Scholar] [CrossRef]
- Lee, M.S.; Whang, D.R.; Choi, H.J.; Yang, M.H.; Kim, B.G.; Baek, J.B.; Chang, D.W. A Facile Approach to Tailoring Electrocatalytic Activities of Imine-Rich Nitrogen-Doped Graphene for Oxygen Reduction Reaction. Carbon 2017, 122, 515–523. [Google Scholar] [CrossRef]
- Zuo, Z.C.; Li, W.; Manthiram, A. N-Heterocycles Tethered Graphene as Efficient Metal-Free Catalysts for an Oxygen Reduction Reaction in Fuel Cells. J. Mater. Chem. A Mater. 2013, 1, 10166–10172. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Kim, Y.B. Amide-Functionalized Graphene with 1,4-Diaminobutane as Efficient Metal-Free and Porous Electrocatalyst for Oxygen Reduction. Carbon 2017, 111, 577–586. [Google Scholar] [CrossRef]
- Unni, S.M.; Illathvalappil, R.; Gangadharan, P.K.; Bhange, S.N.; Kurungot, S. Layer-Separated Distribution of Nitrogen Doped Graphene by Wrapping on Carbon Nitride Tetrapods for Enhanced Oxygen Reduction Reactions in Acidic Medium. Chem. Commun. 2014, 50, 13769–13772. [Google Scholar] [CrossRef]
- Vazquez-Arenas, J.; Galano, A.; Lee, D.U.; Higgins, D.; Guevara-Garcia, A.; Chen, Z. Theoretical and Experimental Studies of Highly Active Graphene Nanosheets to Determine Catalytic Nitrogen Sites Responsible for the Oxygen Reduction Reaction in Alkaline Media. J. Mater. Chem. A Mater. 2016, 4, 976–990. [Google Scholar] [CrossRef]
- Kabir, S.; Artyushkova, K.; Serov, A.; Kiefer, B.; Atanassov, P. Binding Energy Shifts for Nitrogen-Containing Graphene-Based Electrocatalysts—Experiments and DFT Calculations. Surf. Interface Anal. 2016, 48, 293–300. [Google Scholar] [CrossRef]
- Tian, L.L.; Yang, J.; Weng, M.Y.; Tan, R.; Zheng, J.X.; Chen, H.B.; Zhuang, Q.C.; Dai, L.M.; Pan, F. Fast Diffusion of O-2 on Nitrogen-Doped Graphene to Enhance Oxygen Reduction and Its Application for High-Rate Zn-Air Batteries. ACS Appl. Mater. Interfaces 2017, 9, 7125–7130. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Lemus, I.L.; Figueroa-Torres, M.Z.; Garcia-Hernandez, A.B.; Escobar-Morales, B.; Rodriguez-Varela, F.J.; Fuentes, A.F.; Lardizabal-Gutierrez, D.; Quintana-Owen, P. Low-Cost Sonochemical Synthesis of Nitrogen-Doped Graphene Metal-Free Electrocatalyst for the Oxygen Reduction Reaction in Alkaline Media. Int. J. Hydrogen Energy 2017, 42, 30330–30338. [Google Scholar] [CrossRef]
- Faisal, S.N.; Haque, E.; Noorbehesht, N.; Zhang, W.M.; Harris, A.T.; Church, T.L.; Minett, A.I. Pyridinic and Graphitic Nitrogen-Rich Graphene for High-Performance Supercapacitors and Metal-Free Bifunctional Electrocatalysts for ORR and OER. RSC Adv. 2017, 7, 17950–17958. [Google Scholar] [CrossRef]
- Chanda, D.; Dobrota, A.S.; Hnat, J.; Sofer, Z.; Pasti, I.A.; Skorodumova, N.V.; Paidar, M.; Bouzek, K. Investigation of Electrocatalytic Activity on a N-Doped Reduced Graphene Oxide Surface for the Oxygen Reduction Reaction in an Alkaline Medium. Int. J. Hydrogen Energy 2018, 43, 12129–12139. [Google Scholar] [CrossRef]
- Yang, Y.M.; Hu, B.S.; Zhao, W.B.; Yang, Q.; Yang, F.; Ren, J.C.; Li, X.G.; Jin, Y.; Fang, L.; Pan, Q.J. Bridging N-Doped Graphene and Carbon Rich C3N4 Layers for Photopromoted Multi-Functional Electrocatalysts. Electrochim. Acta 2019, 317, 25–33. [Google Scholar] [CrossRef]
- Lei, G.Y.; Ma, J.W.; Zhao, M.Y.; Wu, S.; He, H.W.; Qi, H.; Peng, W.C.; Fan, X.B.; Zhang, G.L.; Zhang, F.B.; et al. Nitrogen-Carbon Materials Base on Pyrolytic Graphene Hydrogel for Oxygen Reduction. J. Colloid. Interface Sci. 2021, 602, 274–281. [Google Scholar] [CrossRef]
- Marbaniang, P.; Kapse, S.; Ingavale, S.; Thapa, R.; Kakade, B. Nitrogen Doping Derived Bridging of Graphene and Carbon Nanotube Composite for Oxygen Electroreduction. Int. J. Energy Res. 2021, 45, 21293–21306. [Google Scholar] [CrossRef]
- Skorupska, M.; Ilnicka, A.; Lukaszewicz, J.P. Modified Graphene Foam as a High-Performance Catalyst for Oxygen Reduction Reaction. RSC Adv. 2023, 13, 25437–25442. [Google Scholar] [CrossRef]
- Roy, D.; Sarkar, S.; Bhattacharjee, K.; Panigrahi, K.; Das, B.K.; Sardar, K.; Chattopadhyay, K.K. Site Speci Fic Nitrogen Incorporation in Reduced Graphene Oxide Using Imidazole as a Novel Reducing Agent for Ef Ficient Oxygen Reduction Reaction and Improved Supercapacitive Performance. Carbon 2020, 166, 361–373. [Google Scholar] [CrossRef]
- Wu, L.F.; Feng, H.B.; Liu, M.J.; Zhang, K.X.; Li, J.H. Graphene-Based Hollow Spheres as Efficient Electrocatalysts for Oxygen Reduction. Nanoscale 2013, 5, 10839–10843. [Google Scholar] [CrossRef] [PubMed]
- Bo, X.J.; Han, C.; Zhang, Y.F.; Guo, L.P. Confined Nanospace Synthesis of Less Aggregated and Porous Nitrogen-Doped Graphene as Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Solution. ACS Appl. Mater. Interfaces 2014, 6, 3023–3030. [Google Scholar] [CrossRef] [PubMed]
- Hayes, W.I.; Lubarsky, G.; Li, M.X.; Papakonstantinou, P. Mechanical Exfoliation of Graphite in 1-Butyl-3-Methylimidazolium Hexafluorophosphate (BMIM-PF6) Providing Graphene Nanoplatelets That Exhibit Enhanced Electrocatalysis. J. Power Sources 2014, 271, 312–325. [Google Scholar] [CrossRef]
- de Lima, F.; Maia, G. Oxidized/Reduced Graphene Nanoribbons Facilitate Charge Transfer to the Fe(CN)(6)(3-)/Fe(CN)(6)(4-) Redox Couple and towards Oxygen Reduction. Nanoscale 2015, 7, 6193–6207. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Cao, T.F.; Liu, S.S.; Duan, X.M.; Liu, L.M.; Wang, S.; Liu, Y.Q. Substrate-Induced Synthesis of Nitrogen-Doped Holey Graphene Nanocapsules for Advanced Metal-Free Bifunctional Electrocatalysts. Part. Part. Syst. Charact. 2017, 34. [Google Scholar] [CrossRef]
- Rybarczyk, M.K.; Gontarek, E.; Lieder, M.; Titirici, M.M. Salt Melt Synthesis of Curved Nitrogen-Doped Carbon Nanostructures: ORR Kinetics Boost. Appl. Surf. Sci. 2018, 435, 543–551. [Google Scholar] [CrossRef]
- Yang, W.L.; Zhou, M.H.; Liang, L. Highly Efficient In-Situ Metal-Free Electrochemical Advanced Oxidation Process Using Graphite Felt Modified with N-Doped Graphene. Chem. Eng. J. 2018, 338, 700–708. [Google Scholar] [CrossRef]
- Ilnicka, A.; Skorupska, M.; Romanowski, P.; Kamedulski, P.; Lukaszewicz, J.P. Improving the Performance of Zn-Air Batteries with N-Doped Electroexfoliated Graphene. Materials 2020, 13, 2115. [Google Scholar] [CrossRef]
- Ding, W.; Wei, Z.D.; Chen, S.G.; Qi, X.Q.; Yang, T.; Hu, J.S.; Wang, D.; Wan, L.J.; Alvi, S.F.; Li, L. Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction. Angew. Chem. Int. Ed. 2013, 52, 11755–11759. [Google Scholar] [CrossRef]
- Lai, L.F.; Potts, J.R.; Zhan, D.; Wang, L.; Poh, C.K.; Tang, C.H.; Gong, H.; Shen, Z.X.; Jianyi, L.Y.; Ruoff, R.S. Exploration of the Active Center Structure of Nitrogen-Doped Graphene-Based Catalysts for Oxygen Reduction Reaction. Energy Environ. Sci. 2012, 5, 7936–7942. [Google Scholar] [CrossRef]
- Yang, S.B.; Zhi, L.J.; Tang, K.; Feng, X.L.; Maier, J.; Mullen, K. Efficient Synthesis of Heteroatom (N or S)-Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets for Oxygen Reduction Reactions. Adv. Funct. Mater. 2012, 22, 3634–3640. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Ge, J.; Wang, L.; Wang, D.H.; Ding, F.; Tao, X.M.; Chen, W. Manageable N-Doped Graphene for High Performance Oxygen Reduction Reaction. Sci. Rep. 2013, 3, 2771. [Google Scholar] [CrossRef]
- Liu, M.K.; Song, Y.F.; He, S.X.; Tjiu, W.W.; Pan, J.S.; Xia, Y.Y.; Liu, T.X. Nitrogen-Doped Graphene Nanoribbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction. ACS Appl. Mater. Interfaces 2014, 6, 4214–4222. [Google Scholar] [CrossRef]
- Wang, L.; Yin, F.X.; Yao, C.X. N-Doped Graphene as a Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions in an Alkaline Electrolyte. Int. J. Hydrogen Energy 2014, 39, 15913–15919. [Google Scholar] [CrossRef]
- Li, J.J.; Zhang, Y.M.; Zhang, X.H.; Han, J.C.; Wang, Y.; Gu, L.; Zhang, Z.H.; Wang, X.J.; Jian, J.K.; Xu, P.; et al. Direct Transformation from Graphitic C3N4 to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2015, 7, 19626–19634. [Google Scholar] [CrossRef]
- Ma, R.G.; Zhou, Y.; Li, P.X.; Chen, Y.F.; Wang, J.C.; Liu, Q. Self-Assembly of Nitrogen-Doped Graphene-Wrapped Carbon Nanoparticles as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Electrochim. Acta 2016, 216, 347–354. [Google Scholar] [CrossRef]
- Zhou, X.J.; Tang, S.; Yin, Y.; Sun, S.H.; Qiao, J.L. Hierarchical Porous N-Doped Graphene Foams with Superior Oxygen Reduction Reactivity for Polymer Electrolyte Membrane Fuel Cells. Appl. Energy 2016, 175, 459–467. [Google Scholar] [CrossRef]
- Tang, S.; Zhou, X.J.; Xu, N.N.; Bai, Z.Y.; Qiao, J.L.; Zhang, J.J. Template-Free Synthesis of Three-Dimensional Nanoporous N-Doped Graphene for High Performance Fuel Cell Oxygen Reduction Reaction in Alkaline Media. Appl. Energy 2016, 175, 405–413. [Google Scholar] [CrossRef]
- Hou, Z.S.; Jin, Y.Q.; Xi, X.; Huang, T.; Wu, D.Q.; Xu, P.M.; Liu, R.L. Hierarchically Porous Nitrogen-Doped Graphene Aerogels as Efficient Metal-Free Oxygen Reduction Catalysts. J. Colloid. Interface Sci. 2017, 488, 317–321. [Google Scholar] [CrossRef]
- Kong, D.W.; Yuan, W.J.; Li, C.; Song, J.M.; Xie, A.J.; Shen, Y.H. Synergistic Effect of Nitrogen-Doped Hierarchical Porous Carbon/Graphene with Enhanced Catalytic Performance for Oxygen Reduction Reaction. Appl. Surf. Sci. 2017, 393, 144–150. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Zhao, N.; Huang, J.P.; Zhou, Y.Z.; Xu, K. Facile Fabrication of N-Doped Three-Dimensional Reduced Graphene Oxide as a Superior Electrocatalyst for Oxygen Reduction Reaction. Appl. Catal. A Gen. 2017, 534, 30–39. [Google Scholar] [CrossRef]
- Qin, L.; Ding, R.M.; Wang, H.X.; Wu, J.H.; Wang, C.H.; Zhang, C.H.; Xu, Y.; Wang, L.; Lv, B.L. Facile Synthesis of Porous Nitrogen-Doped Holey Graphene as an Efficient Metal-Free Catalyst for the Oxygen Reduction Reaction. Nano Res. 2017, 10, 305–319. [Google Scholar] [CrossRef]
- Hassani, S.S.; Samiee, L.; Ghasemy, E.; Rashidi, A.; Ganjali, M.R.; Tasharrofi, S. Porous Nitrogen-Doped Graphene Prepared through Pyrolysis of Ammonium Acetate as an Efficient ORR Nanocatalyst. Int. J. Hydrogen Energy 2018, 43, 15941–15951. [Google Scholar] [CrossRef]
- Ma, R.G.; Xing, R.H.; Lin, G.X.; Zhou, Y.; Liu, Q.; Yang, M.H.; Hu, C.; Yan, K.; Wang, J.C. Graphene-Wrapped Nitrogen-Doped Hollow Carbon Spheres for High-Activity Oxygen Electroreduction. Mater. Chem. Front. 2018, 2, 1489–1497. [Google Scholar] [CrossRef]
- Sibul, R.; Kibena-Poldsepp, E.; Ratso, S.; Kook, M.; Kaarik, M.; Merisalu, M.; Paiste, P.; Leis, J.; Sammelselg, V.; Tammeveski, K. Nitrogen-Doped Carbon-Based Electrocatalysts Synthesised by Ball-Milling. Electrochem. Commun. 2018, 93, 39–43. [Google Scholar] [CrossRef]
- Xue, Q.; Ding, Y.; Xue, Y.Y.; Li, F.; Chen, P.; Chen, Y. 3D Nitrogen-Doped Graphene Aerogels as Efficient Electrocatalyst for the Oxygen Reduction Reaction. Carbon 2018, 139, 137–144. [Google Scholar] [CrossRef]
- Zhao, L.; Sui, X.L.; Li, J.Z.; Zhang, J.J.; Zhang, L.M.; Huang, G.S.; Wang, Z.B. Supramolecular Assembly Promoted Synthesis of Three-Dimensional Nitrogen Doped Graphene Frameworks as Efficient Electrocatalyst for Oxygen Reduction Reaction and Methanol Electrooxidation. Appl. Catal. B Environ. 2018, 231, 224–233. [Google Scholar] [CrossRef]
- Song, M.; Zhao, J.; Meng, Y.; Riekehr, L.; Hou, P.X.; Grennberg, H.; Zhang, Z.B. Nitrogen-Doped Reduced Graphene Oxide Hydrogel Achieved via a One-Step Hydrothermal Process. ChemNanoMat 2019, 5, 1144–1151. [Google Scholar] [CrossRef]
- Xie, B.B.; Zhang, Y.; Zhang, R.J. Pure Nitrogen-Doped Graphene Aerogel with Rich Micropores Yields High ORR Performance. Mater. Sci. Eng. B-adv. Func. Solid-State Mater. 2019, 242, 1–5. [Google Scholar] [CrossRef]
- Cardoso, E.S.F.; Fortunato, G.V.; Palm, I.; Kibena-Poldsepp, E.; Greco, A.S.; Junior, J.L.R.; Kikas, A.; Merisalu, M.; Kisand, V.; Sammelselg, V.; et al. Effects of N and O Groups for Oxygen Reduction Reaction on One- and Two-Dimensional Carbonaceous Materials. Electrochim. Acta 2020, 344, 136052. [Google Scholar] [CrossRef]
- Behan, J.A.; Mates-Torres, E.; Stamatin, S.N.; Dominguez, C.; Iannaci, A.; Fleischer, K.; Hoque, M.K.; Perova, T.S.; Garcia-Melchor, M.; Colavita, P.E. Untangling Cooperative Effects of Pyridinic and Graphitic Nitrogen Sites at Metal-Free N-Doped Carbon Electrocatalysts for the Oxygen Reduction Reaction. Small 2019, 15, 1902081. [Google Scholar] [CrossRef]
- Yan, P.; Liu, J.; Yuan, S.D.; Liu, Y.J.; Cen, W.L.; Chen, Y.Q. The Promotion Effects of Graphitic and Pyridinic N Combinational Doping on Graphene for ORR. Appl. Surf. Sci. 2018, 445, 398–403. [Google Scholar] [CrossRef]
- Benavides, R.; Gallardo, C.; Fernandez, S.; De-Casas, E.; Morales-Acosta, D. Influence of Doping Level on the Electrocatalytic Properties for Oxygen Reduction Reaction of N-Doped Reduced Graphene Oxide. Int. J. Hydrogen Energy 2021, 46, 26040–26052. [Google Scholar] [CrossRef]
- Gong, L.; Sun, J.; Li, X.D.; Huang, B.; Yang, G.C.; Liu, Y.S. One-Step and Controllable Synthesis of Active N-Rich Graphene Nanoclusters-CNT Composite via an Ultrafast Deflagration Reaction for Oxygen Reduction Electrocatalysis. J. Mater. Sci. 2021, 56, 6349–6360. [Google Scholar] [CrossRef]
- Karunagaran, R.; Tran, D.; Tung, T.T.; Shearer, C.; Losic, D. A Unique Synthesis of Macroporous N-Doped Carbon Composite Catalyst for Oxygen Reduction Reaction. Nanomaterials 2021, 11, 43. [Google Scholar] [CrossRef]
- Song, R.L.; Cao, X.T.; Xu, J.; Zhou, X.S.; Wang, X.; Yuan, N.Y.; Ding, J.N. O,N-Codoped 3D Graphene Hollow Sphere Derived from Metal-Organic Frameworks as Oxygen Reduction Reaction Electrocatalysts for Zn-Air Batteries. Nanoscale 2021, 13, 6174–6183. [Google Scholar] [CrossRef]
- Song, R.L.; Cao, X.T.; Zhou, X.S.; Yuan, N.Y. N-Doped Graphene Supported on N-RGO Nanosheets as Metal-Free Oxygen Reduction Reaction Electrocatalysts for Zn-Air Batteries. N. J. Chem. 2021, 45, 21716–21724. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Q.Q.; Zhang, Q.C.; Liu, R. Carbon Tube-Graphene Heterostructure with Different N-Doping Configurations Induces an Electrochemically Active-Active Interface for Efficient Oxygen Electrocatalysis. Chem. Eng. J. 2022, 431, 9. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zhang, H.X.; Sha, W.B.; Song, Y.H.; Liu, P.Z.; Liu, R.; Hou, Y.; Wei, H.; Xu, B.S.; Cao, T.F.; et al. N-Doped Graphene Nanoribbons Intertwined on 3D Graphene Skeleton as Superior Metal-Free Electrocatalyst for Oxygen Reduction. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 10. [Google Scholar] [CrossRef]
- Han, Y.J.; Shen, Y.Q.; Song, Y.H.; Zhang, H.X.; Liu, P.Z.; Guo, J.J. Edge-Rich Graphene Nanospheres with Ultra-High Nitrogen Loading Metal-Free Electrocatalysts for Boosted Oxygen Reduction. ChemElectroChem 2022, 9, 8. [Google Scholar] [CrossRef]
- Eledath, A.N.; Poulose, A.E.; Muthukrishnan, A. O-Functionalization of N-Doped Reduced Graphene Oxide for Topological Defect-Driven Oxygen Reduction. ACS Appl. Nano Mater. 2022, 5, 10528–10536. [Google Scholar] [CrossRef]
- Dogan, M.Z.; Gökcen, D.; Bayram, C. Effects of Heteroatom Doping and Physicochemical Character on the Electrochemical Properties of Graphene Sheets. ChemNanoMat 2023, 9, 202300393. [Google Scholar] [CrossRef]
- Wang, S.; Song, W.N.; Hu, M.J.; Li, F.C.; Song, Y.P.; Ju, R.; Xu, K.D.; Zhou, H.T. Green Synthesis of N-Doped Graphene Nanosheets with Multi-Wrinkled Textural Properties for Boosting Oxygen Reduction Reaction in Glucose Fuel Cell. Int. J. Hydrogen Energy 2024, 72, 226–236. [Google Scholar] [CrossRef]
- Carrillo-Rodriguez, J.C.; Alonso-Lemus, I.L.; Siller-Ceniceros, A.A.; Martinez, E.; Piza-Ruiz, P.; Vargas-Gutierrez, G.; Rodriguez-Varela, F.J. Easy Synthesis of N-Doped Graphene by Milling Exfoliation with Electrocatalytic Activity towards the Oxygen Reduction Reaction (ORR). Int. J. Hydrogen Energy 2017, 42, 30383–30388. [Google Scholar] [CrossRef]
- Su, P.; Zhou, M.H.; Lu, X.Y.; Yang, W.L.; Ren, G.B.; Cai, J.J. Electrochemical Catalytic Mechanism of N-Doped Graphene for Enhanced H2O2 Yield and in-Situ Degradation of Organic Pollutant. Appl. Catal. B Environ. 2019, 245, 583–595. [Google Scholar] [CrossRef]
- Lu, Z.J.; Xu, M.W.; Bao, S.J.; Tan, K.; Chai, H.; Cai, C.J.; Ji, C.C.; Zhang, Q. Facile Preparation of Nitrogen-Doped Reduced Graphene Oxide as a Metal-Free Catalyst for Oxygen Reduction Reaction. J. Mater. Sci. 2013, 48, 8101–8107. [Google Scholar] [CrossRef]
- Yu, D.S.; Wei, L.; Jiang, W.C.; Wang, H.; Sun, B.; Zhang, Q.; Goh, K.L.; Si, R.M.; Chen, Y. Nitrogen Doped Holey Graphene as an Efficient Metal-Free Multifunctional Electrochemical Catalyst for Hydrazine Oxidation and Oxygen Reduction. Nanoscale 2013, 5, 3457–3464. [Google Scholar] [CrossRef]
- Jiang, Z.J.; Jiang, Z.Q.; Chen, W.H. The Role of Holes in Improving the Performance of Nitrogen-Doped Holey Graphene as an Active Electrode Material for Supercapacitor and Oxygen Reduction Reaction. J. Power Sources 2014, 251, 55–65. [Google Scholar] [CrossRef]
- Liu, J.F.; Takeshi, D.; Orejon, D.; Sasaki, K.; Lyth, S.M. Defective Nitrogen-Doped Graphene Foam: A Metal-Free, Non-Precious Electrocatalyst for the Oxygen Reduction Reaction in Acid. J. Electrochem. Soc. 2014, 161, F544–F550. [Google Scholar] [CrossRef]
- Zhao, Z.K.; Dai, Y.T.; Ge, G.F.; Mao, Q.; Rong, Z.M.; Wang, G.R. A Facile Approach to Fabricate an N-Doped Mesoporous Graphene/Nanodiamond Hybrid Nanocomposite with Synergistically Enhanced Catalysis. ChemCatChem 2015, 7, 1070–1077. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Sun, C.H.; Jin, Z.; Wang, D.W.; Yan, X.C.; Chen, Z.G.; Zhu, G.S.; Yao, X.D. Carbon for the Oxygen Reduction Reaction: A Defect Mechanism. J. Mater. Chem. A Mater. 2015, 3, 11736–11739. [Google Scholar] [CrossRef]
- Bai, X.; Shi, Y.; Guo, J.; Gao, L.; Wang, K.; Du, Y.; Ma, T. Catalytic Activities Enhanced by Abundant Structural Defects and Balanced N Distribution of N-Doped Graphene in Oxygen Reduction Reaction. J. Power Sources 2016, 306, 85–91. [Google Scholar] [CrossRef]
- Tang, C.; Wang, H.F.; Chen, X.; Li, B.Q.; Hou, T.Z.; Zhang, B.S.; Zhang, Q.; Titirici, M.M.; Wei, F. Topological Defects in Metal-Free NanoCarbon for Oxygen Electrocatalysis. Adv. Mater. 2016, 28, 6845–6851. [Google Scholar] [CrossRef]
- Wang, H.F.; Tang, C.; Zhang, Q. Template Growth of Nitrogen-Doped Mesoporous Graphene on Metal Oxides and Its Use as a Metal-Free Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Catal. Today 2018, 301, 25–31. [Google Scholar] [CrossRef]
- Dumont, J.H.; Martinez, U.; Artyushkova, K.; Purdy, G.M.; Dattelbaum, A.M.; Zelenay, P.; Mohite, A.; Atanassov, P.; Gupta, G. Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction. ACS Appl. Nano Mater. 2019, 2, 1675–1682. [Google Scholar] [CrossRef]
- Han, L.; Sun, Y.Y.; Li, S.; Cheng, C.; Halbig, C.E.; Feicht, P.; Hubner, J.L.; Strasser, P.; Eigler, S. In-Plane Carbon Lattice-Defect Regulating Electrochemical Oxygen Reduction to Hydrogen Peroxide Production over Nitrogen-Doped Graphene. ACS Catal. 2019, 9, 1283–1288. [Google Scholar] [CrossRef]
- Rivera-Gavidia, L.M.; de la Puente, I.F.; Hernandez-Rodriguez, M.A.; Celorrio, V.; Sebastian, D.; Lazaro, M.J.; Pastor, E.; Garcia, G. Bi-Functional Carbon-Based Catalysts for Unitized Regenerative Fuel Cells. J. Catal. 2020, 387, 138–144. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.C.; Ge, B.H.; Zheng, F.C.; Zhang, N.; Zuo, M.; Yang, Y.; Chen, Q.W. Constructing Graphitic-Nitrogen-Bonded Pentagons in Interlayer-Expanded Graphene Matrix toward Carbon-Based Electrocatalysts for Acidic Oxygen Reduction Reaction. Adv. Mater. 2021, 33, 11. [Google Scholar] [CrossRef]
- Yuasa, M.; Tanaka, M.; Shimizu, M.; Yoshida, M. Mechanochemical Synthesis of Nitrogen-Doped and Sulfur-Doped Multilayer Graphene for Use in Bifunctional Oxygen Electrodes. J. Electrochem. Soc. 2022, 169, 10. [Google Scholar] [CrossRef]
- Satoh, K.; Odawara, T.; Yamazaki, Y.; Murakami, T.; Ono, H.; Iwamura, S.; Mukai, S.R.; Ogino, I. Benefits of Using Rapid Microwave Heating in the Synthesis of Metal-Free Carbon Electrocatalysts. Ind. Eng. Chem. Res. 2024, 63, 4825–4837. [Google Scholar] [CrossRef]
- Wu, J.J.; Zhang, D.; Wang, Y.; Hou, B.R. Electrocatalytic Activity of Nitrogen-Doped Graphene Synthesized via a One-Pot Hydrothermal Process towards Oxygen Reduction Reaction. J. Power Sources 2013, 227, 185–190. [Google Scholar] [CrossRef]
- Jeon, I.Y.; Choi, H.J.; Ju, M.J.; Choi, I.T.; Lim, K.; Ko, J.; Kim, H.K.; Kim, J.C.; Lee, J.J.; Shin, D.; et al. Direct Nitrogen Fixation at the Edges of Graphene Nanoplatelets as Efficient Electrocatalysts for Energy Conversion. Sci. Rep. 2013, 3, 2260. [Google Scholar] [CrossRef]
- Benson, J.; Xu, Q.; Wang, P.; Shen, Y.T.; Sun, L.T.; Wang, T.Y.; Li, M.X.; Papakonstantinou, P. Tuning the Catalytic Activity of Graphene Nanosheets for Oxygen Reduction Reaction via Size and Thickness Reduction. ACS Appl. Mater. Interfaces 2014, 6, 19726–19736. [Google Scholar] [CrossRef]
- Kwak, D.; Khetan, A.; Noh, S.; Pitsch, H.; Han, B. First Principles Study of Morphology, Doping Level, and Water Solvation Effects on the Catalytic Mechanism of Nitrogen-Doped Graphene in the Oxygen Reduction Reaction. ChemCatChem 2014, 6, 2662–2670. [Google Scholar] [CrossRef]
- Li, M.T.; Zhang, L.P.; Xu, Q.; Niu, J.B.; Xia, Z.H. N-Doped Graphene as Catalysts for Oxygen Reduction and Oxygen Evolution Reactions: Theoretical Considerations. J. Catal. 2014, 314, 66–72. [Google Scholar] [CrossRef]
- Gao, Y.X.; Zhang, L.P.; Xia, Z.H.; Li, C.M.; Dai, L.M. Hole-Punching for Enhancing Electrocatalytic Activities of 2D Graphene Electrodes: Less Is More. J. Chem. Phys. 2020, 153, 074701. [Google Scholar] [CrossRef]
- Hassan, M.; Haque, E.; Reddy, K.R.; Minett, A.I.; Chen, J.; Gomes, V.G. Edge-Enriched Graphene Quantum Dots for Enhanced Photo-Luminescence and Supercapacitance. Nanoscale 2014, 6, 11988–11994. [Google Scholar] [CrossRef]
- Li, Q.Q.; Zhang, S.; Dai, L.M.; Li, L.S. Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012, 134, 18932–18935. [Google Scholar] [CrossRef]
- Favaro, M.; Ferrighi, L.; Fazio, G.; Colazzo, L.; Di Vaentin, C.; Durante, C.; Sedona, F.; Gennaro, A.; Agnoli, S.; Granozzi, G. Single and Multiple Doping in Graphene Quantum Dots: Unraveling the Origin of Selectivity in the Oxygen Reduction Reaction. ACS Catal. 2015, 5, 129–144. [Google Scholar] [CrossRef]
- Wang, M.R.; Fang, J.; Hu, L.T.; Lai, Y.Q.; Liu, Z.Y. Defects-Rich Graphene/Carbon Quantum Dot Composites as Highly Efficient Electrocatalysts for Aqueous Zinc/Air Batteries. Int. J. Hydrogen Energy 2017, 42, 21305–21310. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Z.P.; Dai, L.M. Graphitic Carbon Nitrides Supported by Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalysts for Oxygen Reduction. J. Electroanal. Chem. 2015, 753, 16–20. [Google Scholar] [CrossRef]
- Chao, L.; Qin, Y.; Liu, Y.; Kong, Y.; Chu, F.Q. Electrochemically Exfoliating Graphite into N-Doped Graphene and Its Use as a High Efficient Electrocatalyst for Oxygen Reduction Reaction. J. Solid State Electrochem. 2017, 21, 1287–1295. [Google Scholar] [CrossRef]
- Kim, H.W.; Bukas, V.J.; Park, H.; Park, S.; Diederichsen, K.M.; Lim, J.; Cho, Y.H.; Kim, J.; Kim, W.; Han, T.H.; et al. Mechanisms of Two-Electron and Four-Electron Electrochemical Oxygen Reduction Reactions at Nitrogen-Doped Reduced Graphene Oxide. ACS Catal. 2020, 10, 852–863. [Google Scholar] [CrossRef]
- Jahan, M.; Li, K.; Zhao, G.L. Electric Field Poling Effect on the Electrocatalytic Properties of Nitrogen-Functionalized Graphene Nanosheets. Energy Technol. 2018, 6, 2408–2418. [Google Scholar] [CrossRef]
- Zhou, X.J.; Bai, Z.Y.; Wu, M.J.; Qiao, J.L.; Chen, Z.W. 3-Dimensional Porous N-Doped Graphene Foam as a Non-Precious Catalyst for the Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2015, 3, 3343–3350. [Google Scholar] [CrossRef]
- Mao, S.; Lu, G.H.; Chen, J.H. Three-Dimensional Graphene-Based Composites for Energy Applications. Nanoscale 2015, 7, 6924–6943. [Google Scholar] [CrossRef]
- Mo, Z.Y.; Zheng, R.P.; Peng, H.L.; Liang, H.G.; Liao, S.J. Nitrogen-Doped Graphene Prepared by a Transfer Doping Approach for the Oxygen Reduction Reaction Application. J. Power Sources 2014, 245, 801–807. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, C.G.; Hu, Y.; Cheng, H.H.; Shi, G.Q.; Qu, L.T. A Versatile, Ultralight, Nitrogen-Doped Graphene Framework. Angew. Chem. Int. Ed. 2012, 51, 11371–11375. [Google Scholar] [CrossRef]
- Liang, J.; Du, X.; Gibson, C.; Du, X.W.; Qiao, S.Z. N-Doped Graphene Natively Grown on Hierarchical Ordered Porous Carbon for Enhanced Oxygen Reduction. Adv. Mater. 2013, 25, 6226–6231. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.X.; Wang, J.; Zhang, Y.W.; Xu, W.L.; Xing, W.; Xu, D.; Zhang, Y.F.; Zhang, X.B. ZIF-8 Derived Graphene-Based Nitrogen-Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts. Angew. Chem. Int. Ed. 2014, 53, 14235–14239. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.P.; Shi, Q.; Han, C.; Wang, B.; Wu, N.; Wang, H.; Wang, Y.D. N-Doped Graphene Grown on Silk Cocoon-Derived Interconnected Carbon Fibers for Oxygen Reduction Reaction and Photocatalytic Hydrogen Production. Nano Res. 2016, 9, 2498–2509. [Google Scholar] [CrossRef]
- Jiang, Z.J.; Jiang, Z.Q. Reduction of the Oxygen Reduction Reaction Overpotential of Nitrogen-Doped Graphene by Designing It to a Microspherical Hollow Shape. J. Mater. Chem. A Mater. 2014, 2, 14071–14081. [Google Scholar] [CrossRef]
- Wang, J.; Jin, H.L.; He, Y.H.; Lin, D.J.; Liu, A.L.; Wang, S.; Wang, J.C. The Selective Formation of Graphene Ranging from Two-Dimensional Sheets to Three-Dimensional Mesoporous Nanospheres. Nanoscale 2014, 6, 7204–7208. [Google Scholar] [CrossRef]
- Chen, L.; Du, R.; Zhu, J.H.; Mao, Y.Y.; Xue, C.; Zhang, N.; Hou, Y.L.; Zhang, J.; Yi, T. Three-Dimensional Nitrogen-Doped Graphene Nanoribbons Aerogel as a Highly EffiCient Catalyst for the Oxygen Reduction Reaction. Small 2015, 11, 1423–1429. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, T.Y.; Liao, Q.; Ye, D.D.; Zhu, X.; Li, J.; Zhang, P.Q.; Peng, Y.; Chen, S.W.; Li, Y. A Three-Dimensional Nitrogen-Doped Graphene Aerogel-Activated Carbon Composite Catalyst That Enables Low-Cost Microfluidic Microbial Fuel Cells with Superior Performance. J. Mater. Chem. A Mater. 2016, 4, 15913–15919. [Google Scholar] [CrossRef]
- Baskakov, S.A.; Manzhos, R.A.; Lobach, A.S.; Baskakova, Y.V.; Kulikov, A.V.; Martynenko, V.M.; Milovich, F.O.; Kumar, Y.; Michtchenko, A.; Kabachkov, E.N.; et al. Properties of a Granulated Nitrogen-Doped Graphene Oxide Aerogel. J. Non Cryst. Solids 2018, 498, 236–243. [Google Scholar] [CrossRef]
- Shin, Y.E.; Sa, Y.J.; Park, S.; Lee, J.; Shin, K.H.; Joo, S.H.; Ko, H. An Ice-Templated, PH-Tunable Self-Assembly Route to Hierarchically Porous Graphene Nanoscroll Networks. Nanoscale 2014, 6, 9734–9741. [Google Scholar] [CrossRef]
- Patra, S.; Choudhary, R.; Roy, E.; Madhuri, R.; Sharma, P.K. Heteroatom-Doped Graphene “Idli”: A Green and Foody Approach towards Development of Metal Free Bifunctional Catalyst for Rechargeable Zinc-Air Battery. Nano Energy 2016, 30, 118–129. [Google Scholar] [CrossRef]
- Feng, W.J.; Lin, Y.X.; Zhao, T.J.; Zhang, P.F.; Su, H.; Lv, L.B.; Li, X.H.; Chen, J.S. Direct Reduction of Oxygen Gas over Dendritic Carbons with Hierarchical Porosity: Beyond the Diffusion Limitation. Inorg. Chem. Front. 2018, 5, 2023–2030. [Google Scholar] [CrossRef]
- Begum, H.; Ahmed, M.S.; Cho, S.; Jeon, S. Simultaneous Reduction and Nitrogen Functionalization of Graphene Oxide Using Lemon for Metal-Free Oxygen Reduction Reaction. J. Power Sources 2017, 372, 116–124. [Google Scholar] [CrossRef]
- Shi, J.L.; Tian, G.L.; Zhang, Q.; Zhao, M.Q.; Wei, F. Customized Casting of Unstacked Graphene with High Surface Area (>1300 m(2) g(-1)) and Its Application in Oxygen Reduction Reaction. Carbon 2015, 93, 702–712. [Google Scholar] [CrossRef]
- Paton-Carrero, A.; de la Osa, A.; Sanchez, P.; Rodriguez-Gomez, A.; Romero, A. Towards New Routes to Increase the Electrocatalytic Activity for Oxygen Reduction Reaction of N-Doped Graphene Nanofibers. J. Electroanal. Chem. 2020, 878, 114631. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Kosynkin, D.V.; Higginbotham, A.L.; Sinitskii, A.; Lomeda, J.R.; Dimiev, A.; Price, B.K.; Tour, J.M. Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons. Nature 2009, 458, 872–876. [Google Scholar] [CrossRef]
- Chen, P.; Xiao, T.Y.; Qian, Y.H.; Li, S.S.; Yu, S.H. A Nitrogen-Doped Graphene/Carbon Nanotube Nanocomposite with Synergistically Enhanced Electrochemical Activity. Adv. Mater. 2013, 25, 3192–3196. [Google Scholar] [CrossRef]
- Choi, C.H.; Chung, M.W.; Kwon, H.C.; Chung, J.H.; Woo, S.I. Nitrogen-Doped Graphene/Carbon Nanotube Self-Assembly for Efficient Oxygen Reduction Reaction in Acid Media. Appl. Catal. B Environ. 2014, 144, 760–766. [Google Scholar] [CrossRef]
- Ratso, S.; Kruusenberg, I.; Vikkisk, M.; Joost, U.; Shulga, E.; Kink, I.; Kallio, T.; Tammeveski, K. Highly Active Nitrogen-Doped Few-Layer Graphene/Carbon Nanotube Composite Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Carbon 2014, 73, 361–370. [Google Scholar] [CrossRef]
- Tian, G.L.; Zhao, M.Q.; Yu, D.S.; Kong, X.Y.; Huang, J.Q.; Zhang, Q.; Wei, F. Nitrogen-Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/Reduction Reaction. Small 2014, 10, 2251–2259. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, W.J.; Zhang, X.; Guo, L.; Hu, J.S.; Wei, Z.D.; Wan, L.J. Engineering Self-Assembled N-Doped Graphene-Carbon Nanotube Composites towards Efficient Oxygen Reduction Electrocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 13605–13609. [Google Scholar] [CrossRef]
- Shui, J.L.; Wang, M.; Du, F.; Dai, L.M. N-Doped Carbon Nanomaterials Are Durable Catalysts for Oxygen Reduction Reaction in Acidic Fuel Cells. Sci. Adv. 2015, 1, 1400129. [Google Scholar] [CrossRef] [PubMed]
- Qazzazie, D.; Halhouli, M.; Yurchenko, O.; Urban, G. Control over Fuel Cell Performance through Modulation of Pore Accessibility: Investigation and Modeling of Carbon Nanotubes Effects on Oxygen Reduction at N-Graphene-Based Nanocomposite. Nanotechnology 2016, 27, 475401. [Google Scholar] [CrossRef]
- Zhang, L.J.; Li, H.J.; Li, K.Z.; Wei, J.F.; Fu, Q.G. Synthesis of Hybrid Carbon Spheres@nitrogen-Doped Graphene/Carbon Nanotubes and Their Oxygen Reduction Activity Performance. RSC Adv. 2016, 6, 32661–32669. [Google Scholar] [CrossRef]
- Fu, Y.; Tian, C.G.; Liu, F.Y.; Wang, L.; Yan, H.J.; Yang, B. An Effective Poly(p-Phenylenevinylene) Polymer Adhesion Route toward Three-Dimensional Nitrogen-Doped Carbon Nanotube/Reduced Graphene Oxide Composite for Direct Electrocatalytic Oxygen Reduction. Nano Res. 2016, 9, 3364–3376. [Google Scholar] [CrossRef]
- Pham, D.T.; Li, B.; Lee, Y.H. Nitrogen-Doped Activated Graphene/SWCNT Hybrid for Oxygen Reduction Reaction. Curr. Appl. Phys. 2016, 16, 1242–1249. [Google Scholar] [CrossRef]
- Faisal, S.N.; Subramaniyam, C.M.; Haque, E.; Islam, M.M.; Noorbehesht, N.; Roy, A.K.; Islam, M.S.; Liu, H.K.; Dou, S.X.; Harris, A.T.; et al. Nanoarchitectured Nitrogen-Doped Graphene/Carbon Nanotube as High Performance Electrodes for Solid State Supercapacitors, Capacitive Deionization, Li-Ion Battery, and Metal-Free Bifunctional Electrocatalysis. ACS Appl. Energy Mater. 2018, 1, 5211–5223. [Google Scholar] [CrossRef]
- Xue, L.F.; Li, Y.C.; Liu, X.F.; Liu, Q.T.; Shang, J.X.; Duan, H.P.; Dai, L.M.; Shui, J.L. Zigzag Carbon as Efficient and Stable Oxygen Reduction Electrocatalyst for Proton Exchange Membrane Fuel Cells. Nat. Commun. 2018, 9, 3819. [Google Scholar] [CrossRef]
- Kong, F.T.; Qiao, Y.; Zhang, C.Q.; Fan, X.H.; Zhao, Q.B.; Kong, A.G.; Shan, Y.K. Oriented Synthesis of Pyridinic-N Dopant within the Highly Efficient Multifunction Carbon-Based Materials for Oxygen Transformation and Energy Storage. ACS Sustain. Chem. Eng. 2020, 8, 10431–10443. [Google Scholar] [CrossRef]
- McCreery, R.L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef]
- Jee, Y.; Karimaghaloo, A.; MacedoAndrade, A.; Moon, H.; Li, Y.; Han, J.W.; Ji, S.; Ishihara, H.; Su, P.C.; Cha, S.W.; et al. Graphene-Based Oxygen Reduction Electrodes for Low Temperature Solid Oxide Fuel Cells. Fuel Cells 2017, 17, 344–352. [Google Scholar] [CrossRef]
- Farzaneh, A.; Goharshadi, E.K.; Gharibi, H.; Saghatoleslami, N.; Ahmadzadeh, H. Insights on the Superior Performance of Nanostructured Nitrogen-Doped Reduced Graphene Oxide in Comparison with Commercial Pt/C as Cathode Electrocatalyst Layer of Passive Direct Methanol Fuel Cell. Electrochim. Acta 2019, 306, 220–228. [Google Scholar] [CrossRef]
- Ma, G.X.; Zhao, J.H.; Zheng, J.F.; Zhu, Z.P. Synthesis of nitrogen-doped graphene and its catalytic activity for the oxygen reduction reaction in fuel cells. New Carbon Mater. 2012, 27, 258–265. [Google Scholar] [CrossRef]
- He, C.Y.; Li, Z.S.; Cai, M.L.; Cai, M.; Wang, J.Q.; Tian, Z.Q.; Zhang, X.; Shen, P.K. A Strategy for Mass Production of Self-Assembled Nitrogen-Doped Graphene as Catalytic Materials. J. Mater. Chem. A Mater. 2013, 1, 1401–1406. [Google Scholar] [CrossRef]
- Liu, X.F.; Antonietti, M. Moderating Black Powder Chemistry for the Synthesis of Doped and Highly Porous Graphene Nanoplatelets and Their Use in Electrocatalysis. Adv. Mater. 2013, 25, 6284–6290. [Google Scholar] [CrossRef]
- Du, D.H.; Li, P.C.; Ouyang, J.Y. Nitrogen-Doped Reduced Graphene Oxide Prepared by Simultaneous Thermal Reduction and Nitrogen Doping of Graphene Oxide in Air and Its Application as an Electrocatalyst. ACS Appl. Mater. Interfaces 2015, 7, 26952–26958. [Google Scholar] [CrossRef]
- Manju, V.; Vusa, C.S.R.; Arumugam, P.; Berchmans, S. A Facile and Versatile Electrochemical Tuning of Graphene for Oxygen Reduction Reaction in Acidic, Neutral and Alkali Media. ChemistrySelect 2017, 2, 8541–8552. [Google Scholar] [CrossRef]
- Chen, P.W.; Xu, C.X.; Yin, H.; Gao, X.; Qu, L.T. Shock Induced Conversion of Carbon Dioxide to Few Layer Graphene. Carbon 2017, 115, 471–476. [Google Scholar] [CrossRef]
- Tao, H.C.; Yan, C.; Robertson, A.W.; Gao, Y.N.; Ding, J.J.; Zhang, Y.Q.; Ma, T.; Sun, Z.Y. N-Doping of Graphene Oxide at Low Temperature for the Oxygen Reduction Reaction. Chem. Commun. 2017, 53, 873–876. [Google Scholar] [CrossRef]
- Kumar, S.; Gonen, S.; Friedman, A.; Elbaz, L.; Nessim, G.D. Doping and Reduction of Graphene Oxide Using Chitosan-Derived Volatile N-Heterocyclic Compounds for Metal-Free Oxygen Reduction Reaction. Carbon 2017, 120, 419–426. [Google Scholar] [CrossRef]
- Ustavytska, O.; Kurys, Y.; Koshechko, V.; Pokhodenko, V. One-Step Electrochemical Preparation of Multilayer Graphene Functionalized with Nitrogen. Nanoscale Res. Lett. 2017, 12, 175. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Yu, F.; Zhu, M.Y.; Ma, C.H.; Zhao, D.; Wang, C.; Zhou, A.M.; Dai, B.; Ji, J.Y.; Guo, X.H. N-Doping of Plasma Exfoliated Graphene Oxide via Dielectric Barrier Discharge Plasma Treatment for the Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2018, 6, 2011–2017. [Google Scholar] [CrossRef]
- Lemes, G.; Sebastian, D.; Pastor, E.; Lazard, M.J. N-Doped Graphene Catalysts with High Nitrogen Concentration for the Oxygen Reduction Reaction. J. Power Sources 2019, 438, 227036. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.X.; Wu, Y.; Zhao, S.; Wang, Z.; Wang, S.C. Nitrogen-Doped Graphene Prepared by a Millisecond Photo-Thermal Process and Its Applications. Org Electron 2018, 56, 221–231. [Google Scholar] [CrossRef]
- Kakaei, K.; Ghadimi, G. A Green Method for Nitrogen-Doped Graphene and Its Application for Oxygen Reduction Reaction in Alkaline Media. Mater. Technol. 2021, 36, 46–53. [Google Scholar] [CrossRef]
- Dan, M.; Vulcu, A.; Porav, S.A.; Leostean, C.; Borodi, G.; Cadar, O.; Berghian-Grosan, C. Eco-Friendly Nitrogen-Doped Graphene Preparation and Design for the Oxygen Reduction Reaction. Molecules 2021, 26, 3858. [Google Scholar] [CrossRef]
- Shim, Y.; Han, J.; Sa, Y.J.; Lee, S.; Choi, K.; Oh, J.; Kim, S.; Joo, S.H.; Park, S. Electrocatalytic Performances of Heteroatom-Containing Functionalities in N-Doped Reduced Graphene Oxides. J. Ind. Eng. Chem. 2016, 42, 149–156. [Google Scholar] [CrossRef]
- Kim, S.; Choi, K.; Shim, Y.; Lee, S.; Park, S. The Effect of KOH Treatment on the Chemical Structure and Electrocatalytic Activity of Reduced Graphene Oxide Materials. Chem. A Eur. J. 2016, 22, 11435–11440. [Google Scholar] [CrossRef]
- Kim, H.W.; Park, H.; Roh, J.S.; Shin, J.E.; Lee, T.H.; Zhang, L.; Cho, Y.H.; Yoon, H.W.; Bukas, V.J.; Guo, J.H.; et al. Carbon Defect Characterization of Nitrogen-Doped Reduced Graphene Oxide Electrocatalysts for the Two-Electron Oxygen Reduction Reaction. Chem. Mater. 2019, 31, 3967–3973. [Google Scholar] [CrossRef]
- Fan, X.F.; Zheng, W.T.; Kuo, J.L. Oxygen Reduction Reaction on Active Sites of Heteroatom-Doped Graphene. RSC Adv. 2013, 3, 5498–5505. [Google Scholar] [CrossRef]
- del Cueto, M.; Ocon, P.; Poyato, J.M.L. Comparative Study of Oxygen Reduction Reaction Mechanism on Nitrogen-, Phosphorus-, and Boron-Doped Graphene Surfaces for Fuel Cell Applications. J. Phys. Chem. C 2015, 119, 2004–2009. [Google Scholar] [CrossRef]
- Gracia-Espino, E. Behind the Synergistic Effect Observed on Phosphorus Nitrogen Codoped Graphene during the Oxygen Reduction Reaction. J. Phys. Chem. C 2016, 120, 27849–27857. [Google Scholar] [CrossRef]
- Flyagina, I.S.; Hughes, K.J.; Mielczarek, D.C.; Ingham, D.B.; Pourkashanian, M. Identifying the Catalytic Active Sites in Heteroatom-Doped Graphene for the Oxygen Reduction Reaction. Fuel Cells 2016, 16, 568–576. [Google Scholar] [CrossRef]
- Dobrota, A.S.; Pasti, I.A.; Mentus, S.V.; Skorodumova, N. V A DFT Study of the Interplay between Dopants and Oxygen Functional Groups over the Graphene Basal Plane—Implications in Energy-Related Applications. Phys. Chem. Chem. Phys. 2017, 19, 8530–8540. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Shu, H.B.; Liu, X.T.; Shi, Z.Y.; Liang, P.; Chen, X.S. Electrocatalytic Activity and Design Principles of Heteroatom-Doped Graphene Catalysts for Oxygen-Reduction Reaction. J. Phys. Chem. C 2017, 121, 14434–14442. [Google Scholar] [CrossRef]
- Sinthika, S.; Waghmare, U.V.; Thapa, R. Structural and Electronic Descriptors of Catalytic Activity of Graphene-Based Materials: First-Principles Theoretical Analysis. Small 2018, 14, 1703609. [Google Scholar] [CrossRef]
- Zou, X.L.; Wang, L.Q.; Yakobson, B.I. Mechanisms of the Oxygen Reduction Reaction on B- and/or N-Doped Carbon NanoMaterials with Curvature and Edge Effects. Nanoscale 2018, 10, 1129–1134. [Google Scholar] [CrossRef]
- Aguilar-Galindo, F.; Ocon, P.; Poyato, J.M.L. Exploring the Catalytic Efficiency of X-Doped (X = B, N, P) Graphene in Oxygen Reduction Reaction: Influence of Solvent and Border Effects. Int. J. Quantum Chem. 2018, 118, e25579. [Google Scholar] [CrossRef]
- Chen, X.; Ge, F.; Lai, N.J. N, O Co-Doped Graphene as a Potential Catalyst for the Oxygen Reduction Reaction. J. Electrochem. Soc. 2019, 166, F847–F851. [Google Scholar] [CrossRef]
- Yang, N.; Li, L.; Li, J.; Ding, W.; Wei, Z.D. Modulating the Oxygen Reduction Activity of Heteroatom-Doped Carbon Catalysts via the Triple Effect: Charge, Spin Density and Ligand Effect. Chem. Sci. 2018, 9, 5795–5804. [Google Scholar] [CrossRef]
- Zhang, X.M.; Xia, Z.X.; Li, H.Q.; Yu, S.S.; Wang, S.L.; Sun, G.Q. The Mechanism and Activity of Oxygen Reduction Reaction on Single Atom Doped Graphene: A DFT Method. RSC Adv. 2019, 9, 7086–7093. [Google Scholar] [CrossRef]
- Doronin, S.V.; Volykhov, A.A.; Inozemtseva, A.I.; Usachov, D.Y.; Yashina, L.V. Comparative Catalytic Activity of Graphene Imperfections in Oxygen Reduction Reaction. J. Phys. Chem. C 2020, 124, 6038–6053. [Google Scholar] [CrossRef]
- Cao, L.J.; Yang, M.Y.; Lu, Z.G.; Pan, H. Exploring an Effective Oxygen Reduction Reaction Catalyst via 4e(−) Process Based on Waved-Graphene. Sci. China Mater. 2017, 60, 739–746. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Z.W.; Zhu, T.Y.; Shu, D.J.; Hou, Z.F.; Terakura, K. Breaking the Scaling Relations for Oxygen Reduction Reaction on Nitrogen-Doped Graphene by Tensile Strain. Carbon 2018, 139, 129–136. [Google Scholar] [CrossRef]
- Yang, Z.; Yao, Z.; Li, G.F.; Fang, G.Y.; Nie, H.G.; Liu, Z.; Zhou, X.M.; Chen, X.; Huang, S.M. Sulfur-Doped Graphene as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction. ACS Nano 2012, 6, 205–211. [Google Scholar] [CrossRef]
- Jeon, I.Y.; Zhang, S.; Zhang, L.P.; Choi, H.J.; Seo, J.M.; Xia, Z.H.; Dai, L.M.; Baek, J.B. Edge-Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Adv. Mater. 2013, 25, 6138–6145. [Google Scholar] [CrossRef]
- Stergiou, A.; Perivoliotis, D.K.; Tagmatarchis, N. (Photo)Electrocatalysis of Molecular Oxygen Reduction by S-Doped Graphene Decorated with a Star-Shaped Oligothiophene. Nanoscale 2019, 11, 7335–7346. [Google Scholar] [CrossRef]
- Zhang, L.P.; Niu, J.B.; Li, M.T.; Xia, Z.H. Catalytic Mechanisms of Sulfur-Doped Graphene as Efficient Oxygen Reduction Reaction Catalysts for Fuel Cells. J. Phys. Chem. C 2014, 118, 3545–3553. [Google Scholar] [CrossRef]
- Lu, Z.S.; Li, S.; Liu, C.; He, C.Z.; Yang, X.W.; Ma, D.W.; Xu, G.L.; Yang, Z.X. Sulfur Doped Graphene as a Promising Metal-Free Electrocatalyst for Oxygen Reduction Reaction: A DFT-D Study. RSC Adv. 2017, 7, 20398–20405. [Google Scholar] [CrossRef]
- Garcia, A.G.; Baltazar, S.E.; Castro, A.H.R.; Robles, J.F.P.; Rubio, A. Influence of S and P Doping in a Graphene Sheet. J. Comput. Theor. Nanosci. 2008, 5, 2221–2229. [Google Scholar] [CrossRef]
- Duan, J.J.; Chen, S.; Jaroniec, M.; Qiao, S.Z. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catal. 2015, 5, 5207–5234. [Google Scholar] [CrossRef]
- Xu, J.X.; Dong, G.F.; Jin, C.H.; Huang, M.H.; Guan, L.H. Sulfur and Nitrogen Co-Doped, Few-Layered Graphene Oxide as a Highly Efficient Electrocatalyst for the Oxygen-Reduction Reaction. ChemSusChem 2013, 6, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Chu, M.; Yang, L.; Deng, W.F.; Tan, Y.M.; Ma, M.; Xie, Q.J. Synthesis and Oxygen Reduction Properties of Three-Dimensional Sulfur-Doped Graphene Networks. Chem. Commun. 2014, 50, 6382–6385. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Yang, F.; Xu, C.; Cao, Y.; Zhong, H.L.; Li, Y.F. Sulfur-Doped Porous Graphene Frameworks as an Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. Mater. Lett. 2018, 214, 209–212. [Google Scholar] [CrossRef]
- Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z. Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance. Angew. Chem. Int. Ed. 2012, 51, 11496–11500. [Google Scholar] [CrossRef]
- Poh, H.L.; Simek, P.; Sofer, Z.; Pumera, M. Sulfur-Doped Graphene via Thermal Exfoliation of Graphite Oxide in H2S, SO2, or CS2 Gas. ACS Nano 2013, 7, 5262–5272. [Google Scholar] [CrossRef]
- Higgins, D.C.; Hoque, M.A.; Hassan, F.; Choi, J.Y.; Kim, B.; Chen, Z.W. Oxygen Reduction on Graphene-Carbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur. ACS Catal. 2014, 4, 2734–2740. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Amini, A. Carbon Black/Sulfur-Doped Graphene Composite Prepared by Pyrolysis of Graphene Oxide with Sodium Polysulfide for Oxygen Reduction Reaction. Electrochim. Acta 2014, 142, 51–60. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.H.; Xu, X.; Yang, Z.; Liu, Z.; Zhang, L.J.; Xu, X.J.; Chen, Y.; Huang, S.M. Sulfur-Doped Porous Reduced Graphene Oxide Hollow Nanosphere Frameworks as Metal-Free Electrocatalysts for Oxygen Reduction Reaction and as Supercapacitor Electrode Materials. Nanoscale 2014, 6, 13740–13747. [Google Scholar] [CrossRef]
- Park, J.E.; Jang, Y.J.; Kim, Y.J.; Song, M.S.; Yoon, S.; Kim, D.H.; Kim, S.J. Sulfur-Doped Graphene as a Potential Alternative Metal-Free Electrocatalyst and Pt-Catalyst Supporting Material for Oxygen Reduction Reaction. Phys. Chem. Chem. Phys. 2014, 16, 103–109. [Google Scholar] [CrossRef]
- Wang, J.C.; Ma, R.G.; Zhou, Z.Z.; Liu, G.H.; Liu, Q. Magnesiothermic Synthesis of Sulfur-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Oxygen Reduction. Sci. Rep. 2015, 5, 9304. [Google Scholar] [CrossRef]
- Wu, X.B.; Xie, Z.Y.; Sun, M.; Lei, T.; Zuo, Z.M.; Xie, X.M.; Liang, Y.L.; Huang, Q.Z. Edge-Rich and (N, S)-Doped 3D Porous Graphene as an Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. RSC Adv. 2016, 6, 90384–90387. [Google Scholar] [CrossRef]
- Yazdi, A.Z.; Roberts, E.P.L.; Sundararaj, U. Nitrogen/Sulfur Co-Doped Helical Graphene Nanoribbons for Efficient Oxygen Reduction in Alkaline and Acidic Electrolytes. Carbon 2016, 100, 99–108. [Google Scholar] [CrossRef]
- Legrand, U.; Meunier, J.L.; Berk, D. Addition of Sulphur to Graphene Nanoflakes Using Thermal Plasma for Oxygen Reduction Reaction in Alkaline Medium. Plasma Chem. Plasma Process. 2017, 37, 841–856. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, H.H.; Yang, W.J.; Fu, C.P.; Chen, L.; Kuang, Y.F. Three-Dimensional Hierarchical Porous Nitrogen and Sulfur-Codoped Graphene Nanosheets for Oxygen Reduction in Both Alkaline and Acidic Media. ChemCatChem 2017, 9, 987–996. [Google Scholar] [CrossRef]
- Yao, Y.; Guo, Y.S.; Du, W.; Tong, X.Y.; Zhang, X. In Situ Synthesis of Sulfur-Doped Graphene Quantum Dots Decorated Carbon Nanoparticles Hybrid as Metal-Free Electrocatalyst for Oxygen Reduction Reaction. J. Mater. Sci. Mater. Electron. 2018, 29, 17695–17705. [Google Scholar] [CrossRef]
- Zhang, J.; Song, X.M.; Li, P.; Wu, Z.X.; Wu, Y.M.; Wang, S.; Liu, X. Sulfur, Nitrogen Co-Doped Nanocomposite of Graphene and Carbon Nanotube as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. J. Taiwan Inst. Chem. Eng. 2018, 93, 336–341. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Wu, Z.X.; Wang, S.; Wu, Y.M.; Liu, X. Heteroatom (Nitrogen/Sulfur)-Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction and Evolution Reactions. Catalysts 2018, 8, 475. [Google Scholar] [CrossRef]
- Lee, J.; Noh, S.; Pham, N.D.; Shim, J.H. Top-down Synthesis of S-Doped Graphene Nanosheets by Electrochemical Exfoliation of Graphite: Metal-Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions. Electrochim. Acta 2019, 313, 1–9. [Google Scholar] [CrossRef]
- Chen, W.Y.; Ge, C.; Li, J.T.; Beckham, J.L.; Yuan, Z.; Wyss, K.M.; Advincula, P.A.; Eddy, L.; Kittrell, C.; Chen, J.H.; et al. Heteroatom-Doped Flash Graphene. ACS Nano 2022, 16, 6646–6656. [Google Scholar] [CrossRef]
- Ma, Z.L.; Dou, S.; Shen, A.L.; Tao, L.; Dai, L.M.; Wang, S.Y. Sulfur-Doped Graphene Derived from Cycled Lithium-Sulfur Batteries as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2015, 54, 1888–1892. [Google Scholar] [CrossRef]
- Wong, C.H.A.; Sofer, Z.; Klimova, K.; Pumera, M. Microwave Exfoliation of Graphite Oxides in H2S Plasma for the Synthesis of Sulfur-Doped Graphenes as Oxygen Reduction Catalysts. ACS Appl. Mater. Interfaces 2016, 8, 31849–31855. [Google Scholar] [CrossRef] [PubMed]
- Bag, S.; Mondal, B.; Das, A.K.; Raj, C.R. Nitrogen and Sulfur Dual-Doped Reduced Graphene Oxide: Synergistic Effect of Dopants Towards Oxygen Reduction Reaction. Electrochim. Acta 2015, 163, 16–23. [Google Scholar] [CrossRef]
- Klingele, M.; Pham, C.; Vuyyuru, K.R.; Britton, B.; Holdcroft, S.; Fischer, A.; Thiele, S. Sulfur Doped Reduced Graphene Oxide as Metal-Free Catalyst for the Oxygen Reduction Reaction in Anion and Proton Exchange Fuel Cells. Electrochem. Commun. 2017, 77, 71–75. [Google Scholar] [CrossRef]
- Van Pham, C.; Klingele, M.; Britton, B.; Vuyyuru, K.R.; Unmuessig, T.; Holdcroft, S.; Fischer, A.; Thiele, S. Tridoped Reduced Graphene Oxide as a Metal-Free Catalyst for Oxygen Reduction Reaction Demonstrated in Acidic and Alkaline Polymer Electrolyte Fuel Cells. Adv. Sustain. Syst. 2017, 1, 1600038. [Google Scholar] [CrossRef]
- Chabu, J.M.; Wang, L.Q.; Tang, F.Y.; Zeng, K.; Sheng, J.P.; Walle, M.D.; Deng, L.; Liu, Y.N. Synthesis of Three-Dimensional Nitrogen and Sulfur Dual-Doped Graphene Aerogels as an Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem 2017, 4, 1885–1890. [Google Scholar] [CrossRef]
- Liu, F.; Niu, F.S.; Chen, T.; Han, J.R.; Liu, Z.; Yang, W.R.; Xu, Y.H.; Liu, J.Q. One-Step Electrochemical Strategy for in-Situ Synthesis of S, N-Codoped Graphene as Metal-Free Catalyst for Oxygen Reduction Reaction. Carbon 2018, 134, 316–325. [Google Scholar] [CrossRef]
- Fan, T.J.; Zhang, G.X.; Jian, L.F.; Murtaza, I.; Meng, H.; Liu, Y.D.; Min, Y. Facile Synthesis of Defect-Rich Nitrogen and Sulfur Co-Doped Graphene Quantum Dots as Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. J. Alloys Compd. 2019, 792, 844–850. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Mei, T.; Hu, X.G.; Liu, D.W.; Wang, J.C.; Hao, M.; Li, J.H.; Wang, J.Y.; Wang, X.B. Low-Temperature and One-Pot Synthesis of Sulfurized Graphene Nanosheets via in Situ Doping and Their Superior Electrocatalytic Activity for Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2014, 2, 20714–20722. [Google Scholar] [CrossRef]
- Chen, L.S.; Cui, X.Z.; Wang, Y.X.; Wang, M.; Qiu, R.H.; Shu, Z.; Zhang, L.X.; Hua, Z.L.; Cui, F.M.; Weia, C.Y.; et al. One-Step Synthesis of Sulfur Doped Graphene Foam for Oxygen Reduction Reactions. Dalton Trans. 2014, 43, 3420–3423. [Google Scholar] [CrossRef]
- Zhai, C.Y.; Sun, M.J.; Zhu, M.S.; Song, S.Q.; Jiang, S.J. A New Method to Synthesize Sulfur-Doped Graphene as Effective Metal-Free Electrocatalyst for Oxygen Reduction Reaction. Appl. Surf. Sci. 2017, 407, 503–508. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, J.S.; Chen, X.B.; Xiong, H.M. Heteroatom-Doped Carbon Dots Based Catalysts for Oxygen Reduction Reactions. J. Colloid. Interface Sci. 2019, 537, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Vasiliev, V.P.; Kotkin, A.S.; Kochergin, V.K.; Manzhos, R.A.; Krivenko, A.G. Oxygen Reduction Reaction at Few-Layer Graphene Structures Obtained via Plasma-Assisted Electrochemical Exfoliation of Graphite. J. Electroanal. Chem. 2019, 851, 113440. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Han, H.S.; Jeon, S. One-Step Chemical Reduction of Graphene Oxide with Oligothiophene for Improved Electrocatalytic Oxygen Reduction Reactions. Carbon 2013, 61, 164–172. [Google Scholar] [CrossRef]
- Jeon, I.Y.; Choi, H.J.; Jung, S.M.; Seo, J.M.; Kim, M.J.; Dai, L.M.; Baek, J.B. Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393. [Google Scholar] [CrossRef]
- Abdolmaleki, A.; Mallakpour, S.; Mahmoudian, M. Preparation and Evaluation of Edge Selective Sulfonated Graphene by Chlorosulfuric Acid as an Active Metal- Free Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. ChemistrySelect 2017, 2, 11211–11217. [Google Scholar] [CrossRef]
- Chua, C.K.; Pumera, M. Monothiolation and Reduction of Graphene Oxide via One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction. ACS Nano 2015, 9, 4193–4199. [Google Scholar] [CrossRef]
- Pal, S.; Bawari, S.; Vineesh, T.V.; Shyaga, N.; Narayanan, T.N. Selenium-Coupled Reduced Graphene Oxide as Single-Atom Site Catalyst for Direct Four-Electron Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2019, 2, 3624–3632. [Google Scholar] [CrossRef]
- Agnoli, S.; Favaro, M. Doping Graphene with Boron: A Review of Synthesis Methods, Physicochemical Characterization, and Emerging Applications. J. Mater. Chem. A Mater. 2016, 4, 5002–5025. [Google Scholar] [CrossRef]
- Kaukonen, M.; Krasheninnikov, A.V.; Kauppinen, E.; Nieminen, R.M. Doped Graphene as a Material for Oxygen Reduction Reaction in Hydrogen Fuel Cells: A Computational Study. ACS Catal. 2013, 3, 159–165. [Google Scholar] [CrossRef]
- Fazio, G.; Ferrighi, L.; Di Valentin, C. Boron-Doped Graphene as Active Electrocatalyst for Oxygen Reduction Reaction at a Fuel-Cell Cathode. J. Catal. 2014, 318, 203–210. [Google Scholar] [CrossRef]
- Ferrighi, L.; Datteo, M.; Di Valentin, C. Boosting Graphene Reactivity with Oxygen by Boron Doping: Density Functional Theory Modeling of the Reaction Path. J. Phys. Chem. C 2014, 118, 223–230. [Google Scholar] [CrossRef]
- Wang, L.; Dong, H.L.; Guo, Z.Y.; Zhang, L.L.; Hou, T.J.; Li, Y.Y. Potential Application of Novel Boron-Doped Graphene Nanoribbon as Oxygen Reduction Reaction Catalyst. J. Phys. Chem. C 2016, 120, 17427–17434. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; Zhidkov, I.S.; Kukharenko, A.I.; Slesarev, A.I.; Zatsepin, A.F.; Cholakh, S.O.; Kurmaev, E.Z. Stability of Boron-Doped Graphene/Copper Interface: DFT, XPS and OSEE Studies. Appl. Surf. Sci. 2018, 441, 978–983. [Google Scholar] [CrossRef]
- Sheng, Z.H.; Gao, H.L.; Bao, W.J.; Wang, F.B.; Xia, X.H. Synthesis of Boron Doped Graphene for Oxygen Reduction Reaction in Fuel Cells. J. Mater. Chem 2012, 22, 390–395. [Google Scholar] [CrossRef]
- Norskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Tam, T.V.; Kang, S.G.; Kim, M.H.; Lee, S.G.; Hur, S.H.; Chung, J.S.; Choi, W.M. Novel Graphene Hydrogel/B-Doped Graphene Quantum Dots Composites as Trifunctional Electrocatalysts for Zn-Air Batteries and Overall Water Splitting. Adv. Energy Mater. 2019, 9, 1900945. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S.Z. Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angew. Chem. Int. Ed. 2013, 52, 3110–3116. [Google Scholar] [CrossRef]
- Choi, C.H.; Chung, M.W.; Kwon, H.C.; Park, S.H.; Woo, S.I. B, N- and P, N-Doped Graphene as Highly Active Catalysts for Oxygen Reduction Reactions in Acidic Media. J. Mater. Chem. A Mater. 2013, 1, 3694–3699. [Google Scholar] [CrossRef]
- Zuo, Z.C.; Jiang, Z.Q.; Manthiram, A. Porous B-Doped Graphene Inspired by Fried-Ice for Supercapacitors and Metal-Free Catalysts. J. Mater. Chem. A Mater. 2013, 1, 13476–13483. [Google Scholar] [CrossRef]
- Jo, G.; Sanetuntikul, J.; Shanmugam, S. Boron and Phosphorous-Doped Graphene as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction in Alkaline Medium. RSC Adv. 2015, 5, 53637–53643. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Zhao, X.S.; Tian, X.N.; Luo, L.J.; Fang, J.H.; Gao, H.Q.; Jiang, Z.J. Hydrothermal Synthesis of Boron and Nitrogen Codoped Hollow Graphene Microspheres with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2015, 7, 19398–19407. [Google Scholar] [CrossRef] [PubMed]
- Tien, H.N.; Kocabas, C.; Hur, S.H. One-Step Codoping of Reduced Graphene Oxide Using Boric and Nitric Acid Mixture and Its Use in Metal-Free Electrocatalyst. Mater. Lett. 2015, 143, 205–208. [Google Scholar] [CrossRef]
- Xu, C.C.; Su, Y.; Liu, D.J.; He, X.Q. Three-Dimensional N,B-Doped Graphene Aerogel as a Synergistically Enhanced Metal-Free Catalyst for the Oxygen Reduction Reaction. Phys. Chem. Chem. Phys. 2015, 17, 25440–25448. [Google Scholar] [CrossRef]
- Tabassum, H.; Zou, R.Q.; Mahmood, A.; Liang, Z.B.; Guo, S.J. A Catalyst-Free Synthesis of B, N Co-Doped Graphene Nanostructures with Tunable Dimensions as Highly Efficient Metal Free Dual Electrocatalysts. J. Mater. Chem. A Mater. 2016, 4, 16469–16475. [Google Scholar] [CrossRef]
- Jang, A.R.; Lee, Y.W.; Lee, S.S.; Hong, J.; Beak, S.H.; Pak, S.; Lee, J.; Shin, H.S.; Ahn, D.; Hong, W.K.; et al. Electrochemical and Electrocatalytic Reaction Characteristics of Boron-Incorporated Graphene via a Simple Spin-on Dopant Process. J. Mater. Chem. A Mater. 2018, 6, 7351–7356. [Google Scholar] [CrossRef]
- Gao, P.P.; Sun, M.; Wu, X.B.; Zhou, S.Z.; Deng, X.T.; Xie, Z.Y.; Xiao, L.; Jiang, L.H.; Huang, Q.Z. (B,N)-Doped 3D Porous Graphene-CNTs Synthesized by Chemical Vapor Deposition as a Bifunctional Catalyst for ORR and HER. RSC Adv. 2018, 8, 26934–26937. [Google Scholar] [CrossRef]
- Nazer, E.A.A.; Muthukrishnan, A. Synergistic Effect on BCN NanoMaterials for the Oxygen Reduction Reaction—A Kinetic and Mechanistic Analysis to Explore the Active Sites. Catal. Sci. Technol. 2020, 10, 6659–6668. [Google Scholar] [CrossRef]
- Han, T.H.; Huang, Y.K.; Tan, A.T.L.; Dravid, V.P.; Huang, J.X. Steam Etched Porous Graphene Oxide Network for Chemical Sensing. J. Am. Chem. Soc. 2011, 133, 15264–15267. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Yen, C.H.; Fu, S.F.; Yang, G.H.; Zhu, C.Z.; Du, D.; Wo, P.C.; Cheng, X.N.; Yang, J.; Wai, C.M.; et al. One-Pot Synthesis of B-Doped Three-Dimensional Reduced Graphene Oxide via Supercritical Fluid for Oxygen Reduction Reaction. Green Chem. 2015, 17, 3552–3560. [Google Scholar] [CrossRef]
- Van Tam, T.; Kang, S.G.; Babu, K.F.; Oh, E.S.; Lee, S.G.; Choi, W.M. Synthesis of B-Doped Graphene Quantum Dots as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2017, 5, 10537–10543. [Google Scholar] [CrossRef]
- Yao, Z.H.; Hu, M.C.; Iqbal, Z.; Wang, X.Q. N-8(-) Polynitrogen Stabilized on Boron-Doped Graphene as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS Catal. 2020, 10, 160–167. [Google Scholar] [CrossRef]
- Lan, R.S.; Liu, L.H.; Feng, H.; Chen, B.Y.; Shi, X.D.; Hong, J.M. Boron-Doped Reduced Graphene Oxide as an Efficient Cathode in Microbial Fuel Cells for Biological Toxicity Detection. Bioresour. Technol. 2024, 403, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Cao, X.H.; Ping, J.F.; Wang, Y.X.; Lin, T.T.; Huang, X.; Ma, Q.L.; Wang, F.K.; He, C.B.; Zhang, H. Electrochemical Doping of Three-Dimensional Graphene Networks Used as Efficient Electrocatalysts for Oxygen Reduction Reaction. Nanoscale 2015, 7, 9394–9398. [Google Scholar] [CrossRef]
- Li, R.; Wei, Z.D.; Gou, X.L.; Xu, W. Phosphorus-Doped Graphene Nanosheets as Efficient Metal-Free Oxygen Reduction Electrocatalysts. RSC Adv. 2013, 3, 9978–9984. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y.L. Synthesis of Phosphorus-Doped Graphene and Its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries. Adv. Mater. 2013, 25, 4932–4937. [Google Scholar] [CrossRef]
- Razmjooei, F.; Singh, K.P.; Song, M.Y.; Yu, J.S. Enhanced Electrocatalytic Activity Due to Additional Phosphorous Doping in Nitrogen and Sulfur-Doped Graphene: A Comprehensive Study. Carbon 2014, 78, 257–267. [Google Scholar] [CrossRef]
- Balaji, S.S.; Ganesh, P.A.; Moorthy, M.; Sathish, M. Efficient Electrocatalytic Activity for Oxygen Reduction Reaction by Phosphorus-Doped Graphene Using Supercritical Fluid Processing. Bull. Mater. Sci. 2020, 43, 151. [Google Scholar] [CrossRef]
- Li, C.L.; Chen, Z.Y.; Kong, A.G.; Ni, Y.Y.; Kong, F.T.; Shan, Y.K. High-Rate Oxygen Electroreduction over Metal-Free Graphene Foams Embedding P-N Coupled Moieties in Acidic Media. J. Mater. Chem. A Mater. 2018, 6, 4145–4151. [Google Scholar] [CrossRef]
- Jang, D.; Lee, S.; Kim, S.; Choi, K.; Park, S.; Oh, J. Production of P, N Co-Doped Graphene-Based Materials by a Solution Process and Their Electrocatalytic Performance for Oxygen Reduction Reaction. ChemNanoMat 2018, 4, 118–123. [Google Scholar] [CrossRef]
- Ge, L.P.; Wang, D.; Yang, P.X.; Xu, H.; Xiao, L.H.; Zhang, G.X.; Lu, X.Y.; Duan, Z.Z.; Meng, F.; Zhang, J.Q.; et al. Graphite N-C-P Dominated Three-Dimensional Nitrogen and Phosphorus Co-Doped Holey Graphene Foams as High-Efficiency Electrocatalysts for Zn-Air Batteries. Nanoscale 2019, 11, 17010–17017. [Google Scholar] [CrossRef]
- Tong, X.; Cherif, M.; Zhang, G.X.; Zhan, X.X.; Ma, J.G.; Almesrati, A.; Vidal, F.; Song, Y.J.; Claverie, J.P.; Sun, S.H. N, P-Codoped Graphene Dots Supported on N-Doped 3D Graphene as Metal-Free Catalysts for Oxygen Reduction. ACS Appl. Mater. Interfaces 2021, 13, 30512–30523. [Google Scholar] [CrossRef]
- Poon, K.C.; Wan, W.Y.; Su, H.B.; Sato, H. One-Minute Synthesis via Electroless Reduction of Amorphous Phosphorus-Doped Graphene for Oxygen Reduction Reaction. ACS Appl. Energy Mater. 2021, 4, 5388–5391. [Google Scholar] [CrossRef]
- Ex 614 Zhang, X.L.; Lu, Z.S.; Fu, Z.M.; Tang, Y.A.; Ma, D.W.; Yang, Z.X. The Mechanisms of Oxygen Reduction Reaction on Phosphorus Doped Graphene: A First-Principles Study. J. Power Sources 2015, 276, 222–229. [Google Scholar] [CrossRef]
- Bai, X.W.; Zhao, E.J.; Li, K.; Wang, Y.; Jiao, M.G.; He, F.; Sun, X.X.; Sun, H.; Wu, Z.J. Theoretical Insights on the Reaction Pathways for Oxygen Reduction Reaction on Phosphorus Doped Graphene. Carbon 2016, 105, 214–223. [Google Scholar] [CrossRef]
- Yang, N.; Zheng, X.Q.; Li, L.; Li, J.; Wei, Z.D. Influence of Phosphorus Configuration on Electronic Structure and Oxygen Reduction Reactions of Phosphorus-Doped Graphene. J. Phys. Chem. C 2017, 121, 19321–19328. [Google Scholar] [CrossRef]
- Ho, K.I.; Huang, C.H.; Liao, J.H.; Zhang, W.J.; Li, L.J.; Lai, C.S.; Su, C.Y. Fluorinated Graphene as High Performance Dielectric Materials and the Applications for Graphene Nanoelectronics. Sci. Rep. 2014, 4, 7. [Google Scholar] [CrossRef]
- Vineesh, T.V.; Nazrullaa, M.A.; Krishnamoorthy, S.; Narayanan, T.N.; Alwarappan, S. Synergistic Effects of Dopants on the Spin Density of Catalytic Active Centres of N-Doped Fluorinated Graphene for Oxygen Reduction Reaction. Appl. Mater. Today 2015, 1, 74–79. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, Y.J.; Dai, H.C.; Hu, J.T.; Ni, P.J.; Wang, Y.L.; Li, Z. Nitrogen and Fluorine Dual-Doped Mesoporous Graphene: A High-Performance Metal-Free ORR Electrocatalyst with a Super-Low HO2- Yield. Nanoscale 2015, 7, 10584–10589. [Google Scholar] [CrossRef]
- Kakaei, K.; Balavandi, A. Synthesis of Halogen-Doped Reduced Graphene Oxide Nanosheets as Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. J. Colloid. Interface Sci. 2016, 463, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Kakaei, K.; Balavandi, A. Hierarchically Porous Fluorine-Doped Graphene Nanosheets as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Gas Diffusion Electrode. J. Colloid. Interface Sci. 2017, 490, 819–824. [Google Scholar] [CrossRef]
- Guo, J.H.; Zhang, J.G.; Zhao, H.Q.; Fang, Y.S.; Ming, K.; Huang, H.; Chen, J.M.; Wang, X.C. Fluorine-Doped Graphene with an Outstanding Electrocatalytic Performance for Efficient Oxygen Reduction Reaction in Alkaline Solution. R Soc. Open. Sci. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.L.; Li, W.; Jin, H.L.; Yu, X.C.; Bu, Y.F.; He, Y.H.; Huang, H.H.; Wang, S.; Wang, J.C. The Enhanced Electrocatalytic Activity of Graphene Co-Doped with Chlorine and Fluorine Atoms. Electrochim. Acta 2015, 177, 36–42. [Google Scholar] [CrossRef]
- Jeon, I.Y.; Choi, H.J.; Choi, M.; Seo, J.M.; Jung, S.M.; Kim, M.J.; Zhang, S.; Zhang, L.P.; Xia, Z.H.; Dai, L.M.; et al. Facile, Scalable Synthesis of Edge-Halogenated Graphene Nanoplatelets as Efficient Metal-Free Eletrocatalysts for Oxygen Reduction Reaction. Sci. Rep. 2013, 3, 1810. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.H.; Wang, D.W.; Zeng, Q.C.; Li, Y.; Gentle, I.R. Solution Phase Synthesis of Halogenated Graphene and the Electrocatalytic Activity for Oxygen Reduction Reaction. Chin. J. Catal. 2014, 35, 884–890. [Google Scholar] [CrossRef]
- Wang, D.W.; Su, D.S. Heterogeneous NanoCarbon Materials for Oxygen Reduction Reaction. Energy Environ. Sci. 2014, 7, 576–591. [Google Scholar] [CrossRef]
- Zhan, Y.F.; Huang, J.L.; Lin, Z.P.; Yu, X.; Zeng, D.R.; Zhang, X.X.; Xie, F.Y.; Zhang, W.H.; Chen, J.; Meng, H. Iodine/Nitrogen Co-Doped Graphene as Metal Free Catalyst for Oxygen Reduction Reaction. Carbon 2015, 95, 930–939. [Google Scholar] [CrossRef]
- Marinoiu, A.; Raceanu, M.; Carcadea, E.; Varlam, M.; Balan, D.; Ion-Ebrasu, D.; Stefanescu, I.; Enachescu, M. Iodine-Doped Graphene for Enhanced Electrocatalytic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell Applications. J. Electrochem. Energy Convers. Storage 2017, 14, 031001. [Google Scholar] [CrossRef]
- Marinoiu, A.; Raceanu, M.; Carcadea, E.; Varlam, M.; Soare, A.; Stefanescu, I. Doped Graphene as Non-Metallic Catalyst for Fuel Cells. Mater. Sci. Medzg. 2017, 23, 108–113. [Google Scholar] [CrossRef]
- Marinoiu, A.; Raceanu, M.; Carcadea, E.; Varlam, M.; Stefanescu, L. Low Cost Iodine Intercalated Graphene for Fuel Cells Electrodes. Appl. Surf. Sci. 2017, 424, 93–100. [Google Scholar] [CrossRef]
- Jeon, I.Y.; Noh, H.J.; Baek, J.B. Direct and Efficient Conversion from Low-Quality Graphite to High-Quality Graphene Nanoplatelets. Flatchem 2018, 12, 10–16. [Google Scholar] [CrossRef]
- Marinoiu, A.; Raceanu, M.; Carcadea, E.; Varlam, M. Iodine-Doped Graphene—Catalyst Layer in PEM Fuel Cells. Appl. Surf. Sci. 2018, 456, 238–245. [Google Scholar] [CrossRef]
- Hoang, V.C.; Dinh, K.N.; Gomes, V.G. Iodine Doped Composite with Biomass Carbon Dots and Reduced Graphene Oxide: A Versatile Bifunctional Electrode for Energy Storage and Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2019, 7, 22650–22662. [Google Scholar] [CrossRef]
- Wang, D.; Hasegawa, S.; Shimizu, M.; Tanaka, J. Synthesis, Doping and Polarized Raman-Spectra of Highly Conducting Polyacetylene. Synth Met 1992, 46, 85–91. [Google Scholar] [CrossRef]
- Zeng, X.R.; Ko, T.M. Structure-Conductivity Relationships of Iodine-Doped Polyaniline. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 1993–2001. [Google Scholar] [CrossRef]
- Wadekar, P.H.; Pethsangave, D.A.; Khose, R.V.; Some, S. Synthesis of Iodine-Functionalized Graphene Electrocatalyst Using Deep Eutectic Solvents for Oxygen Reduction Reaction and Supercapacitors. Energy Technol. 2021, 9, 2000750. [Google Scholar] [CrossRef]
- Marinoiu, A.; Ion-Ebrasu, D.; Soare, A.; Raceanu, M. Iodine-Doped Graphene Oxide: Fast Single-Stage Synthesis and Application as Electrocatalyst. Materials 2022, 15, 6174. [Google Scholar] [CrossRef]
- Hoyt, R.A.; Remillard, E.M.; Cubuk, E.D.; Vecitis, C.D.; Kaxiras, E. Polyiodide-Doped Graphene. J. Phys. Chem. C 2017, 121, 609–615. [Google Scholar] [CrossRef]
- Baek, J.Y.; Jeon, I.Y.; Baek, J.B. Edge-Iodine/Sulfonic Acid-Functionalized Graphene Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2014, 2, 8690–8695. [Google Scholar] [CrossRef]
- Lin, H.L.; Chu, L.; Wang, X.J.; Yao, Z.Q.; Liu, F.; Ai, Y.N.; Zhuang, X.D.; Han, S. Boron, Nitrogen, and Phosphorous Ternary Doped Graphene Aerogel with Hierarchically Porous Structures as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. New J. Chem. 2016, 40, 6022–6029. [Google Scholar] [CrossRef]
- Musico, Y.L.F.; Kakati, N.; Labata, M.F.M.; Ocon, J.D.; Chuang, P.Y.A. One-Pot Hydrothermal Synthesis of Heteroatom Co-Doped with Fluorine on Reduced Graphene Oxide for Enhanced ORR Activity and Stability in Alkaline Media. Mater. Chem. Phys. 2019, 236, 121804. [Google Scholar] [CrossRef]
- Raudsepp, R.; Türk, K.K.; Zarmehri, E.; Joost, U.; Rauwel, P.; Saar, R.; Mäeorg, U.; Dyck, A.; Bron, M.; Chen, Z.M.; et al. Boron and Fluorine Co-Doped Graphene/Few-Walled Carbon Nanotube Composite as Highly Active Electrocatalyst for Oxygen Reduction Reaction. ChemNanoMat 2024, 10, 11. [Google Scholar] [CrossRef]
- Ranganathan, A.; Pedireddi, V.R.; Rao, C.N.R. Hydrothermal Synthesis of Organic Channel Structures: 1:1 Hydrogen-Bonded Adducts of Melamine with Cyanuric and Trithiocyanuric Acids. J. Am. Chem. Soc. 1999, 121, 1752–1753. [Google Scholar] [CrossRef]
- Niu, W.H.; Li, L.G.; Liu, X.J.; Wang, N.; Liu, J.; Zhou, W.J.; Tang, Z.H.; Chen, S.W. Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: An Efficient Electrocatalyst for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Jiang, G.M.; Zhu, H.Y.; Guo, S.J.; Su, D.; Lu, G.; Sun, S.H. Tuning Nanoparticle Structure and Surface Strain for Catalysis Optimization. J. Am. Chem. Soc. 2014, 136, 7734–7739. [Google Scholar] [CrossRef]
- Feng, L.L.; Zou, Y.C.; Li, C.G.; Gao, S.; Zhou, L.J.; Sun, Q.S.; Fan, M.H.; Wang, H.J.; Wang, D.J.; Li, G.D.; et al. Nanoporous Sulfur-Doped Graphitic Carbon Nitride Microrods: A Durable Catalyst for Visible-Light-Driven H2 Evolution. Int. J. Hydrogen Energy 2014, 39, 15373–15379. [Google Scholar] [CrossRef]
- Gao, F.; Qu, J.Y.; Zhao, Z.B.; Zhou, Q.; Li, B.B.; Qiu, J.S. A Green Strategy for the Synthesis of Graphene Supported Mn3O4 Nanocomposites from Graphitized Coal and Their Supercapacitor Application. Carbon 2014, 80, 640–650. [Google Scholar] [CrossRef]
- Song, J.; Liu, T.F.; Ali, S.; Li, B.; Su, D.S. The Synergy Effect and Reaction Pathway in the Oxygen Reduction Reaction on the Sulfur and Nitrogen Dual Doped Graphene Catalyst. Chem. Phys. Lett. 2017, 677, 65–69. [Google Scholar] [CrossRef]
- Choi, C.H.; Chung, M.W.; Jun, Y.J.; Woo, S.I. Doping of Chalcogens (Sulfur and/or Selenium) in Nitrogen-Doped Graphene-CNT Self-Assembly for Enhanced Oxygen Reduction Activity in Acid Media. RSC Adv. 2013, 3, 12417–12422. [Google Scholar] [CrossRef]
- Huang, B.B.; Hu, X.; Liu, Y.C.; Qi, W.; Xie, Z.L. Biomolecule-Derived N/S Co-Doped CNT-Graphene Hybrids Exhibiting Excellent Electrochemical Activities. J. Power Sources 2019, 413, 408–417. [Google Scholar] [CrossRef]
- Villemson, K.M.; Kaare, K.; Raudsepp, R.; Kaambre, T.; Smits, K.; Wang, P.P.; Kuzmin, A.V.; Sutka, A.; Shainyan, B.A.; Kruusenberg, I. Identification of Active Sites for Oxygen Reduction Reaction on Nitrogen- and Sulfur-Codoped Carbon Catalysts. J. Phys. Chem. C 2019, 123, 16065–16074. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhang, Y.; Zhuang, X.D.; Li, S.; Wu, D.Q.; Zhang, F.; Feng, X.L. Low-Temperature Synthesis of Nitrogen/Sulfur Co-Doped Three-Dimensional Graphene Frameworks as Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. Carbon 2013, 62, 296–301. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Wang, D.L.; Dou, S.O.; Ma, Z.L.; Wu, J.H.; Tao, L.; Shen, A.L.; Ouyang, C.B.; Liu, Q.H.; et al. One-Pot Synthesis of Nitrogen and Sulfur Co-Doped Graphene as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. Chem. Commun. 2014, 50, 4839–4842. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Li, M.; Jiang, L.Q.; Lin, L.; Cui, L.L.; He, X.Q. Advanced Oxygen Reduction Reaction Catalyst Based on Nitrogen and Sulfur Co-Doped Graphene in Alkaline Medium. Phys. Chem. Chem. Phys. 2014, 16, 23196–23205. [Google Scholar] [CrossRef] [PubMed]
- Ai, W.; Luo, Z.M.; Jiang, J.; Zhu, J.H.; Du, Z.Z.; Fan, Z.X.; Xie, L.H.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction. Adv. Mater. 2014, 26, 6186–6192. [Google Scholar] [CrossRef]
- Luo, Z.M.; Yang, D.L.; Qi, G.Q.; Shang, J.Z.; Yang, H.P.; Wang, Y.L.; Yuwen, L.H.; Yu, T.; Huang, W.; Wang, L.H. Microwave-Assisted Solvothermal Preparation of Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide and Graphene Quantum Dots Hybrids for Highly Efficient Oxygen Reduction. J. Mater. Chem. A Mater. 2014, 2, 20605–20611. [Google Scholar] [CrossRef]
- Wu, M.; Wang, J.; Wu, Z.X.; Xin, H.L.L.; Wang, D.L. Synergistic Enhancement of Nitrogen and Sulfur Co-Doped Graphene with Carbon Nanosphere Insertion for the Electrocatalytic Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2015, 3, 7727–7731. [Google Scholar] [CrossRef]
- Zhang, H.H.; Liu, X.Q.; He, G.L.; Zhang, X.X.; Bao, S.J.; Hu, W.H. Bioinspired Synthesis of Nitrogen/Sulfur Co-Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction. J. Power Sources 2015, 279, 252–258. [Google Scholar] [CrossRef]
- Parvez, K.; Rincon, R.A.; Weber, N.E.; Cha, K.C.; Venkataraman, S.S. One-Step Electrochemical Synthesis of Nitrogen and Sulfur Co-Doped, High-Quality Graphene Oxide. Chem. Commun. 2016, 52, 5714–5717. [Google Scholar] [CrossRef]
- Akhter, T.; Islam, M.M.; Faisal, S.N.; Hague, E.; Minett, A.I.; Liu, H.K.; Konstantinov, K.; Dou, S.X. Self-Assembled N/S Codoped Flexible Graphene Paper for High Performance Energy Storage and Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8, 2078–2087. [Google Scholar] [CrossRef]
- Amiinu, I.S.; Zhang, J.; Kou, Z.K.; Liu, X.B.; Asare, O.K.; Zhou, H.; Cheng, K.; Zhang, H.N.; Mai, L.Q.; Pan, M.; et al. Self-Organized 3D Porous Graphene Dual-Doped with Biomass-Sponsored Nitrogen and Sulfur for Oxygen Reduction and Evolution. ACS Appl. Mater. Interfaces 2016, 8, 29408–29418. [Google Scholar] [CrossRef]
- Pan, F.P.; Duan, Y.X.; Zhang, X.K.; Zhang, J.Y. A Facile Synthesis of Nitrogen/Sulfur Co-Doped Graphene for the Oxygen Reduction Reaction. ChemCatChem 2016, 8, 163–170. [Google Scholar] [CrossRef]
- Wu, M.; Dou, Z.Y.; Chang, J.J.; Cui, L.L. Nitrogen and Sulfur Co-Doped Graphene Aerogels as an Efficient Metal-Free Catalyst for Oxygen Reduction Reaction in an Alkaline Solution. RSC Adv. 2016, 6, 22781–22790. [Google Scholar] [CrossRef]
- Fan, M.M.; Huang, Y.; Yuan, F.S.; Hao, Q.L.; Yang, J.Z.; Sun, D.P. Effects of Multiple Heteroatom Species and Topographic Defects on Electrocatalytic and Capacitive Performances of Graphene. J. Power Sources 2017, 366, 143–150. [Google Scholar] [CrossRef]
- Gaidukevic, J.; Razumiene, J.; Sakinyte, I.; Rebelo, S.L.H.; Barkauskas, J. Study on the Structure and Electrocatalytic Activity of Graphene-Based Nanocomposite Materials Containing (SCN)(n). Carbon 2017, 118, 156–167. [Google Scholar] [CrossRef]
- Han, D.D.; Yan, Y.C.; Wei, J.S.; Wang, B.W.; Li, T.T.; Guo, G.N.; Yang, D.; Xie, S.H.; Dong, A.G. Fine-Tuning the Wall Thickness of Ordered Mesoporous Graphene by Exploiting Ligand Exchange of Colloidal Nanocrystals. Front. Chem. 2017, 5, 117. [Google Scholar] [CrossRef]
- Rivera, L.M.; Fajardo, S.; Arevalo, M.D.; García, G.; Pastor, E. S- and N-Doped Graphene NanoMaterials for the Oxygen Reduction Reaction. Catalysts 2017, 7, 278. [Google Scholar] [CrossRef]
- Zhang, H.H.; Niu, Y.L.; Hu, W.H. Nitrogen/Sulfur-Doping of Graphene with Cysteine as a Heteroatom Source for Oxygen Reduction Electrocatalysis. J. Colloid Interface Sci. 2017, 505, 32–37. [Google Scholar] [CrossRef]
- Arunchander, A.; Peera, S.G.; Panda, S.K.; Chellammal, S.; Sahu, A.K. Simultaneous Co-Doping of N and S by a Facile in-Situ Polymerization of 6-N, N-Dibutylamine-1,3,5-Triazine-2,4-Dithiol on Graphene Framework: An Efficient and Durable Oxygen Reduction Catalyst in Alkaline Medium. Carbon 2017, 118, 531–544. [Google Scholar] [CrossRef]
- Hassani, S.S.; Ganjali, M.R.; Samiee, L.; Rashidi, A.M.; Tasharrofi, S.; Yadegari, A.; Shoghi, F.; Martel, R. Comparative Study of Various Types of Metal-Free N and S Co-Doped Porous Graphene for High Performance Oxygen Reduction Reaction in Alkaline Solution. J. Nanosci. Nanotechnol. 2018, 18, 4565–4579. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.L.; Wang, T.; Wang, L.X.; Jia, D.Z. Hydrothermal Synthesis of Nitrogen, Sulfur Co-Doped Graphene and Its High Performance in Supercapacitor and Oxygen Reduction Reaction. Microporous Mesoporous Mater. 2019, 290, 109556. [Google Scholar] [CrossRef]
- Verma, R.; Chakraborty, I.; Chowdhury, S.; Ghangrekar, M.M.; Balasubramanian, R. Nitrogen and Sulfur Codoped Graphene Macroassemblies as High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Microbial Fuel Cells. ACS Sustain. Chem. Eng. 2020, 8, 16591–16599. [Google Scholar] [CrossRef]
- Zhang, W.L.; Zhang, Y.K.; Li, Y.D.; Yang, S.C.; Zhang, L.H.; Yu, F.S. Enhanced Oxygen Reduction Performance of Nitrogen and Sulfur Co-Doped Graphene Oxide by Immobilized Ionic Liquid. Chem. Eng. Sci. 2021, 236, 8. [Google Scholar] [CrossRef]
- Periyasamy, G.; Annamalai, K.; Patil, I.M.; Kakade, B. Sulfur and Nitrogen Co-Doped RGO Sheets as Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium. Diam. Relat. Mater. 2021, 114, 10. [Google Scholar] [CrossRef]
- Shah, M.; Lee, J.; Rauf, A.; Park, J.H.; Lim, B.; Yoo, P.J. Electrostatically Regulated Ternary-Doped Carbon Foams with Exposed Active Sites as Metal-Free Oxygen Reduction Electrocatalysts. Nanoscale 2018, 10, 19498–19508. [Google Scholar] [CrossRef]
- Sun, Y.B.; Deng, R.X.; Chi, C.; Chen, X.L.; Pan, Y.A.; Li, J.; Xia, X.H. One-Step Synthesis of S, N Dual-Element Doped RGO as an Efficient Electrocatalyst for ORR. J. Electroanal. Chem. 2023, 940, 9. [Google Scholar] [CrossRef]
- You, J.M.; Ahmed, M.S.; Han, H.S.; Choe, J.E.; Ustundag, Z.; Jeon, S. New Approach of Nitrogen and Sulfur-Doped Graphene Synthesis Using Dipyrrolemethane and Their Electrocatalytic Activity for Oxygen Reduction in Alkaline Media. J. Power Sources 2015, 275, 73–79. [Google Scholar] [CrossRef]
- Wu, M.B.; Liu, Y.; Zhu, Y.L.; Lin, J.; Liu, J.Y.; Hu, H.; Wang, Y.; Zhao, Q.S.; Lv, R.Q.; Qiu, J.S. Supramolecular Polymerization-Assisted Synthesis of Nitrogen and Sulfur Dual-Doped Porous Graphene Networks from Petroleum Coke as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2017, 5, 11331–11339. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, C.X.; Liu, T.; Fan, R.; Sun, Y.; Tao, H.J.; Xue, J.J. Low Temperature Green Synthesis of Sulfur-Nitrogen Co-Doped Graphene as Efficient Metal-Free Catalysts for Oxygen Reduction Reaction. Int. J. Electrochem. Sci. 2017, 12, 3537–3548. [Google Scholar] [CrossRef]
- Zhao, C.E.; Li, J.X.; Chen, Y.; Chen, J.Y. Nitrogen and Sulfur Dual-Doped Graphene as an Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction in Microbial Fuel Cells. N. J. Chem. 2019, 43, 9389–9395. [Google Scholar] [CrossRef]
- Siahkalroudi, Z.M.; Aghabarari, B.; Vaezi, M.; Rodríguez-Castellón, E.; Martínez-Huerta, M. V Effect of Secondary Heteroatom (S, P) in N-Doped Reduced Graphene Oxide Catalysts to Oxygen Reduction Reaction. Mol. Catal. 2021, 502, 9. [Google Scholar] [CrossRef]
- Zhang, X.R.; Wang, Y.Q.; Wang, K.; Huang, Y.L.; Lyu, D.D.; Yu, F.; Wang, S.B.; Tian, Z.Q.; Shen, P.K.; Jiang, S.P. Active Sites Engineering via Tuning Configuration between Graphitic-N and Thiophenic-S Dopants in One-Step Synthesized Graphene Nanosheets for Efficient Water-Cycled Electrocatalysis. Chem. Eng. J. 2021, 416, 11. [Google Scholar] [CrossRef]
- Zhang, X.R.; Wen, X.Y.; Pan, C.; Xiang, X.; Hao, C.; Meng, Q.H.; Tian, Z.Q.; Shen, P.K.; Jiang, S.P. N Species Tuning Strategy in N, S Co-Doped Graphene Nanosheets for Electrocatalytic Activity and Selectivity of Oxygen Redox Reactions. Chem. Eng. J. 2022, 431, 11. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Huang, J.P.; Zhou, Y.Z.; Xu, K.; Zhao, N.; Cheng, X.N. Soft Template-Assisted Method for Synthesis of Nitrogen and Sulfur Co-Doped Three-Dimensional Reduced Graphene Oxide as an Efficient Metal Free Catalyst for Oxygen Reduction Reaction. Carbon 2017, 122, 237–246. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zhang, L.P.; Xia, Z.H.; Roy, A.; Chang, D.W.; Baek, J.B.; Dai, L.M. BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2012, 51, 4209–4212. [Google Scholar] [CrossRef]
- Kattel, S.; Atanassov, P.; Kiefer, B. Density Functional Theory Study of the Oxygen Reduction Reaction Mechanism in a BN Co-Doped Graphene Electrocatalyst. J. Mater. Chem. A Mater. 2014, 2, 10273–10279. [Google Scholar] [CrossRef]
- Sen, D.; Thapa, R.; Chattopadhyay, K.K. Rules of Boron-Nitrogen Doping in Defect Graphene Sheets: A First-Principles Investigation of Band-Gap Tuning and Oxygen Reduction Reaction Catalysis Capabilities. Chemphyschem 2014, 15, 2542–2549. [Google Scholar] [CrossRef]
- Gong, Y.J.; Fei, H.L.; Zou, X.L.; Zhou, W.; Yang, S.B.; Ye, G.L.; Liu, Z.; Peng, Z.W.; Lou, J.; Vajtai, R.; et al. Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Chem. Mater. 2015, 27, 1181–1186. [Google Scholar] [CrossRef]
- Tang, S.B.; Wu, W.H.; Liu, L.X.; Gu, J.J. Oxygen-Molecule Adsorption and Dissociation on BCN Graphene: A First-Principles Study. Chemphyschem 2017, 18, 101–110. [Google Scholar] [CrossRef]
- Ricca, C.; Labat, F.; Zavala, C.; Russo, N.; Adamo, C.; Merino, G.; Sicilia, E. B,N-Codoped Graphene as Catalyst for the Oxygen Reduction Reaction: Insights from Periodic and Cluster DFT Calculations. J. Comput. Chem. 2018, 39, 637–647. [Google Scholar] [CrossRef]
- Qin, L.; Wang, L.C.; Yang, X.; Ding, R.M.; Zheng, Z.F.; Chen, X.H.; Lv, B.L. Synergistic Enhancement of Oxygen Reduction Reaction with BC3 and Graphitic-N in Boron- and Nitrogen-Codoped Porous Graphene. J. Catal. 2018, 359, 242–250. [Google Scholar] [CrossRef]
- Larijani, H.T.; Khorshidian, M. Theoretical Insight into the Role of Pyridinic Nitrogen on the Catalytic Activity of Boron-Doped Graphene towards Oxygen Reduction Reaction. Appl. Surf. Sci. 2019, 492, 826–842. [Google Scholar] [CrossRef]
- Tai, J.P.; Hu, J.T.; Chen, Z.X.; Lu, H.B. Two-Step Synthesis of Boron and Nitrogen Codoped Graphene as a Synergistically Enhanced Catalyst for the Oxygen Reduction Reaction. RSC Adv. 2014, 4, 61437–61443. [Google Scholar] [CrossRef]
- Wu, W.M.; Leng, J.G.; Mei, H.L.; Yang, S.B. Defect-Rich, Boron-Nitrogen Bonds-Free and Dual-Doped Graphenes for Highly Efficient Oxygen Reduction Reaction. J. Colloid. Interface Sci. 2018, 521, 11–16. [Google Scholar] [CrossRef]
- Kang, G.S.; Lee, S.; Lee, D.C.; Yoon, C.W.; Joh, H.I. Edge-Enriched Graphene with Boron and Nitrogen Co-Doping for Enhanced Oxygen Reduction Reaction. Curr. Appl. Phys. 2020, 20, 456–461. [Google Scholar] [CrossRef]
- Fei, H.L.; Ye, R.Q.; Ye, G.L.; Gong, Y.J.; Peng, Z.W.; Fan, X.J.; Samuel, E.L.G.; Ajayan, P.M.; Tour, J.M. Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction. ACS Nano 2014, 8, 10837–10843. [Google Scholar] [CrossRef]
- Han, J.R.; Zhang, Y.L.; Niu, F.S.; Chen, T.; Liu, J.Q.; Xu, Y.H. Low-Cost and Highly Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: Environment-Friendly Three-Dimensional B, N Co-Doped Graphene Aerogels. Electrocatalysis 2019, 10, 56–62. [Google Scholar] [CrossRef]
- Byeon, A.; Lee, J.W. Electrocatalytic Activity of BN Codoped Graphene Oxide Derived from Carbon Dioxide. J. Phys. Chem. C 2013, 117, 24167–24173. [Google Scholar] [CrossRef]
- Zhu, J.L.; He, C.Y.; Li, Y.Y.; Kang, S.; Shen, P.K. One-Step Synthesis of Boron and Nitrogen-Dual-Self-Doped Graphene Sheets as Non-Metal Catalysts for Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2013, 1, 14700–14705. [Google Scholar] [CrossRef]
- Chen, W.; Xu, L.; Tian, Y.H.; Li, H.A.; Wang, K. Boron and Nitrogen Co-Doped Graphene Aerogels: Facile Preparation, Tunable Doping Contents and Bifunctional Oxygen Electrocatalysis. Carbon 2018, 137, 458–466. [Google Scholar] [CrossRef]
- Sapner, V.S.; Chavan, P.P.; Munde, A.V.; Sayyad, U.S.; Sathe, B.R. Heteroatom (N, O, and S)-Based Biomolecule-Functionalized Graphene Oxide: A Bifunctional Electrocatalyst for Enhancing Hydrazine Oxidation and Oxygen Reduction Reactions. Energy Fuels 2021, 35, 6823–6834. [Google Scholar] [CrossRef]
- Kumar, R.; Gopalakrishnan, K.; Ahmad, I.; Rao, C.N.R. BN-Graphene Composites Generated by Covalent Cross-Linking with Organic Linkers. Adv. Funct. Mater. 2015, 25, 5910–5917. [Google Scholar] [CrossRef]
- Yang, D.S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J.S. Phosphorus-Doped Ordered Mesoporous Carbons with Different Lengths as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. J. Am. Chem. Soc. 2012, 134, 16127–16130. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.H.; Park, S.H.; Woo, S.I. Phosphorus-Nitrogen Dual Doped Carbon as an Effective Catalyst for Oxygen Reduction Reaction in Acidic Media: Effects of the Amount of P-Doping on the Physical and Electrochemical Properties of Carbon. J. Mater. Chem. 2012, 22, 12107–12115. [Google Scholar] [CrossRef]
- Choi, C.H.; Park, S.H.; Woo, S.I. Heteroatom Doped Carbons Prepared by the Pyrolysis of Bio-Derived Amino Acids as Highly Active Catalysts for Oxygen Electro-Reduction Reactions. Green Chem. 2011, 13, 406–412. [Google Scholar] [CrossRef]
- Xue, X.X.; Tang, L.M.; Chen, K.Q.; Zhang, L.X.; Wang, E.G.; Feng, Y.X. Bifunctional Mechanism of N, P Co-Doped Graphene for Catalyzing Oxygen Reduction and Evolution Reactions. J. Chem. Phys. 2019, 150, 104701. [Google Scholar] [CrossRef]
- Yang, J.; Sun, H.Y.; Liang, H.Y.; Ji, H.X.; Song, L.; Gao, C.; Xu, H.X. A Highly Efficient Metal-Free Oxygen Reduction Electrocatalyst Assembled from Carbon Nanotubes and Graphene. Adv. Mater. 2016, 28, 4606–4613. [Google Scholar] [CrossRef]
- Li, R.; Wei, Z.D.; Gou, X.L. Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. ACS Catal. 2015, 5, 4133–4142. [Google Scholar] [CrossRef]
- Dong, L.Y.; Hu, C.G.; Huang, X.K.; Chen, N.; Qu, L.T. One-Pot Synthesis of Nitrogen and Phosphorus Co-Doped Graphene and Its Use as High-Performance Electrocatalyst for Oxygen Reduction Reaction. Chem. Asian J. 2015, 10, 2608–2613. [Google Scholar] [CrossRef]
- Qiao, X.C.; Liao, S.J.; You, C.H.; Chen, R. Phosphorus and Nitrogen Dual Doped and Simultaneously Reduced Graphene Oxide with High Surface Area as Efficient Metal-Free Electrocatalyst for Oxygen Reduction. Catalysts 2015, 5, 981–991. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.X.; Han, L.L.; Liu, Y.Y.; Guo, J.P.; Xin, H.L.L.; Wang, D.L. Rational Design of Three-Dimensional Nitrogen and Phosphorus Co-Doped Graphene Nanoribbons/CNTs Composite for the Oxygen Reduction. Chin. Chem. Lett. 2016, 27, 597–601. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Huang, S.F.; Xia, M.R.; Rehman, S.; Mu, S.C.; Kou, Z.K.; Zhang, Z.; Chen, Z.Y.; Gao, F.M.; Hou, Y.L. N-P-O Co-Doped High Performance 3D Graphene Prepared through Red Phosphorous-Assisted “Cutting-Thin” Technique: A Universal Synthesis and Multifunctional Applications. Nano Energy 2016, 28, 346–355. [Google Scholar] [CrossRef]
- Fang, B.; Yang, J.; Chen, C.; Zhang, C.X.; Chang, D.; Xu, H.X.; Gao, C. Carbon Nanotubes Loaded on Graphene Microfolds as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions. ChemCatChem 2017, 9, 4520–4528. [Google Scholar] [CrossRef]
- Wang, X.W.; Liu, Y.; Wu, P.Y. Water-Soluble Triphenylphosphine-Derived Microgel as the Template towards in-Situ Nitrogen, Phosphorus Co-Doped Mesoporous Graphene Framework for Supercapacitor and Electrocatalytic Oxygen Reduction. Chem. Eng. J. 2017, 328, 417–427. [Google Scholar] [CrossRef]
- Zhou, L.J.; Zhang, C.Y.; Cai, X.Y.; Qian, Y.; Jiang, H.F.; Li, B.S.; Lai, L.F.; Shen, Z.X.; Huang, W. N, P Co-Doped Hierarchical Porous Graphene as a Metal-Free Bifunctional Air Cathode for Zn-Air Batteries. ChemElectroChem 2018, 5, 1811–1816. [Google Scholar] [CrossRef]
- Cheng, C.; Li, Y.; Maouche, C.; Li, B.; Zhou, Y.Z.; Wang, S.; Cheng, X.N.; Yang, J. Green Synthesis of N, P-Co Doped Porous Reduced Graphene Oxide as an Active Metal-Free Electrocatalyst toward Oxygen Reduction Reaction. J. Electroanal. Chem. 2021, 883, 11. [Google Scholar] [CrossRef]
- Chai, G.L.; Qiu, K.P.; Qiao, M.; Titirici, M.M.; Shang, C.X.; Guo, Z.X. Active Sites Engineering Leads to Exceptional ORR and OER Bifunctionality in P,N Co-Doped Graphene Frameworks. Energy Environ. Sci. 2017, 10, 1186–1195. [Google Scholar] [CrossRef]
- Zhang, X.R.; Zhang, X.; Xiang, X.; Pan, C.; Meng, Q.H.; Hao, C.; Tian, Z.Q.; Shen, P.K.; Jiang, S.P. Nitrogen and Phosphate Co-Doped Graphene as Efficient Bifunctional Electrocatalysts by Precursor Modulation Strategy for Oxygen Reduction and Evolution Reactions. ChemElectroChem 2021, 8, 3262–3272. [Google Scholar] [CrossRef]
- Sahraie, N.R.; Paraknowitsch, J.P.; Göbel, C.; Thomas, A.; Strasser, P. Noble-Metal-Free Electrocatalysts with Enhanced ORR Performance by Task-Specific Functionalization of Carbon Using Ionic Liquid Precursor Systems. J. Am. Chem. Soc. 2014, 136, 14486–14497. [Google Scholar] [CrossRef]
- Aijaz, A.; Akita, T.; Yang, H.; Xu, Q. From Ionic-Liquid@metal-Organic Framework Composites to Heteroatom-Decorated Large-Surface Area Carbons: Superior CO2 and H2 Uptake. Chem. Commun. 2014, 50, 6498–6501. [Google Scholar] [CrossRef]
- Hassan, M.; Haque, E.; Minett, A.I.; Gomes, V.G. Co-Doping of Activated Graphene for Synergistically Enhanced Electrocatalytic Oxygen Reduction Reaction. ChemSusChem 2015, 8, 4040–4048. [Google Scholar] [CrossRef]
- Lee, C.H.; Kang, G.S.; Lee, Y.K.; Lee, S.; Jo, S.M.; Yoo, S.J.; Jang, J.H.; Lee, D.C.; Joh, H.I. Synthesis and Properties of Nitrogen and Iodine Co-Functionalized Graphene Oxide and Its Electrochemical Applications. Sci. Adv. Mater. 2016, 8, 28–33. [Google Scholar] [CrossRef]
- Zhao, F.G.; Pan, B.Y.G.; Kong, Y.T.; Dong, L.; Hu, C.M.; Sang, Y.J.; Zhou, X.J.; Zuo, B.; Dong, X.P.; Li, B.X.; et al. Nonmainstream Out-Plane Fluoro- and Amino-Cofunctionalized Graphene for a Striking Electrocatalyst: Programming Substitutive/Reductive Defluorination toward Graphite Fluoride. Adv. Mater. Interfaces 2019, 6, 1801699. [Google Scholar] [CrossRef]
- Yan, R.; Wu, H.; Zheng, Q.; Wang, J.Y.; Huang, J.L.; Ding, K.J.; Guo, Q.G.; Wang, J.Z. Graphene Quantum Dots Cut from Graphene Flakes: High Electrocatalytic Activity for Oxygen Reduction and Low Cytotoxicity. RSC Adv. 2014, 4, 23097–23106. [Google Scholar] [CrossRef]
- Qiao, X.C.; Liao, S.J.; Wang, G.H.; Zheng, R.P.; Song, H.Y.; Li, X.H. Simultaneous Doping of Nitrogen and Fluorine into Reduced Graphene Oxide: A Highly Active Metal-Free Electrocatalyst for Oxygen Reduction. Carbon 2016, 99, 272–279. [Google Scholar] [CrossRef]
- Posudievsky, O.Y.; Kondratyuk, A.S.; Kozarenko, O.A.; Cherepanov, V.V.; Dovbeshko, G.I.; Koshechko, V.G.; Pokhodenko, V.D. Facile Mechanochemical Preparation of Nitrogen and Fluorine Co-Doped Graphene and Its Electrocatalytic Performance. Carbon 2019, 152, 274–283. [Google Scholar] [CrossRef]
- Li, Y.; Wen, H.J.; Yang, J.; Zhou, Y.Z.; Cheng, X.N. Boosting Oxygen Reduction Catalysis with N, F, and S Tri-Doped Porous Graphene: Tertiary N-Precursors Regulates the Constitution of Catalytic Active Sites. Carbon 2019, 142, 1–12. [Google Scholar] [CrossRef]
- Akula, S.; Sahu, A.K. Structurally Modulated Graphitic Carbon Nanofiber and Heteroatom (N,F) Engineering toward Metal-Free ORR Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. ACS Appl. Mater. Interfaces 2020, 12, 11438–11449. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, X.J.; Jin, C.; Tian, J.H.; Yang, R.Z. Ternary Doping of Phosphorus, Nitrogen, and Sulfur into Porous Carbon for Enhancing Electrocatalytic Oxygen Reduction. Carbon 2015, 92, 327–338. [Google Scholar] [CrossRef]
- Choi, C.H.; Park, S.H.; Woo, S.I. Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity. ACS Nano 2012, 6, 7084–7091. [Google Scholar] [CrossRef]
- Wang, L.; Sofer, Z.; Pumera, M. Will Any Crap We Put into Graphene Increase Its Electrocatalytic Effect? ACS Nano 2020, 14. [Google Scholar] [CrossRef]
- Dou, S.; Shen, A.L.; Ma, Z.L.; Wu, J.H.; Tao, L.; Wang, S.Y. N-, P- and S-Tridoped Graphene as Metal-Free Electrocatalyst for Oxygen Reduction Reaction. J. Electroanal. Chem. 2015, 753, 21–27. [Google Scholar] [CrossRef]
- Ying, Y.D.; Ren, J.T.; Liu, Y.P.; Li, W.; Yuan, Z.Y. Facile Synthesis of Nitrogen, Phosphorus and Sulfur Tri-Doped Carbon Nanosheets as Efficient Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries. Mater. Sci. Eng. B Adv. Funct. Solid State Mater. 2021, 273, 7. [Google Scholar] [CrossRef]
- Cai, Q.Y.; Ye, S.S.; Sun, H.Y.; Liao, Y.L.; Chen, H. N, S, P Tri-Doped Porous Graphene Electrocatalyst with Excellent Oxygen Reduction Activity for Zinc-Air Battery. Mater. Sci. Technol. 2024, 13, 294–306. [Google Scholar] [CrossRef]
- Routh, P.; Shin, S.H.; Jung, S.M.; Choi, H.J.; Jeon, I.Y.; Baek, J.B. Boron-Nitrogen-Phosphorous Doped Graphene Nanoplatelets for Enhanced Electrocatalytic Activity. Eur. Polym. J. 2018, 99, 511–517. [Google Scholar] [CrossRef]
- Hassani, S.S.; Ganjali, M.R.; Samiee, L.; Rashidi, A.M. Use of Grape Leaves for Producing Graphene for Use as an Oxygen Reduction Electrocatalyst. Int. J. Electrochem. Sci. 2020, 15, 4754–4773. [Google Scholar] [CrossRef]
- Tang, L.H.; Wang, Y.; Li, Y.M.; Feng, H.B.; Lu, J.; Li, J.H. Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films. Adv. Funct. Mater. 2009, 19, 2782–2789. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Wang, J.; Engelhard, M.; Wang, C.M.; Lin, Y.H. Facile and Controllable Electrochemical Reduction of Graphene Oxide and Its Applications. J. Mater. Chem 2010, 20, 743–748. [Google Scholar] [CrossRef]
- Wu, J.J.; Wang, Y.; Zhang, D.; Hou, B.R. Studies on the Electrochemical Reduction of Oxygen Catalyzed by Reduced Graphene Sheets in Neutral Media. J. Power Sources 2011, 196, 1141–1144. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Zhang, G.Q.; Chen, J.; Yuan, G.E.; Xu, L.; Liu, L.F.; Yang, F.L. A Facile Two-Step Electroreductive Synthesis of Anthraquinone/Graphene Nanocomposites as Efficient Electrocatalyst for O-2 Reduction in Neutral Medium. Electrochem. Commun. 2012, 22, 69–72. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhang, G.Q.; Zhou, Y.F.; Gao, M.M.; Yang, F.L. One-Step Potentiodynamic Synthesis of Poly(1,5-Diaminoanthraquinone)/Reduced Graphene Oxide Nanohybrid with Improved Electrocatalytic Activity. J. Mater. Chem. A Mater. 2013, 1, 13902–13913. [Google Scholar] [CrossRef]
- Mooste, M.; Kibena-Poldsepp, E.; Ossonon, B.D.; Belanger, D.; Tammeveski, K. Oxygen Reduction on Graphene Sheets Functionalised by Anthraquinone Diazonium Compound during Electrochemical Exfoliation of Graphite. Electrochim. Acta 2018, 267, 246–254. [Google Scholar] [CrossRef]
- Guan, J.; Chen, X.; Wei, T.; Liu, F.P.; Wang, S.; Yang, Q.; Lu, Y.L.; Yang, S.F. Directly Bonded Hybrid of Graphene Nanoplatelets and Fullerene: Facile Solid-State Mechanochemical Synthesis and Application as Carbon-Based Electrocatalyst for Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2015, 3, 4139–4146. [Google Scholar] [CrossRef]
- Deng, D.H.; Yu, L.; Pan, X.L.; Wang, S.; Chen, X.Q.; Hu, P.; Sun, L.X.; Bao, X.H. Size Effect of Graphene on Electrocatalytic Activation of Oxygen. Chem. Commun. 2011, 47, 10016–10018. [Google Scholar] [CrossRef]
- 7Yuan, W.J.; Zhou, Y.; Li, Y.R.; Li, C.; Peng, H.L.; Zhang, J.; Liu, Z.F.; Dai, L.M.; Shi, G.Q. The Edge- and Basal-Plane-Specific Electrochemistry of a Single-Layer Graphene Sheet. Sci. Rep. 2013, 3, 2248. [Google Scholar] [CrossRef]
- Tao, L.; Wang, Q.; Dou, S.; Ma, Z.L.; Huo, J.; Wang, S.Y.; Dai, L.M. Edge-Rich and Dopant-Free Graphene as a Highly Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. Chem. Commun. 2016, 52, 2764–2767. [Google Scholar] [CrossRef]
- Shi, J.L.; Wang, H.F.; Zhu, X.L.; Chen, C.M.; Huang, X.; Zhang, X.D.; Li, B.Q.; Tang, C.; Zhang, Q. The Nanostructure Preservation of 3D Porous Graphene: New Insights into the Graphitization and Surface Chemistry of Non-Stacked Double-Layer Templated Graphene after High-Temperature Treatment. Carbon 2016, 103, 36–44. [Google Scholar] [CrossRef]
- Lv, R.J.; Wang, H.J.; Yu, H.; Peng, F. Controllable Preparation of Holey Graphene and Electrocatalytic Performance for Oxygen Reduction Reaction. Electrochim. Acta 2017, 228, 203–213. [Google Scholar] [CrossRef]
- Xu, Z.W.; Fan, X.L.; Li, H.J.; Fu, H.; Lau, W.M.; Zhao, X.N. Edges of Graphene and Carbon Nanotubes with High Catalytic Performance for the Oxygen Reduction Reaction. Phys. Chem. Chem. Phys. 2017, 19, 21003–21011. [Google Scholar] [CrossRef]
- Zhang, H.J.; Zhang, X.; Yao, S.W.; Hu, H.; Ma, Z.F.; Yang, J.H. Thermal Evolution of the Structure and Activity of Non-Doped Graphene as Metal-Free Oxygen Reduction Electrocatalysts. J. Electrochem. Soc. 2018, 165, F526–F532. [Google Scholar] [CrossRef]
- Zhang, J.B.; Ren, M.Q.; Wang, L.Q.; Li, Y.L.; Yakobson, B.I.; Tour, J.M. Oxidized Laser-Induced Graphene for Efficient Oxygen Electrocatalysis. Adv. Mater. 2018, 30, 1707319. [Google Scholar] [CrossRef]
- San Roman, D.; Krishnamurthy, D.; Garg, R.; Hafiz, H.; Lamparski, M.; Nuhfer, N.T.; Meunier, V.; Viswanathan, V.; Cohen-Karni, T. Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis. ACS Catal. 2020, 10, 1993–2008. [Google Scholar] [CrossRef]
- Wang, M.R.; Fang, Z.; Zhang, K.; Fang, J.; Qin, F.R.; Zhang, Z.A.; Li, J.; Liu, Y.X.; Lai, Y.Q. Synergistically Enhanced Activity of Graphene Quantum Dots/Graphene Hydrogel Composites: A Novel All-Carbon Hybrid Electrocatalyst for Metal/Air Batteries. Nanoscale 2016, 8, 11398–11402. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Lv, L.X.; Zhang, X.Q.; Zhao, Y.; Chen, Q.; Cheng, H.H.; Qu, L.T. Highly Defective, Doping-Free Graphene Framework: A Rapid One-Step Formation Avenue. J. Power Sources 2021, 497, 7. [Google Scholar] [CrossRef]
- Yuasa, M.; Tanaka, M.; Shimizu, M.; Yoshida, M. Oxygen Reduction/Evolution Activity of a Mechanochemically Synthesized Multilayer Graphene. J. Electrochem. Soc. 2021, 168, 10. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Wang, X.Y.; Guo, X.M.; Cheng, D.D.; Zhou, H.; Saito, N.; Fan, T.X. Synergetic Design of Dopant-Free Defect-Enriched 3D Interconnected Hierarchical Porous Graphene Mesh for Boosting Oxygen Reduction Reaction. Carbon 2021, 184, 609–617. [Google Scholar] [CrossRef]
- Kibena, E.; Mooste, M.; Kozlova, J.; Marandi, M.; Sammelselg, V.; Tammeveski, K. Surface and Electrochemical Characterisation of CVD Grown Graphene Sheets. Electrochem. Commun. 2013, 35, 26–29. [Google Scholar] [CrossRef]
- Zhang, L.P.; Xu, Q.; Niu, J.B.; Xia, Z.H. Role of Lattice Defects in Catalytic Activities of Graphene Clusters for Fuel Cells. Phys. Chem. Chem. Phys. 2015, 17, 16733–16743. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, L.Z.; Du, A.J.; Gao, G.P.; Chen, J.; Yan, X.C.; Brown, C.L.; Yao, X.D. Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Adv. Mater. 2016, 28, 9532–9538. [Google Scholar] [CrossRef]
- Ly, Q.; Merinov, B.V.; Xiao, H.; Goddard, W.A.; Yu, T.H. The Oxygen Reduction Reaction on Graphene from Quantum Mechanics: Comparing Armchair and Zigzag Carbon Edges. J. Phys. Chem. C 2017, 121, 24408–24417. [Google Scholar] [CrossRef]
- Bikkarolla, S.K.; Cumpson, P.; Joseph, P.; Papakonstantinou, P. Oxygen Reduction Reaction by Electrochemically Reduced Graphene Oxide. Faraday Discuss 2014, 173, 415–428. [Google Scholar] [CrossRef]
- Lilloja, J.; Kibena-Poldsepp, E.; Merisalu, M.; Rauwel, P.; Matisen, L.; Niilisk, A.; Cardoso, E.S.F.; Maia, G.; Sammelselg, V.; Tammeveski, K. An Oxygen Reduction Study of Graphene-Based NanoMaterials of Different Origin. Catalysts 2016, 6, 108. [Google Scholar] [CrossRef]
- Zhang, G.X.; Wei, Q.L.; Yang, X.H.; Tavares, A.C.; Sun, S.H. RRDE Experiments on Noble-Metal and Noble-Metal-Free Catalysts: Impact of Loading on the Activity and Selectivity of Oxygen Reduction Reaction in Alkaline Solution. Appl. Catal. B Environ. 2017, 206, 115–126. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Liu, Z.; Xu, B.H.; Liu, H.D. Thermal Treated 3D Graphene as a Highly Efficient Metal-Free Electrocatalyst toward Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2017, 42, 28278–28286. [Google Scholar] [CrossRef]
- Zhang, H.J.; Geng, J.; Yao, S.W.; Wang, J.C.; Ma, Z.F.; Yang, J.H. Nature of Carbon Materials Used as Nondoped Electrodes for Oxygen Reduction Reaction and Supercapacitor Applications. J. Electrochem. Soc. 2019, 166, F1–F8. [Google Scholar] [CrossRef]
- Nagappan, S.; Duraivel, M.; Han, S.H.; Yusuf, M.; Mahadadalkar, M.; Park, K.; Dhakshinamoorthy, A.; Prabakar, K.; Park, S.; Ha, C.S.; et al. Electrocatalytic Oxygen Reduction Reaction of Graphene Oxide and Metal-Free Graphene in an Alkaline Medium. Nanomaterials 2023, 13, 1315. [Google Scholar] [CrossRef]
- Wu, Y.; Muthukrishnan, A.; Nagata, S.; Nabae, Y. Kinetic Understanding of the Reduction of Oxygen to Hydrogen Peroxide over an N-Doped Carbon Electrocatalyst. J. Phys. Chem. C 2019, 123, 4590–4596. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, B.Y.; Zhao, B.; Wang, X. A Review on Noble-Metal-Free Bifunctional Heterogeneous Catalysts for Overall Electrochemical Water Splitting. J. Mater. Chem. A Mater. 2016, 4, 17587–17603. [Google Scholar] [CrossRef]
- Lin, J.Y.; Xi, C.; Li, Z.; Feng, Y.; Wu, D.Y.; Dong, C.K.; Yao, P.; Liu, H.; Du, X.W. Lattice-Strained Palladium Nanoparticles as Active Catalysts for the Oxygen Reduction Reaction. Chem. Commun. 2019, 55, 3121–3123. [Google Scholar] [CrossRef]
- Choi, S.; Do, H.W.; Jin, D.; Kim, S.; Lee, J.; Soon, A.; Moon, J.; Shim, W. Revisiting the Role of the Triple-Phase Boundary in Promoting the Oxygen Reduction Reaction in Aluminum-Air Batteries. Adv. Funct. Mater. 2021, 31, 9. [Google Scholar] [CrossRef]
- Zavala, M.A.L.; Gutierrez, I.C.C. Effects of External Resistance, New Electrode Material, and Catholyte Type on the Energy Generation and Performance of Dual-Chamber Microbial Fuel Cells. Fermentation 2023, 9, 344. [Google Scholar] [CrossRef]
- Yang, Y.; Chang, H.L. Multi-Scale Porous Graphene/Activated Carbon Aerogel Enables Lightweight Carbonaceous Catalysts for Oxygen Reduction Reaction. J. Mater. Res. 2018, 33, 1247–1257. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, T.Y.; Wang, H.Y.; Zhu, X.; Ye, D.D.; Liao, Q.; Liu, K.; Chen, S.W.; Li, Y. Reduced Graphene Oxide Modified Activated Carbon for Improving Power Generation of Air-Cathode Microbial Fuel Cells. J. Mater. Res. 2018, 33, 1279–1287. [Google Scholar] [CrossRef]
- Roy, P.; Ravindranath, R.; Periasamy, A.P.; Lien, C.W.; Liang, C.T.; Chang, H.T. Green Synthesis of Si-GQD Nanocomposites as Cost-Effective Catalysts for Oxygen Reduction Reaction. RSC Adv. 2016, 6, 108941–108947. [Google Scholar] [CrossRef]
- Wang, H.F.; Tang, C.; Wang, B.; Li, B.Q.; Cui, X.Y.; Zhang, Q. Defect-Rich Carbon Fiber Electrocatalysts with Porous Graphene Skin for Flexible Solid-State Zinc-Air Batteries. Energy Storage Mater. 2018, 15, 124–130. [Google Scholar] [CrossRef]
- Jiang, M.Y.; Zhang, Z.Q.; Chen, C.K.; Ma, W.C.; Han, S.J.; Li, X.; Lu, S.H.; Hu, X.J. High Efficient Oxygen Reduced Reaction Electrodes by Constructing Vertical Graphene Sheets on Separated Papillary Granules Formed Nanocrystalline Diamond Films. Carbon 2020, 168, 536–545. [Google Scholar] [CrossRef]
- He, Z.M.; Guo, Z.Q.; Guo, K.; Akasaka, T.; Lu, X. Compositing Fullerene-Derived Porous Carbon Fibers with Reduced Graphene Oxide for Enhanced ORR Catalytic Performance. C J. Carbon Res. 2022, 8, 13. [Google Scholar] [CrossRef]
- Wang, M.R.; Li, Y.; Fang, J.; Villa, C.J.; Xu, Y.B.; Hao, S.Q.; Li, J.; Liu, Y.X.; Wolverton, C.; Chen, X.Q.; et al. Superior Oxygen Reduction Reaction on Phosphorus-Doped Carbon Dot/Graphene Aerogel for All-Solid-State Flexible Al-Air Batteries. Adv. Energy Mater. 2020, 10, 1902736. [Google Scholar] [CrossRef]
- Suo, N.; Huang, H.; Wang, X.; Hou, X.D.; Shao, Z.G.; Zhang, G.F. Facile Synthesis and Electrocatalytic Performance for Oxygen Reduction of Boron-Doped Carbon Catalysts on Graphene Sheets. Fuel Cells 2021, 21, 328–336. [Google Scholar] [CrossRef]
- Qiao, M.; Tang, C.; He, G.; Qiu, K.; Binions, R.; Parkin, I.P.; Zhang, Q.; Guo, Z.; Titirici, M.M. Graphene/Nitrogen-Doped Porous Carbon Sandwiches for the Metal-Free Oxygen Reduction Reaction: Conductivity versus Active Sites. J. Mater. Chem. A Mater. 2016, 4, 12658–12666. [Google Scholar] [CrossRef]
- Ma, Y.W.; Zhang, L.R.; Li, J.J.; Ni, H.T.; Li, M.; Zhang, J.L.; Feng, X.M.; Fan, Q.L.; Hu, Z.; Huang, W. Carbon-Nitrogen/Graphene Composite as Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. Chin. Sci. Bull. 2011, 56, 3583–3589. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Li, C.; Shi, G.Q. Nanoporous Nitrogen Doped Carbon Modified Graphene as Electrocatalyst for Oxygen Reduction Reaction. J. Mater. Chem. 2012, 22, 12810–12816. [Google Scholar] [CrossRef]
- Zhuang, X.D.; Zhang, F.; Wu, D.Q.; Forler, N.; Liang, H.W.; Wagner, M.; Gehrig, D.; Hansen, M.R.; Laquai, F.; Feng, X.L. Two-Dimensional Sandwich-Type, Graphene-Based Conjugated Microporous Polymers. Angew. Chem. Int. Ed. 2013, 52, 9668–9672. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Wu, P.Y. A Facile One-Pot Route towards Three-Dimensional Graphene-Based Microporous N-Doped Carbon Composites. RSC Adv. 2014, 4, 45619–45624. [Google Scholar] [CrossRef]
- Babu, K.F.; Rajagopalan, B.; Chung, J.S.; Choi, W.M. Facile Synthesis of Graphene/N-Doped Carbon Nanowire Composites as an Effective Electrocatalyst for the Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2015, 40, 6827–6834. [Google Scholar] [CrossRef]
- Qu, K.G.; Zheng, Y.; Dai, S.; Qiao, S.Z. Polydopamine-Graphene Oxide Derived Mesoporous Carbon Nanosheets for Enhanced Oxygen Reduction. Nanoscale 2015, 7, 12598–12605. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhang, H.M.; Zhao, Q.; Zhang, X.; Liu, R.R.; Ge, X.; Wang, G.Z.; Zhao, H.J.; Cai, W.P. Metal-Organic Framework Derived Nitrogen-Doped Porous Carbon@graphene Sandwich-like Structured Composites as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions. Carbon 2016, 106, 74–83. [Google Scholar] [CrossRef]
- Wang, B.; Li, S.M.; Wu, X.Y.; Liu, J.H.; Chen, J. Biomass Chitin-Derived Honeycomb-like Nitrogen-Doped Carbon/Graphene Nanosheet Networks for Applications in Efficient Oxygen Reduction and Robust Lithium Storage. J. Mater. Chem. A Mater. 2016, 4, 11789–11799. [Google Scholar] [CrossRef]
- Niu, W.H.; Li, L.G.; Liu, J.; Wang, N.; Li, W.; Tang, Z.H.; Zhou, W.J.; Chen, S.W. Graphene-Supported Mesoporous Carbons Prepared with Thermally Removable Templates as Efficient Catalysts for Oxygen Electroreduction. Small 2016, 12, 1900–1908. [Google Scholar] [CrossRef]
- Qin, L.; Yuan, Y.F.; Wei, W.; Lv, W.; Niu, S.Z.; He, Y.B.; Zhai, D.Y.; Kang, F.Y.; Kim, J.K.; Yang, Q.H.; et al. Graphene-Directed Formation of a Nitrogen-Doped Porous Carbon Sheet with High Catalytic Performance for the Oxygen Reduction Reaction. J. Phys. Chem. C 2018, 122, 13508–13514. [Google Scholar] [CrossRef]
- Sun, J.; Lowe, S.E.; Zhang, L.J.; Wang, Y.Z.; Pang, K.L.; Wang, Y.; Zhong, Y.L.; Liu, P.R.; Zhao, K.; Tang, Z.Y.; et al. Ultrathin Nitrogen-Doped Holey Carbon@Graphene Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions in Alkaline and Acidic Media. Angew. Chem. Int. Ed. 2018, 57, 16511–16515. [Google Scholar] [CrossRef]
- Wang, N.; Tian, H.; Zhu, S.Y.; Yan, D.Y.; Mai, Y.Y. Two-Dimensional Nitrogen-Doped Mesoporous Carbon/Graphene Nanocomposites from the Self-Assembly of Block Copolymer Micelles in Solution. Chin. J. Polym. Sci. 2018, 36, 266–272. [Google Scholar] [CrossRef]
- Hou, D.; Zhang, J.C.; Tian, H.; Li, Q.; Li, C.; Mai, Y.Y. Pore Engineering of 2D Mesoporous Nitrogen-Doped Carbon on Graphene through Block Copolymer Self-Assembly. Adv. Mater. Interfaces 2019, 6, 1901476. [Google Scholar] [CrossRef]
- Sheng, K.; Yi, Q.F.; Hou, L.F.; Chen, A.L. Metal-Free Graphene Modified Nitrogen-Doped Ultra-Thin Hollow Carbon Spheres as Superior Cathodic Catalysts of Zn-Air Battery. J. Electrochem. Soc. 2020, 167, 070560. [Google Scholar] [CrossRef]
- Begum, H.; Ahmed, M.S.; Jung, S. Template-Free Synthesis of Polyacrylonitrile-Derived Porous Carbon Nanoballs on Graphene for Efficient Oxygen Reduction in Zinc-Air Batteries. J. Mater. Chem. A Mater. 2021, 9, 9644–9654. [Google Scholar] [CrossRef]
- Gai, H.Y.; Xue, S.; Wang, X.K.; Zhou, J.; Jiang, H.Q.; Huang, M.H. Sandwich-like Hierarchical Porous Dual-Carbon Catalyst with More Accessible Sites for Boosting Oxygen Reduction Reaction. Mater. Today Energy 2021, 21, 8. [Google Scholar] [CrossRef]
- Ilnicka, A.; Skorupska, M.; Tyc, M.; Kowalska, K.; Kamedulski, P.; Zielinski, W.; Lukaszewicz, J.P. Green Algae and Gelatine Derived Nitrogen Rich Carbon as an Outstanding Competitor to Pt Loaded Carbon Catalysts. Sci. Rep. 2021, 11, 13. [Google Scholar] [CrossRef]
- Kim, I.Y.; Kim, S.; Jin, X.Y.; Premkumar, S.; Chandra, G.; Lee, N.S.; Mane, G.P.; Hwang, S.J.; Umapathy, S.; Vinu, A. Ordered Mesoporous C3N5 with a Combined Triazole and Triazine Framework and Its Graphene Hybrids for the Oxygen Reduction Reaction (ORR). Angew. Chem. Int. Ed. 2018, 57, 17135–17140. [Google Scholar] [CrossRef]
- Xu, J.Y.; Liu, B. Intrinsic Properties of Nitrogen-Rich Carbon Nitride for Oxygen Reduction Reaction. Appl. Surf. Sci. 2020, 500, 144020. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Li, C.; Xu, Y.X.; Bai, H.; Yao, Z.Y.; Shi, G.Q. Chemically Converted Graphene as Substrate for Immobilizing and Enhancing the Activity of a Polymeric Catalyst. Chem. Commun. 2010, 46, 4740–4742. [Google Scholar] [CrossRef]
- Yang, S.B.; Feng, X.L.; Wang, X.C.; Mullen, K. Graphene-Based Carbon Nitride Nanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions. Angew. Chem. Int. Ed. 2011, 50, 5339–5343. [Google Scholar] [CrossRef]
- Qin, Y.; Li, J.; Yuan, J.; Kong, Y.; Tao, Y.X.; Lin, F.R.; Li, S. Hollow Mesoporous Carbon Nitride Nanosphere/Three-Dimensional Graphene Composite as High Efficient Electrocatalyst for Oxygen Reduction Reaction. J. Power Sources 2014, 272, 696–702. [Google Scholar] [CrossRef]
- Qiu, K.P.; Guo, Z.X. Hierarchically Porous Graphene Sheets and Graphitic Carbon Nitride Intercalated Composites for Enhanced Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2014, 2, 3209–3215. [Google Scholar] [CrossRef]
- Tian, J.Q.; Ning, R.; Liu, Q.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X.P. Three-Dimensional Porous Supramolecular Architecture from Ultrathin g-C3N4 Nanosheets and Reduced Graphene Oxide: Solution Self-Assembly Construction and Application as a Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2014, 6, 1011–1017. [Google Scholar] [CrossRef]
- Wang, X.P.; Wang, L.X.; Zhao, F.; Hu, C.G.; Zhao, Y.; Zhang, Z.P.; Chen, S.L.; Shi, G.Q.; Qu, L.T. Monoatomic-Thick Graphitic Carbon Nitride Dots on Graphene Sheets as an Efficient Catalyst in the Oxygen Reduction Reaction. Nanoscale 2015, 7, 3035–3042. [Google Scholar] [CrossRef]
- Li, C.X.; Li, X.S.; Zhang, X.Y.; Yang, X.J.; Wang, L.Y.; Lu, W. The G-C3N4 Quantum Dot Decorated g-C3N4 Sheet/Reduced Graphene Oxide Composite as Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. J. Electrochem. Soc. 2020, 167, 100534. [Google Scholar] [CrossRef]
- Mane, R.S.; Periyasamy, G.; Jha, N. Sunlight Assisted Lewis Base Enriched 2D/2D g-C3N4-Graphene Oxide Composite as an Efficient ORR Electrocatalyst. Electrochim. Acta 2024, 481, 12. [Google Scholar] [CrossRef]
- Garcia, J.L.; Miyao, T.; Inukai, J.; Tongol, B.J. V Graphitic Carbon Nitride on Reduced Graphene Oxide Prepared via Semi-Closed Pyrolysis as Electrocatalyst for Oxygen Reduction Reaction. Mater. Chem. Phys. 2022, 288, 9. [Google Scholar] [CrossRef]
- Hu, C.; Yu, C.; Li, M.Y.; Wang, X.N.; Dong, Q.; Wang, G.; Qiu, J.S. Nitrogen-Doped Carbon Dots Decorated on Graphene: A Novel All-Carbon Hybrid Electrocatalyst for Enhanced Oxygen Reduction Reaction. Chem. Commun. 2015, 51, 3419–3422. [Google Scholar] [CrossRef]
- Samantara, A.K.; Sahu, S.C.; Ghosh, A.; Jena, B.K. Sandwiched Graphene with Nitrogen, Sulphur Co-Doped CQDs: An Efficient Metal-Free Material for Energy Storage and Conversion Applications. J. Mater. Chem. A Mater. 2015, 3, 16961–16970. [Google Scholar] [CrossRef]
- Zhou, L.H.; Fu, P.; Wang, Y.Q.; Sun, L.H.; Yuan, Y. Microbe-Engaged Synthesis of Carbon Dot-Decorated Reduced Graphene Oxide as High-Performance Oxygen Reduction Catalysts. J. Mater. Chem. A Mater. 2016, 4, 7222–7229. [Google Scholar] [CrossRef]
- Shin, J.H.; Guo, J.; Zhao, T.T.; Guo, Z.X. Functionalized Carbon Dots on Graphene as Outstanding Non-Metal Bifunctional Oxygen Electrocatalyst. Small 2019, 15, 9. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wei, J.S.; Xiong, H.M. Nitrogen and Sulfur Co-Doped Carbon Dots with Strong Blue Luminescence. Nanoscale 2014, 6, 13817–13823. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.M.; Wu, D.Q.; Wan, L.; Hu, P.F.; Liu, R.L. Heteroatom Doped Mesoporous Carbon/Graphene Nanosheets as Highly Efficient Electrocatalysts for Oxygen Reduction. J. Colloid. Interface Sci. 2014, 421, 160–164. [Google Scholar] [CrossRef]
- Ma, Y.W.; Sun, L.Y.; Huang, W.; Zhang, L.R.; Zhao, J.; Fan, Q.L. Three-Dimensional Nitrogen-Doped Carbon Nanotubes/Graphene Structure Used as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. J. Phys. Chem. C 2011, 115, 24592–24597. [Google Scholar] [CrossRef]
- Wang, X.W.; Ai, W.; Li, N.; Yu, T.; Chen, P. Graphene-Bacteria Composite for Oxygen Reduction and Lithium Ion Batteries. J. Mater. Chem. A Mater. 2015, 3, 12873–12879. [Google Scholar] [CrossRef]
- Qu, K.G.; Zheng, Y.; Dai, S.; Qiao, S.Z. Graphene Oxide-Polydopamine Derived N, S-Codoped Carbon Nanosheets as Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. Nano Energy 2016, 19, 373–381. [Google Scholar] [CrossRef]
- Liu, G.L.; Liu, Z.M.; Li, J.L.; Zeng, M.; Li, Z.Y.; He, L.; Li, F.W. Chitosan/Phytic Acid Hydrogel as a Platform for Facile Synthesis of Heteroatom-Doped Porous Carbon Frameworks for Electrocatalytic Oxygen Reduction. Carbon 2018, 137, 68–77. [Google Scholar] [CrossRef]
- Tan, H.B.; Zhao, Y.J.; Xia, W.; Zhao, J.C.; Xu, X.T.; Wood, K.; Sugahara, Y.; Yamauchi, Y.; Tang, J. Phosphorus- and Nitrogen-Doped Carbon Nanosheets Constructed with Monolayered Mesoporous Architectures. Chem. Mater. 2020, 32, 4248–4256. [Google Scholar] [CrossRef]
- Wang, S.Y.; Yu, D.S.; Dai, L.M.; Chang, D.W.; Baek, J.B. Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. ACS Nano 2011, 5, 6202–6209. [Google Scholar] [CrossRef]
- Huang, D.K.; Zhang, B.Y.; Zhang, Y.B.; Zhan, F.; Xu, X.B.; Shen, Y.; Wang, M.K. Electrochemically Reduced Graphene Oxide Multilayer Films as Metal-Free Electrocatalysts for Oxygen Reduction. J. Mater. Chem. A Mater. 2013, 1, 1415–1420. [Google Scholar] [CrossRef]
- Lee, J.S.; Jo, K.; Lee, T.; Yun, T.; Cho, J.; Kim, B.S. Facile Synthesis of Hybrid Graphene and Carbon Nanotubes as a Metal-Free Electrocatalyst with Active Dual Interfaces for Efficient Oxygen Reduction Reaction. J. Mater. Chem. A Mater. 2013, 1, 9603–9607. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, T.J.; Bai, J.; Li, F.M.; Ma, T.Y.; Chen, Y. Enhancing the Selectivity of H2O2 Electrogeneration by Steric Hindrance Effect. ACS Appl. Mater. Interfaces 2018, 10, 42534–42541. [Google Scholar] [CrossRef]
- Getachew, T.; Addis, F.; Beyene, T.; Mehretie, S.; Admassie, S. Amino-Substituted Naphthalene Sulfonic Acid/Graphene Composite as Metal-Free Catalysts for Oxygen Reduction Reactions. Bull. Chem. Soc. Ethiop. 2019, 33, 359–372. [Google Scholar] [CrossRef]
- Wang, D.D.; Gao, X.L.; Zhao, L.M.; Zhou, J.; Zhuo, S.P.; Yan, Z.F.; Xing, W. Polydopamine-Coated Graphene Nanosheets as Efficient Electrocatalysts for Oxygen Reduction Reaction. RSC Adv. 2018, 8, 16044–16051. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Chen, C.L.; Zhou, M.; Fu, G.Y.; Zhao, Y.Y.; Chen, Y.H. Improved Oxygen Reduction Activity of Carbon Nanotubes and Graphene through Adenine Functionalization. RSC Adv. 2017, 7, 26722–26728. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, W.J.; Yao, B.W.; Li, C.; Shi, G.Q. Solution-Processed PEDOT:PSS/Graphene Composites as the Electrocatalyst for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2014, 6, 3587–3593. [Google Scholar] [CrossRef]
- Long, X.J.; Li, D.H.; Wang, B.B.; Jiang, Z.J.; Xu, W.J.; Yang, D.J.; Xia, Y.Z. Heterocyclization Strategy for Construction of Linear Conjugated Polymers: Efficient Metal-Free Electrocatalysts for Oxygen Reduction. Angew. Chem. Int. Ed. 2019, 58, 11369–11373. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Amini, A. Preparation of Graphene/Nile Blue Nanocomposite: Application for Oxygen Reduction Reaction and Biosensing. Electrochim. Acta 2015, 173, 354–363. [Google Scholar] [CrossRef]
- Cossio, J.J.B.; Pena, P.A.; Hernandez-Gordillo, A.; Garcia, L.F.D.; Santiago, A.R.P.; Echegoyen, L.; Reguera, E. In Situ Aniline-Polymerized Interfaces on GO-PVA Nanoplatforms as Bifunctional Supercapacitors and PH-Universal ORR Electrodes. ACS Appl. Energy Mater. 2020, 3, 4727–4737. [Google Scholar] [CrossRef]
- Pattanayak, P.; Pramanik, N.; Papiya, F.; Kumar, V.; Kundu, P.P. Metal-Free Keratin Modified Poly (Pyrrole-Co-Aniline)-Reduced Graphene Oxide Based Nanocomposite Materials: A Promising Cathode Catalyst in Microbial Fuel Cell Application. J. Environ. Chem. Eng. 2020, 8, 103813. [Google Scholar] [CrossRef]
- Wei, W.; Tao, Y.; Lv, W.; Su, F.Y.; Ke, L.; Li, J.; Wang, D.W.; Li, B.H.; Kang, F.Y.; Yang, Q.H. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts. Sci. Rep. 2014, 4, 6289. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.Y.; Xia, B.Y.; Franklin, J.; Li, B.S.; Wang, X.; Wang, Z.; Chen, L.W.; Lin, J.Y.; Lai, L.F.; Shen, Z.X. Free-Standing Vertically-Aligned Nitrogen-Doped Carbon Nanotube Arrays/Graphene as Air-Breathing Electrodes for Rechargeable Zinc-Air Batteries. J. Mater. Chem. A Mater. 2017, 5, 2488–2495. [Google Scholar] [CrossRef]
- Luo, J.M.; Yang, L.M.; Li, T.; Yang, L.X.; Luo, X.B.; Crittenden, J.C. Three-Dimensional Electrode Interface Assembled from RGO Nanosheets and Carbon Nanotubes for Highly Electrocatalytic Oxygen Reduction. Chem. Eng. J. 2019, 378, 122127. [Google Scholar] [CrossRef]
- Kong, F.T.; Qiao, Y.; Zhang, C.Q.; Fan, X.H.; Kong, A.G.; Shan, Y.K. Unadulterated Carbon as Robust Multifunctional Electrocatalyst for Overall Water Splitting and Oxygen Transformation. Nano Res. 2020, 13, 401–411. [Google Scholar] [CrossRef]
- Abreu, B.; Rocha, M.; Nunes, M.; Freire, C.; Marques, E.F. Carbon Nanotube/Graphene Nanocomposites Built via Surfactant-Mediated Colloid Assembly as Metal-Free Catalysts for the Oxygen Reduction Reaction. J. Mater. Sci. 2021, 56, 19512–19527. [Google Scholar] [CrossRef]
- Patil, I.M.; Lokanathan, M.; Kakade, B. Three Dimensional Nanocomposite of Reduced Graphene Oxide and Hexagonal Boron Nitride as an Efficient Metal-Free Catalyst for Oxygen Electroreduction. J. Mater. Chem. A Mater. 2016, 4, 4506–4515. [Google Scholar] [CrossRef]
- Yuan, G.E.; Zhang, G.Q.; Chen, J.; Fu, L.; Xu, L.; Yang, F.L. The Electrochemical Activities of Anthraquinone Monosulfonate Adsorbed on the Basal Plane of Reduced Graphene Oxide by Pi-Pi Stacking Interaction. J. Solid State Electrochem. 2013, 17, 2711–2719. [Google Scholar] [CrossRef]
- Shen, A.L.; Xia, W.J.; Zhang, L.P.; Dou, S.; Xia, Z.H.; Wang, S.Y. Charge Transfer Induced Activity of Graphene for Oxygen Reduction. Nanotechnology 2016, 27, 185402. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, L.D.; Zhou, C.; Zheng, X.; Chen, Y.G.; Rittmann, B.E. Biogenic Melanin-Modified Graphene as a Cathode Catalyst Yields Greater Bioelectrochemical Performances by Stimulating Oxygen-Reduction and Microbial Electron Transfer. Acs EsT Water 2023, 8, 3369–3376. [Google Scholar] [CrossRef]
- Di Noto, V.; Negro, E.; Vezzù, K.; Bertasi, F.; Nawn, G. Origins, Developments, and Perspectives of Carbon Nitride-Based Electrocatalysts for Application in Low-Temperature FCs. Electrochem. Soc. Interface 2015, 24, 59–63. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crociani, L. Metal-Free Graphene-Based Derivatives as Oxygen Reduction Reaction Electrocatalysts in Energy Conversion and Storage Systems: An Overview. Molecules 2025, 30, 2248. https://doi.org/10.3390/molecules30102248
Crociani L. Metal-Free Graphene-Based Derivatives as Oxygen Reduction Reaction Electrocatalysts in Energy Conversion and Storage Systems: An Overview. Molecules. 2025; 30(10):2248. https://doi.org/10.3390/molecules30102248
Chicago/Turabian StyleCrociani, Laura. 2025. "Metal-Free Graphene-Based Derivatives as Oxygen Reduction Reaction Electrocatalysts in Energy Conversion and Storage Systems: An Overview" Molecules 30, no. 10: 2248. https://doi.org/10.3390/molecules30102248
APA StyleCrociani, L. (2025). Metal-Free Graphene-Based Derivatives as Oxygen Reduction Reaction Electrocatalysts in Energy Conversion and Storage Systems: An Overview. Molecules, 30(10), 2248. https://doi.org/10.3390/molecules30102248