Natural Compounds and Health Benefits of Ganoderma capense
Abstract
1. Introduction
2. Polysaccharides
3. Small Molecular Compounds
3.1. Terpenoid
3.1.1. Sesquiterpene
3.1.2. Triterpenoid
3.1.3. Meroterpenoid
3.2. Steroid
3.3. Others
4. Pharmacological Effect
4.1. Antioxidant
4.2. Cytotoxicity and Anti-Cancer Effect
4.3. Anti-Inflammatory
4.4. Lower Blood Sugar and Lipids
4.5. Neurotherapeutic Effect
4.6. Antibacterial Activity
4.7. Other Pharmacological Activities
5. Conclusions and Prospection
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marek, S.; Piotr, R.; Niedzielski, P.; Budka, A.; Gąsecka, M.; Pavel, K.; Jasińska, A.; Budzyńska, S.; Kozak, L.; Mleczek, M. Comparison of multielemental composition of Polish and Chinese mushrooms (Ganoderma spp.). Eur. Food Res. Technol. 2017, 243, 1555–1566. [Google Scholar] [CrossRef]
- Hanjian, J.; Ning, N. Research Advances of the Chemical Constituents and Pharmacological Effects of Ganoderma lucidum. Guangzhou Chem. Ind. 2014, 42, 3. [Google Scholar]
- Ling, Z.B.; Wang, P.Y. The pharmacological study of Ganoderma spores and their active components. J. Peking Univ. 2006, 38, 541–547. [Google Scholar]
- Huangya, T. Isolation, Purification, Structural Characterization and Antitumor Activity of Polysaccharides from Ganoderma capense. Master’s Thesis, Guangdong Pharmaceutical University, Guangzhou, China, 2016. [Google Scholar]
- Yu, J.; Zhai, Y. Studies on the Constituents of Ganoderma Capens (Part I). Acta Pharm. Sin. 1979, 14, 374–378. [Google Scholar]
- Chen, R.Y. Chemical Research On Ganoderma lucidum. In Proceedings of the First Symposium on Development of China’s Medicinal Fungi Industry, Nantong, China, 6 April 2005; Mycological Society of China: Beijing, China, 2006; pp. 100–105. [Google Scholar]
- Leng, W.; Liugeng, T. Some pharmacological effects of thin-skinned Ganoderma capense fermentation liquid. Chin. Pharm. J. 1980, 15, 1–2. [Google Scholar]
- Chen, T.; Li, K.; Fang, Z.; Zhang, Y.; Lan, L. Components Analysis and Appraisal of Safety Toxicology Chemical of Mycelia Powder of Ganoderma capuse. Edible Fungi China 2004, 23, 39–42. [Google Scholar]
- Yang, Y.M. Clinical Research Progress on Bozhi Glycopeptide Injection. Guangming J. Chin. Med. 2017, 32, 1528. [Google Scholar] [CrossRef]
- Wei, Z.-H.; Duan, Y.-Y.; Qian, Y.-Q.; Guo, X.-F.; Li, Y.-J.; Jin, S.-H.; Zhou, Z.-X.; Shan, S.-Y.; Wang, C.-R.; Chen, X.-J.; et al. Screening of Ganoderma strains with high polysaccharides and ganoderic acid contents and optimization of the fermentation medium by statistical methods. Bioprocess Biosyst. Eng. 2014, 37, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yan, C.; Hua, D. Isolation, purification, and structural characterization of a novel polysaccharide from Ganoderma capense. Int. J. Biol. Macromol. 2013, 57, 285–290. [Google Scholar] [CrossRef]
- Jiang, J.-Y.; Kong, F.-S.; Li, N.-S.; Zhang, D.; Yan, C.; Lv, H. Purification, structural characterization and in vitro antioxidant activity of a novel polysaccharide from Boshuzhi. Carbohydr. Polym. 2016, 147, 365–371. [Google Scholar] [CrossRef]
- Huang, Y.; Li, N.; Wan, J.-B.; Zhang, D.; Yan, C. Structural characterization and antioxidant activity of a novel heteropolysaccharide from the submerged fermentation mycelia of Ganoderma capense. Carbohydr. Polym. 2015, 134, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Yi, P.; Li, N.; Wan, J.-B.; Zhang, D.; Li, M.; Yan, C. Structural characterization and antioxidant activity of a heteropolysaccharide from Ganoderma capense. Carbohydr. Polym. 2015, 121, 183–189. [Google Scholar] [CrossRef]
- Wang, S.; Li, Q. Bibliometric Analysis on Clinical Application of Bozhi Glycopeptides. Chin. Pharm. 2016, 6, 6. [Google Scholar]
- Lu, Y.; Jin, Y.-H.; Zhang, H.-H. Research on the Composition and Structure of Glycopeptide from Ganoderma capense. Pharm. Biotechnol. 2007, 14, 364–367. [Google Scholar]
- Lin, Y.-Q.; Fu, X.-Q.; Gai, Y.; Wei, H.-W. Study on Monosaccharides in Bozhi Glycopeptide by TLC and HPLC. Biotechnology 2004, 14, 33–34. [Google Scholar]
- Liu, B. Functional Analysis of HMGR and DXR Genes from Amomum villosum Lour. on Biosynthesis of Terpenoids in Tobacco. Doctoral Dissertation, Guangzhou University of Chinese Medicine, Guangzhou, China, 2012. [Google Scholar]
- Yazaki, K.; Arimura, G.-I.; Ohnishi, T. ‘Hidden’ Terpenoids in Plants: Their Biosynthesis, Localization and Ecological Roles. Plant Cell Physiol. 2017, 58, 1615–1621. [Google Scholar] [CrossRef]
- Peng, S.; Qi, J.Z.; Lin, C.; Xu, Z.C.; Li, Z.H.; Liu, C.W. From natural laboratory to drug discovery: Chemical structures, bioactivities, and biosynthesis of meroterpenoids from Ganoderma species. Chin. Herb. Med. 2025, in press. [CrossRef]
- Huang, T.-R.; Zheng, W.-Y.; Wu, L.-Y.; Gan, Y.-R. Research Progress of the Pharmacological Action of the Effective Components in Centipeda minima on Allergic Rhinitis. Med. Chem. 2022, 10, 292–297. [Google Scholar] [CrossRef]
- Tan, Z.; Zhao, J.; Liu, J. Sesquiterpenoids from the cultured mycelia of Ganoderma capense. Fitoterapia 2017, 118, 73–79. [Google Scholar] [CrossRef]
- Song, A.-R.; Sun, X.-L.; Kong, C.; Zhao, C.; Qin, D.; Huang, F.; Yang, S. Discovery of a new sesquiterpenoid from Phellinus ignarius with antiviral activity against influenza virus. Arch. Virol. 2014, 159, 753–760. [Google Scholar] [CrossRef]
- Tao, L.-Q.; Zhang, H. Research progress of triterpenoids in the prevention and treatment of Alzheimer’s disease. Chin. Bull. Life Sci. 2024, 36, 487–498. [Google Scholar] [CrossRef]
- Tan, Z.; Zhao, J.-L.; Liu, J.-M.; Zhang, M.; Chen, R.-D.; Xie, K.-B.; Chen, D.-W.; Dai, J.-G. Lanostane triterpenoids and ergostane-type steroids from the cultured mycelia of Ganoderma capense. J. Asian Nat. Prod. Res. 2018, 20, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.-R. Study on the Chemical Constituents and Bioactivities of Ganoderma. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2015. [Google Scholar]
- Tang, Y.; Liu, Y.; Ruan, Q.; Zhao, M.; Zhao, Z.; Cui, H. Aspermeroterpenes A–C: Three Meroterpenoids from the Marine-Derived Fungus Aspergillus terreus GZU-31-1. Org. Lett. 2020, 22, 1336–1339. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.-F.; Wu, Z.-H.; Liu, Y.; Yan, Y.-M.; Lu, R.-M.; Cheng, Y.-X. Ganocapenoids A–D: Four new aromatic meroterpenoids from Ganoderma capense. Bioorganic Med. Chem. Lett. 2019, 29, 143–147. [Google Scholar] [CrossRef]
- Peng, X.; Li, L.; Wang, X.; Zhu, G.; Li, Z.; Qiu, M. Antioxidant farnesylated hydroquinones from Ganoderma capense. Fitoterapia 2016, 111, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.G.; Chen, R.Y. Studies on Constituents of Ganoderma capense IV. The Chemical Structures of Ganoine, Ganodine and Ganoderpurine. Acta Pharm. Sin. 1990, 25, 612–616. [Google Scholar]
- Hapuarachchi, K.; Cheng, C.-R.; Wen, T.-C.; Jeewon, R.; Kakumyan, P. Mycosphere Essays 20: Therapeutic potential of Ganoderma species: Insights into its use as traditional medicine. Mycosphere 2017, 8, 1653–1694. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, Z.; Liu, L.; Chen, S. The chemistry and biology of fungal meroterpenoids (2009–2019). Org. Biomol. Chem. 2021, 19, 1644–1704. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.-G.; Ma, Q.-Y.; Huang, S.-Z.; Kong, F.-D.; Zhou, L.-M.; Dai, H.-F.; Zhao, Y.-X. Chemical constituents from the fruiting bodies of Amauroderma subresinosum. J. Asian Nat. Prod. Res. 2016, 18, 1030–1035. [Google Scholar] [CrossRef]
- Kitagawa, K.; Shigemura, K.; Ishii, A.; Nakashima, T.; Matsuo, H.; Takahashi, Y.; Omura, S.; Nakanishi, J.; Fujisawa, M. Nanaomycin K inhibited epithelial mesenchymal transition and tumor growth in bladder cancer cells in vitro and in vivo. Sci. Rep. 2021, 11, 9217. [Google Scholar] [CrossRef]
- Guo, R.-X.; Li, L.-G.; Wang, Y.-F.; Wang, L.; Zhang, M.-L.; Zhan, W.-H.; Shi, Q.-W. Historical story on natural medicinal chemistry: Steroids. Chin. Tradit. Herb. Drugs 2016, 47, 14. [Google Scholar] [CrossRef]
- Liu, P.; Liu, X.-L.; Li, J.-Y. Progress in study on biological activities and preparation of ergosterol peroxide. Chin. J. New Drugs 2023, 32, 2058–2065. [Google Scholar] [CrossRef]
- Vazirian, M.; Faramarzi, M.A.; Ebrahimi, S.E.; Esfahani, H.R.; Samadi, N.; Hosseini, S.A.; Asghari, A.; Manayi, A.; Mousazadeh, A.; Asef, M.R.; et al. Antimicrobial effect of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes) and its main compounds. Int. J. Med. Mushrooms 2014, 16, 77–84. [Google Scholar] [CrossRef]
- He, R.-B.; Li, W.; Yao, R.; Xu, M.-Y.; Dong, W.; Chen, Y.; Ni, W.-J.; Xie, S.-S.; Sun, Z.-H.; Li, C.; et al. Aurantiamide mitigates acute kidney injury by suppressing renal necroptosis and inflammation via GRPR-dependent mechanism. Int. Immunopharmacol. 2024, 139, 112745. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-F.; Ma, J.; Chen, Y.-G. Research Progress on Active Ingredients of Ganoderma sp. Heilongjiang Agric. Sci. 2014, 2014, 137–142. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, X.-W.; Wu, S.; Di, G.-H.; Hao, L.-H. Synthesis and hypoglycemic activity of 5-hydroxylmethyl-2- furfural derivatives. Chin. J. Med. Chem. 2012, 22, 349–355. [Google Scholar] [CrossRef]
- Shimizu, A.; Yano, T.; Saito, Y.; Inada, Y. Isolation of an inhibitor of platelet aggregation from a fungus, Ganoderma lucidum. Chem. Pharm. Bull. 1985, 33, 3012–3015. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Li, L.-S. Progress on Research of Nicotinic Acid and Nicotinamide. Chem. Ind. Times 2003, 17, 6–9. [Google Scholar] [CrossRef]
- Zhou, J.; Xie, G.; Yan, X. Encyclopedia of Traditional Chinese Medicines—Molecular Structures, Pharmacological Activities, Natural Sources and Applications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 154–196. [Google Scholar]
- Stuart, K.-L.; Coke, L.-B. The effect of vomifoliol on stomatal aperture. Planta 1975, 122, 307–310. [Google Scholar] [CrossRef]
- Mogana, R.; Adhikari, A.; Debnath, S.; Hazra, S.; Hazra, B.; Teng, J.-K.; Wiart, C. The antiacetylcholinesterase and antileishmanial activities of Canarium patentinervium Miq. BioMed Res. Int. 2014, 2014, 903529. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Bono, A. Phytochemical antioxidants for health and medicine—A move towards nature. Biotechnol. Mol. Biol. Rev. 2007, 1, 97–104. [Google Scholar]
- Luo, J.-W.; Zhang, Y.; Huang, W.; Zhao, X.; Zeng, F.-K. Sources and functions of terpenoids in foods. Food Ferment. Ind. 2019, 45, 267–272. [Google Scholar] [CrossRef]
- Yan, C.; Kong, F.; Zhang, D.; Cui, J. Anti-glycated and antiradical activities in vitro of polysaccharides from Ganoderma capense. Pharmacogn. Mag. 2013, 9, 23–27. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Duanc, C.-X.; Yang, M.-H. An Anti-Aging Ganoderma lucidum Face Cream and a Method for Preparing the Same. CN Patent 115887327A, 11 November 2024. [Google Scholar]
- National Medical Products Administration. Technical guidelines for non-clinical research on cytotoxic antitumor drugs. Chin. J. New Drugs Clin. Remedies 2008, 27, 462–465. [Google Scholar] [CrossRef]
- Tran, P.T.; Dat, N.T.; Dang, N.H.; Van, C.P.; Lee, S.; Hwangbo, C.; Van, M.C.; Lee, J.H. Ganomycin I from Ganoderma lucidum attenuates RANKL-mediated osteoclastogenesis by inhibiting MAPKs and NFATc1. Phytomed. Int. J. Phytother. Phytopharm. 2019, 55, 1–8. [Google Scholar] [CrossRef]
- Palanisamy, A.; Tangestani, F.M.; Sean, T.W.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxidative Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef]
- Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the Crossroads of Cell Signalling and Inflammatory Disease. Biochim. Biophys. Acta 2014, 1843, 2563–2582. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, S.; Ding, R.; Yao, W.; Gao, X. Inflammatory Modulation Effect of Glycopeptide from Ganoderma capense (Lloyd) Teng. Mediat. Inflamm. 2014, 2014, 691285. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Bao, L.; Ma, K.; Zhang, J.; Chen, B.; Han, J.; Ren, J.; Luo, H.; Liu, H. A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK-Ay mice. Eur. J. Med. Chem. 2017, 127, 1035–1046. [Google Scholar] [CrossRef]
- Etukudo, E.M.; Mwabaleke, J.A.; Makeri, D.; Archibong, V.B.; Ifie, J.; Usman, I.M. A review on the neuroprotective potential of tamarindus indica: Evidence from preclinical studies done between 2016 to 2023. KIU J. Health Sci. 2024, 4, 119–131. [Google Scholar]
- Young, S.; Chgun, E.; Chen, M.A. Cardiovascular Complications of Acetylcholinesterase Inhibitors in Patients with Alzheimer’s Disease: A Narrative Review. Ann. Geriatr. Med. Res. 2021, 25, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.X.; Shi, L.M.; Hu, Y.; Lin, Z.D. The Effect of Ganoderma capense on IL-1Β and Caspase-3 Expressions in the Hippocampus of Rats. Zhejiang Clin. Med. J. 2017, 19, 1208–1210. [Google Scholar]
- Wang, Z.Y.; Fu, H.T. Treatment of Hereditary Cerebellar Ataxia with Ganoderma capense Report of 4 Cases. J. Tradit. Chin. Med. 1981, 1, 47–50. [Google Scholar] [PubMed]
- Mishra, J.; Rajput, R.; Singh, K. Antibacterial Natural Peptide Fractions from Indian Ganoderma lucidum. Int. J. Pept. Res. Ther. 2017, 24, 543–554. [Google Scholar] [CrossRef]
- Cör, D.; Knez, Ž.; Knez Hrnčič, M. Antitumour, Antimicrobial, Antioxidant and Antiacetylcholinesterase Effect of Ganoderma lucidum Terpenoids and Polysaccharides: A Review. Molecules 2018, 23, 649. [Google Scholar] [CrossRef]
- Ngai, P.H.; Ng, T.B. A mushroom (Ganoderma capense) lectin with spectacular thermostability, potent mitogenic activity on splenocytes, and antiproliferative activity toward tumor cells. Biochem. Biophys. Res. Commun. 2004, 314, 988–993. [Google Scholar] [CrossRef]
- Liu, Y.M.; Li, H.Y. XUAN Guowei’s Clinical Experience in Treating Alopecia Areata from Liver and Kidney Yin Deficiency. J. Tradit. Chin. Med. 2020, 61, 13–16. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y. The Role of the Ganoderma capense Glycopeptide in Treatment of AIDS Complicated with Pulmonary Tuberculosis. China Health Stand. Manag. 2018, 9, 74–76. [Google Scholar] [CrossRef]
- Zeng, L.-J. The therapeutic effect’s analysis of the internal use of Gcapense and Acyclovir for curing recurrent Genital Herpes. In Proceedings of the 2011 International Meeting on Ganoderma Research, Beijing, China, 16 August 2011; Dermatovenereology Branch of the No.1 People’s Hospital Xiantao City Hubei Province: Xiantao, China, 2011; pp. 87–88. [Google Scholar]
- Li, L.; Yang, Y.L.; Yang, X.F.; He, W.; Yuan, K.; Zhu, W.Y.; Peng, C.; He, Y.F.; Dong, Y.M.; Zhou, W.Q. Advances on process regulation of Ganoderma triterpene acids production by liquid fermentation. Food Ferment. Ind. Editor. Staff 2021, 47, 304–312. [Google Scholar] [CrossRef]
Solution | Name | NW | Polysaccharide | Monosaccharide Composition | Biological Activities | Reference |
---|---|---|---|---|---|---|
Hot water | GCP50-1 GCP50-2 GCP50-3 GCP70-1 | 1.5 × 104 Da 3167 Da 8123 Da 10,685 Da | glucan glucan | glucose glucose | —— —— —— —— | [11] |
GCP70-3 | 32,436 Da | heteropolysaccharide | D-mannose glucose galactose xylose rabinose | Inhibitory activity against tumor cells MGC-803, etc. | [4] | |
GCP90-2 GCP90-3 | 6381 Da 5808 Da | heteropolysaccharide | D-mannose glucose galactose rhamnose xylose arabinose | —— —— | ||
Sodium-hydroxide | GCPB-2 | 1.03 × 105 Da | heteropolysaccharide | xylose arabinose | DPPH· hydroxyl radical activity | [13] |
GCPB-1b | 2847 Da | glucan | glucose | Inhibits the proliferation of MGC-803 cells | [12] | |
GCPB-3 | 1.24 × 105 Da | heteropolysaccharide | xylose arabinose | DPPH· hydroxyl radical activity | [14] |
Number | Chemical Compound | Biological Activities | Materials | References |
---|---|---|---|---|
1 | ganodermanol A | - | mycelium | [22] |
2 | ganodermanol B | - | mycelium | [22] |
3 | ganodermanol C | Cytotoxic to human liver cancer cell line HCT 116 | mycelium | [22] |
4 | ganodermanol D | Cytotoxic and anti-HIV activities against human liver cancer cell lines HCT116, BGC823, Daoy and HepG_2 | mycelium | [22] |
5 | ganodermanol E | - | mycelium | [22] |
6 | ganodermanol F | Toxic to human cancer cells NCI-H1650 and Daoy | mycelium | [22] |
7 | ganodermanol J | - | mycelium | [22] |
8 | ganodermanol H | - | mycelium | [22] |
9 | ganodermanol I | Cytotoxic to human liver cancer cell line HCT116 | mycelium | [22] |
10 | ganodermanol G | - | mycelium | [22] |
11 | ganodermanol K | - | mycelium | [22] |
12 | rel-(+)-(2aR,5R,5aR,8S,8aS,8bR)-decahydro-2,2,5,8-tetramethyl-2H-naphtho[1,8-bc]furan-5-ol | - | mycelium | [22] |
13 | eudesm-1β,6α,11-triol | Ability to inhibit influenza virus | mycelium | [22,23] |
Number | Chemical Compound | Biological Activities | Materials | References |
---|---|---|---|---|
14 | (24E)-15α-acetoxy-3-oxolanosta-8,24-dien-26-oicacid | Weak anti-HIV activity | mycelium | [25] |
15 | 15α-Acetoxy-3α-hydroxylanosta-8,24-dien-26-oicacid | Weak anti-HIV activity | mycelium | [25] |
16 | (24E)-15α-acetoxy-3β-hydroxylanosta-8,24-dien-26-oicacid | Weak anti-HIV activity | mycelium | [25] |
17 | 26-Methy-15α,22β-diacetoxy-7,9(11),24-trien-26-oicester | Cytotoxic activity against the human cancer cell line NCI-H1650 | mycelium | [25] |
18 | betulinic acid | - | fruit bodies | [26] |
19 | bean sapogenin-B | - | mycelium | [6] |
Number | Chemical Compound | Biological Activities | Materials | References |
---|---|---|---|---|
20 | ganocapenoids A | - | Fruit bodies | [28] |
21 | ganocapenoids B | - | Fruit bodies | [28] |
22 | ganocapenoids C | AchE inhibitory activity | Fruit bodies | [28] |
23 | ganocapenoids D | Neurotrophic factor | Fruit bodies | [28] |
24 | ganoresain B | - | Fruit bodies | [28] |
25 | ganocalidin E | AchE inhibitory activity | Fruit bodies | [28] |
26 | fornicin B | Cytotoxic to Hep-2 cells, antioxidant activity | Fruit bodies | [28,29,31] |
27 | ganomycin I | Anti-diabetic effect, anti-HIV protease, antioxidant activity, anti-rheumatic | Fruit bodies | [28,29,31,32] |
28 | zizhine A | - | Fruit bodies | [28] |
29 | amaurosubresin | AchE inhibitory activity | Fruit bodies | [28,33] |
30 | co-chlearin I | Neurotrophic factor AchE inhibitory activity | Fruit bodies | [28] |
31 | ganocochlearin B | - | Fruit bodies | [28] |
32 | patchiene A | AchE inhibitory activity | Fruit bodies | [28] |
33 | gano-mycin K | Inhibits epithelial–mesenchymal transition | Fruit bodies | [28,34] |
34 | ganocalidin A | Results in a decrease in lipid accumulation in HepG2 cells | Fruit bodies | [28] |
35 | spirolingzhine B | Promotes the proliferation of neural stem cells | Fruit bodies | [28,32] |
36 | ganocapensin A | Antioxidant activity | Fruit bodies | [29] |
37 | ganomycin F | Antioxidant activity | Fruit bodies | [29] |
38 | fornicin E | Antioxidant activity | Fruit bodies | [29] |
39 | ganocapensin B | Antioxidant activity | Fruit bodies | [29] |
40 | ganomycin E | Antioxidant activity | Fruit bodies | [29] |
41 | ganomycin C | Antioxidant activity | Fruit bodies | [29] |
42 | cochlearin A | - | Fruit bodies | [26] |
43 | cochlearin B | - | Fruit bodies | [26] |
Number | Chemical Compound | Biological Activities | Materials | References |
---|---|---|---|---|
44 | demethylincisterol A3 | Cytotoxic to the human cancer cell line HCT 116 | mycelium | [25] |
45 | 5α,9α-epidioxyergosta-6,8(14),22-triene-3β-ol | Weak anti-HIV activity | mycelium | [25] |
46 | 11α-hydroxy-21-hydroxy-demethylincisterol A3 | - | mycelium | [25] |
47 | (22E)-ergosta-7,22-dien-3β, 5α,6β-triol | - | fruit bodies | [26] |
48 | (22E)-ergosta-7,22-dien-3β,5α-diol | - | fruit bodies | [26] |
49 | ergosta-7,22-dien-3β,5α,6β, 5α,14α—pentol | - | fruit bodies | [26] |
50 | (22E)-ergosta-7,22-dien-3β-ol | Antibacterial activity | fruit bodies | [27,36,37] |
51 | 3β,5α,9α,14β-tetrahydroxy-(22E)-ergosta-7,22-dien-6-one | - | fruit bodies | [26] |
52 | (22E)-ergosta-7,22-dien-3β,5α,6β,9α-tetraol | - | fruit bodies | [26] |
53 | (22E)-ergosta7,9(11),22-dien-3β, 5α,6β-triol | - | fruit bodies | [27] |
54 | (22E)-ergosta-7,14,22-dien-3β, 5α,6β-triol | - | fruit bodies | [26] |
55 | 3β,5α,9α-trihydroxy-(22E)-ergosta-7,22-dien-6-one | - | fruit bodies | [26] |
56 | 5α,9α-epidioxy-(22E)-ergosta-6,22-dien-3β-ol | - | fruit bodies | [26] |
57 | ergosterol | Antineoplastic, antiviral, immunomodulatory, and antibacterial | mycelium | [6] |
58 | ergosterol palmitate | - | mycelium | [6] |
59 | ergosterol-7,22-dien-3-One | Antibacterial activity | mycelium | [6,37] |
60 | 5α-sitostanedione-3,6 | - | mycelium | [6] |
Number | Chemical Compound | Biological Activities | Materials | References |
---|---|---|---|---|
61 | Aurantiamide | Anti-tubular inflammation | fruit bodies | [27,38] |
62 | Ganoine I | Reduces cholesterol and blood lipids, protects the liver, and fights inflammation | mycelium | [30,39] |
63 | Ganoine II | Reduces cholesterol and blood lipids, protects the liver, and fights inflammation | mycelium | [30,39] |
64 | Ganoderpurine | - | mycelium | [30] |
65 | 5-Hydroxymethylfurfural | Hypoglycemic activity and inhibition of platelet aggregation | mycelium | [6,40,41] |
66 | 1,1′di-a-furaldehydic dimethyl ether | - | mycelium | [6] |
67 | 5-acetoxymethyl-furfuraldehyde | - | mycelium | [6] |
68 | 5-butoxymethyl-furfuraldehyde | - | mycelium | [6] |
69 | Pyridine-3-carboxylic acid | Promotes cell metabolism and dilates blood vessels | mycelium | [6,42] |
70 | Bluemenol A | Acetylcholinesterase activity and anti-leishmanial activity | mycelium | [22,43,44,45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Shi, X.; Jia, L.; Wang, R.; Liu, C. Natural Compounds and Health Benefits of Ganoderma capense. Molecules 2025, 30, 2250. https://doi.org/10.3390/molecules30102250
Liu L, Shi X, Jia L, Wang R, Liu C. Natural Compounds and Health Benefits of Ganoderma capense. Molecules. 2025; 30(10):2250. https://doi.org/10.3390/molecules30102250
Chicago/Turabian StyleLiu, Longshi, Xinge Shi, Longkang Jia, Ran Wang, and Chengwei Liu. 2025. "Natural Compounds and Health Benefits of Ganoderma capense" Molecules 30, no. 10: 2250. https://doi.org/10.3390/molecules30102250
APA StyleLiu, L., Shi, X., Jia, L., Wang, R., & Liu, C. (2025). Natural Compounds and Health Benefits of Ganoderma capense. Molecules, 30(10), 2250. https://doi.org/10.3390/molecules30102250