Quantum Chemical Studies on the Prototropic and Acid/Base Equilibria for 2-Aminopyrrole in Vacuo—Role of CH Tautomers in the Design of Strong Brønsted Imino N-Bases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Possible Prototropic Tautomers for Neutral, Deprotonated, and Protonated AP
2.2. Thermochemistry of Prototropic Conversions for AP, AP−, and AP+
2.3. HOMED Indices Estimated for Neutral and Ionic Tautomers/Rotamers of 2-Aminopyrrole
2.4. Microscopic Gas-Phase Proton Acidity/Basicity Parameters for Tautomers/Rotamers of AP
2.5. Thermochemistry of Acid/Base Equilibria in Vacuo for AP
2.6. Importance of CH Tautomers in the Design of Superbasic Imines
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A Resourceful Small Molecule in Key Medical Hetero-Aromatics. RSC Adv. 2015, 5, 15233. [Google Scholar] [CrossRef]
- Gholap, S.S. Pyrrole: An Emerging Scaffold for Construction of Valuable Therapeutic Agents. Eur. J. Med. Chem. 2016, 110, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Domagala, A.; Jarosz, T.; Lapkowski, M. Living on Pyrrolic Foundations—Advances in Natural and Artificial Bioactive Pyrrole Derivatives. Eur. J. Med. Chem. 2015, 100, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Alam, O.; Naim, M.J.; Shaquiquzzaman, M.; Alam, M.M.; Iqbal, M. Pyrrole: An Insight into Recent Pharmacological Advances with Structure Activity Relationship. Eur. J. Med. Chem. 2018, 157, 527–561. [Google Scholar] [CrossRef]
- Mateev, E.; Georgieva, M.; Zlatkov, A. Pyrrrole as an Important Scaffold of Anticancer Drugs: Recent Advances. J. Pharm. Pharm. Sci. 2022, 25, 24–40. [Google Scholar] [CrossRef]
- Jeelan Basha, N.; Basavarajaiah, S.M.; Shyamsunder, K. Therapeutic Potential of Pyrrole and Pyrrolidine Analogs: An Update. Mol. Divers 2022, 26, 2915–2937. [Google Scholar] [CrossRef]
- Ganesh, B.H.; Raj, A.G.; Aruchamy, B.; Nanjan, P.; Drago, C.; Ramani, P. Pyrrole: A Decisive Scaffold for the Development of Therapeutic Agents and Structure-Activity Relationship. ChemMedChem 2023, 19, e202300447. [Google Scholar] [CrossRef]
- Long, L.; Zhang, H.; Zhou, Z.H.; Duan, L.; Fan, D.; Wang, R.; Xu, S.; Qiao, D.; Zhu, W. Pyrrole-Containing Hybrids as Potential Anticancer Agents: An insight into Current Developments and Structure-Activity Relationships. Eur. J. Med. Chem. 2024, 273, 116470. [Google Scholar] [CrossRef]
- Joule, J.A.; Mills, K. Heterocyclic Chemistry, 5th ed; Wiley: Chichester, UK, 2010. [Google Scholar]
- Nelson, D.L.; Cox, M.M. Principles of Biochemistry, 7th ed; W.H. Freeman and Company: New York, NY, USA, 2017. [Google Scholar]
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medicinal Aspects in Humans. J. Amino Acids 2016, 2016, 8952520. [Google Scholar] [CrossRef]
- Walsh, C.T.; Garneau-Tsodikova, S.; Howard-Jones, A.R. Biological Formation of Pyrroles: Nature’s Logic and Enzymatic Machinery. Nat. Prod. Rep. 2006, 23, 517–531. [Google Scholar] [CrossRef]
- Nikolaou, V.; Nikoloudakis, E.; Ladomenou, K.; Charalambidis, G.; Coutsolelos, A.G. Porphyrins—Valuable Pigments of Life. Front. Chem. Biol. 2024, 2, 1346465. [Google Scholar] [CrossRef]
- Seipp, K.; Geske, L.; Opatz, T. Marine Pyrrole Alkaloids. Mar. Drugs 2021, 19, 514. [Google Scholar] [CrossRef]
- Cirrincione, G.; Almerico, A.M.; Aiello, E.; Dattolo, G. Pyrroles, Part Two, The Synthesis, Reactivity and Physical Properties of Substituted Pyrroles; Jones, R.A., Ed.; John Wiley & Sons Inc.: New York, NY, USA, 1992; Chap. 3. [Google Scholar]
- Navqui, M.; Fernando, Q. The Basic Strength of Pyrrole. J. Org. Chem. 1960, 25, 551–554. [Google Scholar]
- Chiang, Y.; Whipple, E.B. The Protonation of Pyrroles. J. Org. Chem. 1963, 85, 2763–2767. [Google Scholar]
- Balon, M.; Carmona, M.C.; MuHoz, M.A.; Hidalgo, J. The Acid-Base Properties of Pyrrole and its Benzologs Indole and Carbazole. A Reexamination from the Excess Acidity Method. Terrahedron 1989, 45, 7501–7504. [Google Scholar]
- Cumming, J.B.; Kebarle, P. Summary of Gas Phase Measurements Involving Acids AH. Entropy Changes in Proton Transfer Reactions Involving Negative Ions. Bond Dissociation Energies (D(A−H) and Electron Affinities EA(A). Can. J. Chem. 1978, 56, 1–9. [Google Scholar]
- Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr. The Gas Phase Acidity Scale from Methanol to Phenol. J. Am. Chem. Soc. 1979, 101, 6047–6056. [Google Scholar]
- Hunter, E.P.L.; Lias, S.G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27, 413–656. [Google Scholar]
- Linstrom, P.J.; Mallard, W.G. (Eds.) NIST Chemistry WebBook, NIST Standard Reference Database No. 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014. Available online: http://webbook.nist.gov/chemistry (accessed on 11 February 2025).
- Maksić, Z.B.; Glasovac, Z.; Despotović, I. Predicted High Proton Affinity of Poly-2,5-dihydropyrrolimines—The Aromatic Domino Effects. J. Phys. Org. Chem. 2002, 15, 499–508. [Google Scholar]
- Maksić, Z.B.; Kovačević, B.; Vianello, R. Advances in Determining the Absolute Proton Affinities of Neutral Organic Molecules in the Gas Phase and Their Interpretation: A Theoretical Account. Chem. Rev. 2012, 112, 5240–5270. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Lagowski, J.M. Prototropic Tautomerism of Heteroaromatic Compounds: III. Five-Membered Rings and One Hetero Atom. Adv. Heterocycl. Chem. 1963, 2, 1–26. [Google Scholar]
- Bodor, N.; Dewar, M.J.S.; Harget, A.J. Ground States of Conjugated Molecules. XIX. Tautomerism of Heteroaromatic Hydroxy and Amino Derivatives and Nucleotide Bases. J. Am. Chem. Soc. 1970, 92, 2929–2936. [Google Scholar] [CrossRef]
- De Rosa, M.; Issac, R.P.; Marquez, M.; Orozco, M.; Luque, F.J.; Timken, M.D. 2-Aminopyrrole and Simple 1-Substituted 2-Aminopyrroles: Preparation and Ab Initio Study on the Effect of Solvent on the Amino-Imino Tautomeric Equilibrium. J. Chem. Soc. Perkin Trans 2 1999, 1999, 1433–1437. [Google Scholar] [CrossRef]
- Fradera, X.; De Rosa, M.; Orozo, M.; Luque, F. Tautomeric Cojugate Acids of 2-Aminopyrroles: Effect of Substituents, Solvation and Cosolute. Theor. Chem. Acc. 2004, 111, 223–230. [Google Scholar] [CrossRef]
- De Rosa, M.; Arnold, D.; O’Hare, B. The First Example of Tautomerism in 2-Aminopyrroles: Effect of Structure and Solvent. Tetrahedron Lett. 2009, 50, 12–14. [Google Scholar] [CrossRef]
- De Rosa, M.; Issac, R.P.; Houghton, G. First Synthesis of 2-Aminopyrrole and Simple 1-Substituted-2-Aminopyrroles. Observation of Fast Proton Exchange at C-5. Tetrahedron Lett. 1995, 36, 9261–9264. [Google Scholar] [CrossRef]
- De Rosa, M.; Sellitto, I.; Issac, R.P.; Ralph, J.; Timken, M.D. Preparation and Characterization of Tetraphenylborate Salts of 2-Aminopyrrole and 1-Alkyl-2-aminopyrroles. J. Chem. Res. (S) 1999, 1999, 262–263. [Google Scholar]
- Demir, A.S.; Emrullahoglu, M. An Effective New Synthesis of 2-Aminopyrrole-4-carboxylates. Tetrahedron 2005, 61, 10482–10489. [Google Scholar] [CrossRef]
- Wang, K.; Dömling, A. Design of a Versatile Multicomponent Reaction Leading to 2-Amino-5-ketoaryl Pyrroles. Chem. Biol. Drug Des. 2010, 75, 277–283. [Google Scholar] [CrossRef]
- Diana-Rivero, R.; Halsvik, B.; García Tellado, F.; Tejedor, D. Short and Modulator Synthesis of Substituted 2-Aminopyrroles. Org. Lett. 2021, 23, 4078–4082. [Google Scholar] [CrossRef]
- Aksu, K.; Őzgeriş, B.; Tűmer, F. Synthesis and Characterization of New N-substituted 2-Aminopyrrole Derivatives. Org. Commun. 2019, 12, 38–42. [Google Scholar] [CrossRef]
- Frolova, L.V.; Evdokimov, N.M.; Hayden, K.; Malik, I.; Rogelj, S.; Kornienko, A.; Magedov, I.V. One-Pot Multicomponent Synthesis of Diversely Substituted 2-Aminopyrroles. A Short General Synthesis of Rigidins A, B, C, and D. Org. Lett. 2011, 13, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Ding, H.; Yang, R.; Wang, X.; Xiao, Q. Total Synthesis of a Marine Alkaloid, Rigidin E. Mar. Drugs 2012, 10, 1412–1421. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: New York, NY, USA, 1960. [Google Scholar]
- Raczyńska, E.D.; Kosińska, W.; Ośmiałowski, B.; Gawinecki, R. Tautomeric Equilibria in Relation to pi-Delocalization. Chem. Rev. 2005, 105, 3561–3612. [Google Scholar] [CrossRef]
- Raczyńska, E.D.; Gal, J.-F.; Maria, P.-C. Strong Bases and beyond: The Prominent Contribution of Neutral Push-Pull Organic Molecules towards Superbases in the Gas-Phase. Int. J. Mol. Sci. 2024, 25, 5591. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecular Orbital Theory; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Hehre, W.J.; Radom, L.; Schleyer, P.v.R.; Pople, J.A. Ab Initio Molecular Theory; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Kolomeitsev, A.A.; Koppel, I.A.; Rodima, T.; Barten, J.; Lork, E.; Röschenthaler, G.-V.; Kaljurand, I.; Kütt, A.; Koppel, I.; Mäemets, V.; et al. Guanidinophosphazenes: Design, Synthesis, and Basicity in THF and in the Gas Phase. J. Am. Chem. Soc. 2005, 127, 17656–17666. [Google Scholar] [CrossRef]
- Leito, I.; Koppel, I.A.; Koppel, I.; Kaupmees, K.; Tshepelevitsh, S.; Saame, J. Basicity Limits of Neutral Organic Superbases. Angew. Chem. Int. Ed. 2015, 54, 9262–9265. [Google Scholar] [CrossRef]
- Mezey, P.G.; Ladik, J.J. A Non-Empirical Molecular Orbital Study on the Relative Stabilities of Adenine and Guanine Tautomers. Theor. Chim. Acta 1979, 52, 129–145. [Google Scholar] [CrossRef]
- Mezey, P.G.; Ladik, J.J.; Barry, M. Non-Empirical SCF MO Studies on the Protonation of Biopolymer Constituents II. Protonation of Adenine, Guanine and their Tautomeric Forms. Theor. Chim. Acta 1980, 54, 251–258. [Google Scholar] [CrossRef]
- Raczyńska, E.D. On Prototropy and Bond Length Alternation in Neutral and Ionized Pyrimidine Bases and Their Model Azines in Vacuo. Molecules 2023, 28, 7282. [Google Scholar] [CrossRef] [PubMed]
- Freindorf, M.; McCutcheon, M.; Beiranvand, N.; Kraka, E. Dihydrogen Bonding—Seen through the Eyes of Vibrational Spectroscopy. Molecules 2023, 28, 263. [Google Scholar] [CrossRef] [PubMed]
- Matta, C.F.; Hernández-Trujillo, J.; Tang, T.-H.; Bader, R.F.W. Hydrogen-Hydrogen Bonding: A Stabilizing Interaction in Molecules and Crystals. Chem. Eur. J. 2003, 9, 1940–1951. [Google Scholar] [CrossRef]
- Raczyńska, E.D.; Hallmann, M.; Kolczyńska, K.; Stępniewski, T.M. On the Harmonic Oscillator Model of Electron Delocalization (HOMED) Index and Its Application to Heteroatomic π-Electron Systems. Symmetry 2010, 2, 1485–1509. [Google Scholar] [CrossRef]
- Raczyńska, E.D. Application of the Extended HOMED (Harmonic Oscillator Model of Aromaticity) Index to Simple and Tautomeric Five-Membered Heteroaromatic Cycles with C, N, O, P, and S Atoms. Symmetry 2019, 11, 146. [Google Scholar] [CrossRef]
- Kruszewski, J.; Krygowski, T.M. Definition of Aromaticity Basing on the Harmonic Oscillator Model. Tetrahedron Lett. 1972, 13, 3839–3842. [Google Scholar] [CrossRef]
- Krygowski, T.M.; Kruszewski, J. Aromaticity of Thiophene, Pyrrole and Furan in Terms of Aromaticity Indices and Hammett σ Constants. Bull. Acad. Pol. Sci. Chim. 1974, 22, 871–876. [Google Scholar]
- Krygowski, T.M. Crystallographic Studies of Inter- and Intramolecular Interactions Reflected in Aromatic Character of π-Electron Systems. J. Chem. Inform. Comput. Sci. 1993, 33, 70–78. [Google Scholar] [CrossRef]
- Raczyńska, E.D. On Some Origins of Tautomeric Preferences in Neutral Creatinine in Vacuo: Search for Analogies and Differences in Cyclic Azoles and Azines. Symmetry 2024, 16, 98. [Google Scholar] [CrossRef]
- Infantes, L.; Foces-Foces, C.; Cabildo, P.; Claramunt, R.M.; Mó, O.; Yáňez, M.; Elguero, J. The Structure of Aminoazoles and Its Relationship with Aromaticity: Crystal and Molecular Structure of Two Polymorfic Forms of 4-Aminopyrazole. Heterocycles 1998, 49, 157–168. [Google Scholar]
- Bartmess, J.E. Thermodynamics of the Electron and the Proton. J. Phys. Chem. 1994, 98, 6420–6424, Erratum in J. Phys. Chem. 1995, 99, 6755. [Google Scholar] [CrossRef]
- Fifen, J.J.; Dhaouadi, Z.; Nsangou, M. Revision of the Thermodynamics of the Proton in the Gas Phase. J. Phys. Chem. A 2014, 118, 11090–11097. [Google Scholar] [CrossRef]
- Ariai, J.; Ziegler, M.; Würtele, C.; Gellrich, U. An N-Heterocyclic Quinodimethane: A Strong Organic Lewis Base Exhibiting Diradical Reactivity. Angew. Chem. Int. Ed. 2024, 63, e202316720. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian-03, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Raczyńska, E.D.; Gal, J.-F.; Maria, P.-C. Potential Push-Pull Carbon Superbases Based on Methyl Substitution of Rare Tautomers of Imines. Molecules 2025, 30, 474. [Google Scholar] [CrossRef]
- Kulsha, A.V.; Ivashkevich, O.A.; Lyakhov, D.A.; Michels, D. Strong Bases Design: Key Techniques and Stability Issues. Int. J. Mol. Sci. 2024, 25, 8716. [Google Scholar] [CrossRef]
Neutral Isomer | ΔH | −TΔS | ΔG | xi |
---|---|---|---|---|
AP16 | 0.0 | 0.0 | 0.0 | 99.9838 |
AP56 | 17.4 | 4.7 | 22.1 | 0.0135 |
AP36 | 22.4 | 4.1 | 26.4 | 0.0023 |
IP13b | 28.1 | 2.7 | 30.8 | 0.0004 |
IP34a | 28.3 | 3.1 | 31.4 | 0.0003 |
IP15b | 28.8 | 4.0 | 32.8 | 0.0002 |
IP13a | 34.0 | 1.1 | 35.2 | <0.0001 |
IP15a | 31.7 | 4.4 | 36.0 | <0.0001 |
IP34b | 42.2 | 3.3 | 45.5 | <0.0001 |
AP46 | 41.7 | 4.2 | 45.9 | <0.0001 |
AP26 | 73.8 | 4.5 | 78.4 | <0.0001 |
Anionic Isomer | ΔH | −TΔS | ΔG | xi |
---|---|---|---|---|
AP6− | 0.0 | 0.0 | 0.0 | 99.9798 |
AP3a− | 19.0 | 2.1 | 21.1 | 0.0202 |
AP3b− | 36.6 | 1.8 | 38.4 | <0.0001 |
AP1b− | 46.6 | 0.0 | 46.6 | <0.0001 |
AP5a− | 49.1 | 2.8 | 51.9 | <0.0001 |
AP1a− | 58.4 | 0.9 | 59.3 | <0.0001 |
AP5b− | 69.1 | 2.4 | 71.6 | <0.0001 |
AP4a− | 92.6 | 0.9 | 93.5 | <0.0001 |
AP4b− | 97.1 | 1.1 | 98.2 | <0.0001 |
AP2a− | 194.3 | 0.7 | 195.0 | <0.0001 |
AP2b− | 197.2 | 0.6 | 197.8 | <0.0001 |
Cationic Isomer | ΔH | −TΔS | ΔG | xi |
---|---|---|---|---|
AP156+ | 0.0 | 0.0 | 0.0 | 99.9940 |
AP136+ | 24.1 | 0.0 | 24.1 | 0.0060 |
AP346+ | 54.3 | −0.6 | 53.8 | <0.0001 |
AP146+ | 94.6 | −0.8 | 93.7 | <0.0001 |
AP134b+ | 98.7 | −0.9 | 97.8 | <0.0001 |
AP126+ | 107.1 | −0.4 | 106.7 | <0.0001 |
AP166+ | 113.5 | −2.5 | 111.0 | <0.0001 |
AP134a+ | 116.3 | −1.6 | 114.6 | <0.0001 |
AP566+ | 143.1 | −1.1 | 142.0 | <0.0001 |
AP466+ | 149.3 | −2.3 | 147.0 | <0.0001 |
AP116+ | 156.6 | −1.0 | 155.6 | <0.0001 |
AP266+ | 158.2 | −0.4 | 157.7 | <0.0001 |
AP366+ | 165.9 | −1.6 | 164.3 | <0.0001 |
Isomer | HOMED5 | HOMED6 | Isomer | HOMED5 | HOMED6 |
---|---|---|---|---|---|
AP16 | 0.924 | 0.825 | AP4b− | 0.275 | 0.321 |
AP26 | 0.231 | 0.077 | AP5a− | 0.329 | 0.371 |
AP36 | 0.388 | 0.411 | AP5b− | 0.305 | 0.349 |
AP46 | 0.434 | 0.437 | AP6− | 0.958 | 0.777 |
AP56 | 0.381 | 0.393 | AP116+ | −0.050 | 0.005 |
IP13a | 0.314 | 0.304 | AP126+ | 0.087 | 0.074 |
IP13b | 0.306 | 0.298 | AP136+ | 0.382 | 0.419 |
IP15a | 0.334 | 0.333 | AP146+ | 0.487 | 0.502 |
IP15b | 0.360 | 0.358 | AP156+ | 0.468 | 0.606 |
IP34a | −0.029 | −0.036 | AP166+ | 0.922 | 0.669 |
IP34b | −0.056 | −0.057 | AP266+ | 0.363 | −0.130 |
AP1a− | 0.755 | 0.772 | AP366+ | 0.385 | 0.082 |
AP1b− | 0.816 | 0.828 | AP466+ | 0.492 | 0.072 |
AP2a− | −0.182 | −0.164 | AP566+ | 0.403 | 0.072 |
AP2b− | −0.271 | −0.283 | AP134a+ | −0.127 | −0.179 |
AP3a− | 0.362 | 0.390 | AP134b+ | −0.063 | −0.108 |
AP3b− | 0.305 | 0.340 | AP346+ | 0.280 | 0.307 |
AP4a− | 0.220 | 0.269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raczyńska, E.D.; Maria, P.-C.; Gal, J.-F. Quantum Chemical Studies on the Prototropic and Acid/Base Equilibria for 2-Aminopyrrole in Vacuo—Role of CH Tautomers in the Design of Strong Brønsted Imino N-Bases. Molecules 2025, 30, 2112. https://doi.org/10.3390/molecules30102112
Raczyńska ED, Maria P-C, Gal J-F. Quantum Chemical Studies on the Prototropic and Acid/Base Equilibria for 2-Aminopyrrole in Vacuo—Role of CH Tautomers in the Design of Strong Brønsted Imino N-Bases. Molecules. 2025; 30(10):2112. https://doi.org/10.3390/molecules30102112
Chicago/Turabian StyleRaczyńska, Ewa Daniela, Pierre-Charles Maria, and Jean-François Gal. 2025. "Quantum Chemical Studies on the Prototropic and Acid/Base Equilibria for 2-Aminopyrrole in Vacuo—Role of CH Tautomers in the Design of Strong Brønsted Imino N-Bases" Molecules 30, no. 10: 2112. https://doi.org/10.3390/molecules30102112
APA StyleRaczyńska, E. D., Maria, P.-C., & Gal, J.-F. (2025). Quantum Chemical Studies on the Prototropic and Acid/Base Equilibria for 2-Aminopyrrole in Vacuo—Role of CH Tautomers in the Design of Strong Brønsted Imino N-Bases. Molecules, 30(10), 2112. https://doi.org/10.3390/molecules30102112