Innovative Approaches in the Synthesis and Optimization of Copper Complexes for Antitumor Therapies: A Comprehensive Review
Abstract
:1. Introduction
2. Methodology
3. Types of Cancer and Main Cell Lines Studied to Verify the Antitumor Action of Cu Complexes
4. Strategies Used to Improve the Antitumor Efficacy of Cu Complexes (Ligand, Linker and Pharmacophore)
5. Mechanistic Actions of Cu Complexes
6. Nanoformulations as a Strategy to Improve the Effectiveness and Safety of Cu Complexes Used as Antitumor Agents
7. Effectiveness and Safety of Cu Complexes Compared to Cisplatin
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Adhikari, H.S.; Garai, A.; Yadav, P.N. Synthesis, characterization, and anticancer activity of chitosan functionalized isatin based thiosemicarbazones, and their copper(II) complexes. Carbohydr. Res. 2023, 526, 108796. [Google Scholar] [CrossRef] [PubMed]
- Khamidullina, L.A.; Puzyrev, I.S.; Burygin, G.L.; Dorovatovskii, P.V.; Zubavichus, Y.V.; Mitrofanova, A.V.; Khrustalev, V.N.; Timofeeva, T.V.; Slepukhin, P.A.; Tobysheva, P.D.; et al. Unsymmetrical trifluoromethyl methoxyphenyl β-diketones: Effect of the position of methoxy group and coordination at Cu(II) on biological activity. Molecules 2021, 26, 6466. [Google Scholar] [CrossRef] [PubMed]
- Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M.; Dou, Q.P.; Franz, K.J.; Gohil, V.M.; Gupta, S.; et al. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer 2022, 22, 102–113. [Google Scholar] [CrossRef]
- Lu, W.; Tang, J.; Gu, Z.; Sun, L.; Wei, H.; Wang, Y.; Yang, S.; Chi, X.; Xu, L. Crystal structure, in vitro cytotoxicity, DNA binding and DFT calculations of new copper (II) complexes with coumarin-amide ligand. J. Inorg. Biochem. 2023, 238, 112030. [Google Scholar] [CrossRef] [PubMed]
- Stanojević, I.M.; Glišić, B.Đ.; Radanović, D.D.; Djuran, M.I. Copper(II) complexes of aminopolycarboxylate ligands with N2O2, N2O3 and N2O4 donor sets. The relationship between the ligand structure and molecular geometry of the complex. J. Mol. Struct. 2021, 1232, 130001. [Google Scholar] [CrossRef]
- Lelièvre, P.; Sancey, L.; Coll, J.-L.; Deniaud, A.; Busser, B. The Multifaceted Roles of Copper in Cancer: A Trace Metal Element with Dysregulated Metabolism, but Also a Target or a Bullet for Therapy. Cancers 2020, 12, 3594. [Google Scholar] [CrossRef]
- Drzewiecka-Antonik, A.; Rejmak, P.; Klepka, M.; Wolska, A.; Chrzanowska, A.; Struga, M. Structure and anticancer activity of Cu(II) complexes with (bromophenyl)thiourea moiety attached to the polycyclic imide. J. Inorg. Biochem. 2020, 212, 111234. [Google Scholar] [CrossRef]
- Carcelli, M.; Tegoni, M.; Bartoli, J.; Marzano, C.; Pelosi, G.; Salvalaio, M.; Rogolino, D.; Gandin, V. In vitro and in vivo anticancer activity of tridentate thiosemicarbazone copper complexes: Unravelling an unexplored pharmacological target. Eur. J. Med. Chem. 2020, 194, 112266. [Google Scholar] [CrossRef]
- Miglioli, F.; De Franco, M.; Bartoli, J.; Scaccaglia, M.; Pelosi, G.; Marzano, C.; Rogolino, D.; Gandin, V.; Carcelli, M. Anticancer activity of new water-soluble sulfonated thiosemicarbazone copper(II) complexes targeting disulfide isomerase. Eur. J. Med. Chem. 2024, 276, 116697. [Google Scholar] [CrossRef]
- Bhatt, B.S.; Gandhi, D.H.; Vaidya, F.U.; Pathak, C.; Patel, T.N. Cell apoptosis induced by ciprofloxacin based Cu(II) complexes: Cytotoxicity, SOD mimic and antibacterial studies. J. Biomol. Struct. Dyn. 2021, 39, 4555–4562. [Google Scholar] [CrossRef] [PubMed]
- Akhmetova, V.R.; Galimova, E.; Mescheryakova, E.S.; Dzhemileva, L.U.; Dzhemilev, U.M.; D’yakonov, V.A. Mono- and binuclear complexes of copper(II) with dimethylaminomethyl derivatives of 2-naphthol and 6-quinolinol: Synthesis and in vitro study of antitumor properties. Metallomics 2023, 15, mfad037. [Google Scholar] [CrossRef] [PubMed]
- Amiri Rudbari, H.; Saadati, A.; Aryaeifar, M.; Blacque, O.; Cuevas-Vicario, J.V.; Cabral, R.; Raposo, L.R.; Fernandes, A.R. Platinum(II) and copper(II) complexes of asymmetric halogen-substituted [NNʹO] ligands: Synthesis, characterization, structural investigations and antiproliferative activity. Bioorg. Chem. 2022, 119, 105556. [Google Scholar] [CrossRef] [PubMed]
- Basaran, E.; Gamze Sogukomerogullari, H.; Cakmak, R.; Akkoc, S.; Taskin-Tok, T.; Köse, A. Novel chiral Schiff base palladium(II), nickel(II), copper(II) and iron(II) complexes: Synthesis, characterization, anticancer activity and molecular docking studies. Bioorg Chem. 2022, 129, 106176. [Google Scholar] [CrossRef]
- Krasnovskaya, O.O.; Guk, D.A.; Naumov, A.E.; Nikitina, V.N.; Semkina, A.S.; Vlasova, K.Y.; Pokrovsky, V.; Ryabaya, O.O.; Karshieva, S.S.; Skvortsov, D.A.; et al. Novel copper-containing cytotoxic agents based on 2-Thioxoimidazolones. J. Med. Chem. 2020, 63, 13031–13063. [Google Scholar] [CrossRef]
- Makowska, A.; Sączewski, F.; Bednarski, P.J.; Gdaniec, M.; Balewski, Ł.; Warmbier, M.; Kornicka, A. Synthesis, structure and cytotoxic properties of copper(II) complexes of 2-Iminocoumarins bearing a 1,3,5-triazine or benzoxazole/benzothiazole moiety. Molecules 2022, 27, 7155. [Google Scholar] [CrossRef]
- Mijatović, A.; Gligorijević, N.; Ćoćić, D.; Spasić, S.; Lolić, A.; Aranđelović, S.; Nikolić, M.; Baošić, R. In vitro and in silico study of the biological activity of tetradentate Schiff base copper(II) complexes with ethylenediamine-bridge. J. Inorg. Biochem. 2023, 244, 112224. [Google Scholar] [CrossRef]
- Ohui, K.; Stepanenko, I.; Besleaga, I.; Babak, M.V.; Stafi, R.; Darvasiova, D.; Giester, G.; Pósa, V.; Enyedy, E.A.; Vegh, D.; et al. Triapine derivatives act as copper delivery vehicles to induce deadly metal overload in cancer cells. Biomolecules 2020, 10, 1336. [Google Scholar] [CrossRef]
- Mutlu Gençkal, H.; Erkisa, M.; Alper, P.; Sahin, S.; Ulukaya, E.; Ari, F. Mixed ligand complexes of Co(II), Ni(II) and Cu(II) with quercetin and diimine ligands: Synthesis, characterization, anti-cancer and anti-oxidant activity. J. Biol. Inorg. Chem. 2020, 25, 161–177. [Google Scholar] [CrossRef]
- Burgos-López, Y.; Balsa, L.M.; Piro, O.E.; León, I.E.; García-Tojal, J.; Echeverría, G.A.; González-Baró, A.C.; Parajón-Costa, B.S. Tridentate acylhydrazone copper(II) complexes with heterocyclic bases as coligands. Synthesis, spectroscopic studies, crystal structure and cytotoxicity assays. Polyhedron 2022, 213, 115621. [Google Scholar] [CrossRef]
- Banti, C.N.; Tsiatouras, V.; Karanicolas, K.; Panagiotou, N.; Tasiopoulos, A.J.; Kourkoumelis, N.; Hadjikakou, S.K. Antiproliferative activity and apoptosis induction, of organo-antimony (III)-copper(I) conjugates, against human breast cancer cells. Mol. Divers. 2020, 24, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Romo, A.I.B.; Carepo, M.P.; Levín, P.; Nascimento, O.R.; Díaz, D.E.; Rodríguez-López, J.; León, I.E.; Bezerra, L.F.; Lemus, L.; Diógenes, I.C.N. Synergy of DNA intercalation and catalytic activity of a copper complex towards improved polymerase inhibition and cancer cell cytotoxicity. Dalton Trans. 2021, 50, 11931–11940. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, N.; Leite, C.M.; Napoleone, A.; Mendes, L.F.S.; Fernández, C.Y.; Ribeiro, R.R.; Ellena, J.; Batista, A.A.; Costa-Filho, A.J.; Facchin, G. Tetramethyl-phenanthroline copper complexes in the development of drugs to treat cancer: Synthesis, characterization and cytotoxicity studies of a series of copper(II)-l-dipeptide-3,4,7,8-tetramethyl-phenanthroline complexes. J. Biol. Inorg. Chem. 2022, 27, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Fernández, C.Y.; Alvarez, N.; Rocha, A.; Ellena, J.; Costa-Filho, A.J.; Batista, A.A.; Facchin, G. New copper(II)-L-dipeptide-bathophenanthroline complexes as potential anticancer agents-synthesis, characterization and cytotoxicity studies-and comparative DNA-binding study of related Phen complexes. Molecules 2023, 28, 896. [Google Scholar] [CrossRef]
- Scalcon, V.; Bonsignore, R.; Aupič, J.; Thomas, S.R.; Folda, A.; Heidecker, A.A.; Pöthig, A.; Magistrato, A.; Casini, A.; Rigobello, M.P. Exploring the anticancer activity of tamoxifen-based metal complexes targeting mitochondria. J. Med. Chem. 2023, 66, 9823–9841. [Google Scholar] [CrossRef]
- Aliabadi, F.; Sohrabi, B.; Mostafavi, E.; Pazoki-Toroudi, H.; Webster, T.J. Ubiquitin-proteasome system and the role of its inhib itors in cancer therapy. Open Biol. 2021, 11, 200390. [Google Scholar] [CrossRef]
- Wittmann, C.; Dömötör, O.; Kuznetcova, I.; Spengler, G.; Reynisson, J.; Holder, L.; Miller, G.J.; Enyedy, E.A.; Bai, R.; Hamel, E.; et al. Indolo [2,3-e]benzazocines and indolo [2,3-f]benzazonines and their copper(II) complexes as microtubule destabilizing agents. Dalton Trans. 2023, 52, 9964–9982. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Wu, C.; Wang, L.; Chen, Z.S.; Cui, W. The combination of disulfiram and copper for cancer treatment. Drug Discov. Today 2020, 25, 1099–1108. [Google Scholar] [CrossRef]
- Balsa, L.M.; Ruiz, M.C.; Santa Maria de la Parra, L.; Baran, E.J.; León, I.E. Anticancer and antimetastatic activity of copper(II)-tropolone complex against human breast cancer cells, breast multicellular spheroids and mammospheres. J. Inorg. Biochem. 2020, 204, 110975. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Liu, N.; Feng, D.; Wu, W.; Gu, K.; Wu, A.; Li, C.; Wang, X. Multi-mechanism antitumor/antibacterial effects of Cu-EGCG self-assembling nanocomposite in tumor nanotherapy and drug-resistant bacterial wound infections. J. Colloid Interface Sci. 2024, 671, 751–769. [Google Scholar] [CrossRef]
- Abdolmaleki, S.; Panjehpour, A.; Khaksar, S.; Ghadermazi, M.; Rostamnia, S. Evaluation of central-metal effect on anticancer activity and mechanism of action of isostructural Cu(II) and Ni(II) complexes containing pyridine-2,6-dicarboxylate. Eur. J. Med. Chem. 2023, 245, 114897. [Google Scholar] [CrossRef] [PubMed]
- El-Beshti, H.S.; Gercek, Z.; Kayi, H.; Yildizhan, Y.; Cetin, Y.; Adigüzel, Z.; Güngör, G.; Özalp-Yaman, Ş. Antiproliferative Activity of Platinum(II) and Copper(II) Complexes Containing Novel Biquinoxaline Ligands. Metallomics 2024, 16, mfae001. [Google Scholar] [CrossRef]
- Jabłońska-Trypuć, A.; Wydro, U.; Wołejko, E.; Świderski, G.; Lewandowski, W. Biological Activity of New Cichoric Acid–Metal Complexes in Bacterial Strains, Yeast-Like Fungi, and Human Cell Cultures In Vitro. Nutrients 2020, 12, 154. [Google Scholar] [CrossRef] [PubMed]
- Emami, F.; Aliomrani, M.; Tangestaninejad, S.; Kazemian, H.; Moradi, M.; Rostami, M. Copper-Curcumin-Bipyridine Dicarboxylate Complexes as Anticancer Candidates. Chem. Biodivers. 2022, 19, e202200202. [Google Scholar] [CrossRef] [PubMed]
- Nunes, P.; Yildizhan, Y.; Adiguzel, Z.; Marques, F.; Costa Pessoa, J.; Acilan, C.; Correia, I. Copper(II) and oxidovanadium(IV) complexes of chromone Schiff bases as potential anticancer agents. JBIC J. Biol. Inorg. Chem. 2022, 27, 89–109. [Google Scholar] [CrossRef]
- Aguilar-Jiménez, Z.; González-Ballesteros, M.; Dávila-Manzanilla, S.G.; Espinoza-Guillén, A.; Ruiz-Azuara, L. Development and In Vitro and In Vivo Evaluation of an Antineoplastic Copper(II) Compound (Casiopeina III-ia) Loaded in Nonionic Vesicles Using Quality by Design. Int. J. Mol. Sci. 2022, 23, 12756. [Google Scholar] [CrossRef]
- Kuznetcova, I.; Bacher, F.; Alfadul, S.M.; Tham, M.J.R.; Ang, W.H.; Babak, M.V.; Rapta, P.; Arion, V.B. Elucidation of Structure–Activity Relationships in Indolobenzazepine-Derived Ligands and Their Copper(II) Complexes: The Role of Key Structural Components and Insight into the Mechanism of Action. Inorg. Chem. 2022, 61, 10167–10181. [Google Scholar] [CrossRef]
- Fernández, C.Y.; Alvarez, N.; Rocha, A.; Mendes, L.F.S.; Costa-Filho, A.J.; Ellena, J.; Batista, A.A.; Facchin, G. Phenanthroline and phenyl carboxylate mixed ligand copper complexes in developing drugs to treat cancer. J. Inorg. Biochem. 2024, 260, 112700. [Google Scholar] [CrossRef]
- Rada, J.P.; Forté, J.; Gontard, G.; Corcé, V.; Salmain, M.; Rey, N.A. Isoxazole-Derived Aroylhydrazones and Their Dinuclear Copper(II) Complexes Show Antiproliferative Activity on Breast Cancer Cells with a Potentially Alternative Mechanism of Action. ChemBioChem 2020, 21, 2474–2486. [Google Scholar] [CrossRef]
- Canakci, D.; Koyuncu, I.; Lolak, N.; Durgun, M.; Akocak, S.; Supuran, C.T. Synthesis and cytotoxic activities of novel copper and silver complexes of 1,3-diaryltriazene-substituted sulfonamides. J. Enzyme Inhib. Med. Chem. 2019, 34, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Al-Farraj, E.S.; Younis, A.M.; El-Reash, G.M.I.A. Synthesis, characterization, biological potency, and molecular docking of Co2+, Ni2+ and Cu2+ complexes of a benzoyl isothiocyanate based ligand. Sci Rep. 2024, 14, 10032. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.A.M.; Zidan, A.S.A.; Ibrahim, A.B.M.; Mosbah, H.K.; Mayer, P.; Saber, S.H. Binuclear Cu(II) complex based on N-acetylanthranilic acid induces significant cytotoxic effect on three cancer cell lines. J. Mol. Struct. 2022, 1249, 131634. [Google Scholar] [CrossRef]
- Rodrigues, J.A.O.; Oliveira Neto, J.G.; da Silva de Barros, A.O.; Ayala, A.P.; Santos-Oliveira, R.; de Menezes, A.S.; de Sousa, F.F. Copper(II):phenanthroline complexes with l-asparagine and l-methionine: Synthesis, crystal structure and in-vitro cytotoxic effects on prostate, breast and melanoma cancer cells. Polyhedron 2020, 191, 114807. [Google Scholar] [CrossRef]
- Brustolin, L.; Pettenuzzo, N.; Nardon, C.; Quarta, S.; Montagner, I.; Pontisso, P.; Rosato, A.; Conte, P.; Merigliano, S.; Fregona, D. Labelled micelles for the delivery of cytotoxic Cu(II) and Ru(III) compounds in the treatment of aggressive orphan cancers: Design and biological in vitro data. J. Inorg. Biochem. 2020, 213, 111259. [Google Scholar] [CrossRef]
- Alvarez, N.; Velluti, F.; Guidali, F.; Serra, G.; Gabriela Kramer, M.; Ellena, J.; Facchin, G.; Scarone, L.; Torre, M.H. New BI and TRI-Thiazole copper (II) complexes in the search of new cytotoxic drugs against breast cancer cells. Inorg. Chim. Acta 2020, 508, 119622. [Google Scholar] [CrossRef]
- Chowdhury, M.; Biswas, N.; Saha, S.; Rahaman, A.; Gupta, P.S.; Banerjee, A.; Mandal, D.P.; Bhattacharjee, S.; Zangrando, E.; Sciortino, G.; et al. Interaction with CT-DNA and in vitro cytotoxicity of two new copper(II)-based potential drugs derived from octanoic hydrazide ligands. J. Inorg. Biochem. 2024, 256, 112546. [Google Scholar] [CrossRef]
- El–Beshti, H.S.; Yildizhan, Y.; Kayi, H.; Cetin, Y.; Adigüzel, Z.; Gungor-Topcu, G.; Gercek, Z.; Özalp-Yaman, Ş. Anticancer investigation of platinum and copper-based complexes containing quinoxaline ligands. J. Mol. Struct. 2022, 1250, 131928. [Google Scholar] [CrossRef]
- Mathews, N.A.; Kurup, M.R.P. Copper(II) complexes as novel anticancer drug: Synthesis, spectral studies, crystal structures, in silico molecular docking and cytotoxicity. J. Mol. Struct. 2022, 1258, 132672. [Google Scholar] [CrossRef]
- Aguirrechu-Comerón, A.; Oramas-Royo, S.; Pérez-Acosta, R.; Hernández-Molina, R.; Gonzalez-Platas, J.; Estévez-Braun, A. Preparation of new metallic complexes from 2-hydroxy-3-((5-methylfuran-2-yl)methyl)-1,4-naphthoquinone. Polyhedron 2020, 177, 114280. [Google Scholar] [CrossRef]
- do Couto Almeida, J.; Silva, R.T.C.; Zanetti, R.D.; Moreira, M.B.; Portes, M.C.; Polloni, L.; Azevedo, F.V.d.V.; Von Poelhsitz, G.; Pivatto, M.; Netto, A.V.; et al. DNA interactions, antitubercular and cytotoxic activity of heteroleptic CuII complexes containing 1,10-phenanthroline. J. Mol. Struct. 2021, 1235, 130234. [Google Scholar] [CrossRef]
- Barrett, S.; De Franco, M.; Donati, C.; Marzano, C.; Gandin, V.; Montagner, D. Novel Biotinylated Cu(II)-Phenanthroline Complexes: 2D and 3D Cytotoxic Activity and Mechanistic Insight. Molecules 2023, 28, 4112. [Google Scholar] [CrossRef] [PubMed]
- Kuznetcova, I.; Ostojić, M.; Gligorijević, N.; Aranđelović, S.; Arion, V.B. Enriching Chemical Space of Bioactive Scaffolds by New Ring Systems: Benzazocines and Their Metal Complexes as Potential Anticancer Drugs. Inorg. Chem. 2022, 61, 20445–20460. [Google Scholar] [CrossRef]
- Rigamonti, L.; Reginato, F.; Ferrari, E.; Pigani, L.; Gigli, L.; Demitri, N.; Kopel, P.; Tesarova, B.; Heger, Z. From solid state to in vitro anticancer activity of copper(II) compounds with electronically-modulated NNO Schiff base ligands. Dalton Trans. 2020, 49, 14626–14639. [Google Scholar] [CrossRef] [PubMed]
- Al–Asbahy, W.M.; Shamsi, M. Synthesis and characterization of copper–based anticancer compound; in vitro interaction studies with DNA/HSA, SOD mimetic, cytotoxic activity and molecular docking investigation. J. Biomol. Struct. Dyn. 2021, 39, 1431–1446. [Google Scholar] [CrossRef] [PubMed]
- Konakanchi, R.; Pamidimalla, G.S.; Prashanth, J.; Naveen, T.; Kotha, L.R. Structural elucidation, theoretical investigation, biological screening and molecular docking studies of metal(II) complexes of NN donor ligand derived from 4-(2-aminopyridin-3-methylene)aminobenzoic acid. BioMetals 2021, 34, 529–556. [Google Scholar] [CrossRef]
- Mohammadizadeh, F.; Mahmoodi, M.; Rezaei, A.; Mohamadi, M.; Hajizadeh, M.R.; Mirzaei, M.R.; Falahati-pour, S.K. A new copper complex enhanced apoptosis in human breast cancerous cells without considerable effects on normal cells. Gene Rep. 2019, 17, 100475. [Google Scholar] [CrossRef]
- Syed Ali Fathima, S.; Mohamed Sahul Meeran, M.; Nagarajan, E.R. Design and synthesis of novel pyrazolone based coordination compounds: DNA synergy, biological screening, apoptosis, molecular docking and in-silico ADMET profile. J. Mol. Struct. 2019, 1197, 292–307. [Google Scholar] [CrossRef]
- Sánchez-Lara, E.; Favela, R.; Tzian, K.; Monroy-Torres, B.; Romo-Pérez, A.; Ramírez-Apan, M.T.; Flores-Alamo, M.; Rodríguez-Diéguez, A.; Cepeda, J.; Castillo, I. Effects of the tetravanadate [V4O12]4- anion on the structural, magnetic, and biological properties of copper/phenanthroline complexes. J. Biol. Inorg. Chem. 2024, 29, 139–158. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Wang, Z.; Liu, R.; Luo, B.; Yang, D.; Chen, H.; Pan, L.; Ma, Z. Copper chloride complexes with substituted 4′-phenyl-terpyridine ligands: Synthesis, characterization, antiproliferative activities and DNA interactions. Dalton Trans. 2021, 50, 8243–8257. [Google Scholar] [CrossRef]
- Ni, K.; Montesdeoca, N.; Karges, J. Highly cytotoxic Cu(II) terpyridine complexes as chemotherapeutic agents. Dalton Trans. 2024, 53, 8223–8228. [Google Scholar] [CrossRef] [PubMed]
- Smoleński, P.; Śliwińska-Hill, U.; Kwiecień, A.; Wolińska, J.; Poradowski, D. Design, synthesis, and anti-cancer evaluation of novel water-soluble copper(I) complexes bearing terpyridine and PTA ligands. Molecules 2024, 29, 945. [Google Scholar] [CrossRef]
- Malarz, K.; Zych, D.; Kuczak, M.; Musioł, R.; Mrozek-Wilczkiewicz, A. Anticancer activity of 4′-phenyl-2,2′:6. Eur. J. Med. Chem. 2020, 189, 112039. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, J.; Li, J.; Liang, X.; Zhou, Y.; Chen, H.; Ma, Z. Synthesis, structural characterization and antiproliferative potential of copper 4′-phenyl-terpyridine complexes constructed from building block reaction. Polyhedron 2020, 182, 114465. [Google Scholar] [CrossRef]
- Jevtovic, V.; Alshamari, A.K.; Milenković, D.; Dimitrić Marković, J.; Marković, Z.; Dimić, D. The effect of metal ions (Fe, Co, Ni, and Cu) on the molecular-structural, protein binding, and cytotoxic properties of metal pyridoxal-thiosemicarbazone complexes. Int. J. Mol. Sci. 2023, 24, 11910. [Google Scholar] [CrossRef] [PubMed]
- Manakkadan, V.; Haribabu, J.; Palakkeezhillam, V.N.V.; Rasin, P.; Vediyappan, R.; Kumar, V.S.; Garg, M.; Bhuvanesh, N.; Sreekanth, A. Copper-mediated cyclization of thiosemicarbazones leading to 1,3,4-thiadiazoles: Structural elucidation, DFT calculations, in vitro biological evaluation and in silico evaluation studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 313, 124117. [Google Scholar] [CrossRef]
- Barrett, S.; De Franco, M.; Kellett, A.; Dempsey, E.; Marzano, C.; Erxleben, A.; Gandin, V.; Montagner, D. Anticancer activity, DNA binding and cell mechanistic studies of estrogen-functionalised Cu(II) complexes. J. Biol. Inorg. Chem. 2020, 25, 49–60. [Google Scholar] [CrossRef]
- Bergamini, F.R.G.; Nunes, J.H.B.; Manzano, C.M.; de Carvalho, M.A.; Ribeiro, M.A.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Lustri, W.R.; de Paiva, R.E.F.; Portes, M.C.; et al. Investigating the antiproliferative activities of new CuII complexes with pyridine hydrazone derivatives of nalidixic acid. J. Inorg. Biochem. 2022, 234, 111881. [Google Scholar] [CrossRef]
- Navarro-Peñaloza, R.; Vázquez-Palma, A.B.; López-Sandoval, H.; Sánchez-Bartéz, F.; Gracia-Mora, I.; Barba-Behrens, N. Coordination compounds with heterocyclic ester derivatives. Structural characterization and anti-proliferative activity. J. Inorg. Biochem. 2021, 219, 111432. [Google Scholar] [CrossRef]
- Hawash, M. Recent advances of tubulin inhibitors targeting the colchicine Binding Site for cancer therapy. Biomolecules 2022, 12, 1843. [Google Scholar] [CrossRef]
- Vitomirov, T.; Dimiza, F.; Matić, I.Z.; Stanojković, T.; Pirković, A.; Živković, L.; Spremo-Potparević, B.; Novaković, I.; Anđelković, K.; Milčić, M.; et al. Copper(II) complexes with 4-(diethylamino)salicylaldehyde and α-diimines: Anticancer, antioxidant, antigenotoxic effects and interaction with DNA and albumins. J. Inorg. Biochem. 2022, 235, 111942. [Google Scholar] [CrossRef]
- Dömötör, O.; Kiss, M.A.; Gál, G.T.; May, N.V.; Spengler, G.; Nové, M.; Gašparović, A.Č.; Frank, É.; Enyedy, É.A. Solution equilibrium, structural and cytotoxicity studies on Ru(η6-p-cymene) and copper complexes of pyrazolyl thiosemicarbazones. J. Inorg. Biochem. 2020, 202, 110883. [Google Scholar] [CrossRef]
- Hou, L.; Jia, X.; Wu, Y.; Li, J.; Yao, D.; Gou, Y.; Huang, G. Aroylhydrazone Cu(Ⅱ) complexes: Syntheses, crystal structures, and anticancer properties. J. Mol. Struct. 2021, 1239, 130469. [Google Scholar] [CrossRef]
- Komarnicka, U.K.; Kozieł, S.; Zabierowski, P.; Kruszyński, R.; Lesiów, M.K.; Tisato, F.; Porchia, M.; Kyzioł, A. Copper(I) complexes with phosphines P(p-OCH3-Ph)2CH2OH and P(p-OCH3-Ph)2CH2SarGly. Synthesis, multimodal DNA interactions, and prooxidative and in vitro antiproliferative activity. J. Inorg. Biochem. 2020, 203, 110926. [Google Scholar] [CrossRef]
- Massoud, S.S.; Louka, F.R.; Salem, N.M.H.; Fischer, R.C.; Torvisco, A.; Mautner, F.A.; Vančo, J.; Belza, J.; Dvořák, Z.; Trávníček, Z. Dinuclear doubly bridged phenoxido copper(II) complexes as efficient anticancer agents. Eur. J. Med. Chem. 2023, 246, 114992. [Google Scholar] [CrossRef] [PubMed]
- Nath, H.; Sharma, P.; Gomila, R.M.; Frontera, A.; Barceló-Oliver, M.; Verma, A.K.; Dutta, K.; Bhattacharyya, M.K. Unconventional enclathration of guest adipic acid and energetically significant antiparallel π-stacked ternary assemblies involving unusual regium-π(chelate) contacts in phenanthroline-based Ni(II) and Cu(II) compounds-antiproliferative evaluation and theoretical studies. J. Mol. Struct. 2021, 1245, 131038. [Google Scholar] [CrossRef]
- Shao, J.; Li, M.; Guo, Z.; Jin, C.; Zhang, F.; Ou, C.; Xie, Y.; Tan, S.; Wang, Z.; Zheng, S.; et al. TPP-related mitochondrial targeting copper (II) complex induces p53-dependent apoptosis in hepatoma cells through ROS-mediated activation of Drp1. Cell Commun. Signal 2019, 17, 149. [Google Scholar] [CrossRef]
- Zarei, L.; Asadi, Z.; Samolova, E.; Dusek, M.; Amirghofran, Z. Pyrazolate as bridging ligand in stabilization of self-assemble Cu(II) Schiff base complexes: Synthesis, structural investigations, DNA/protein (BSA) binding and growth inhibitory effects on the MCF7, CT-26, MDA-MB-231 cell lines. Inorganica Chim. Acta 2020, 509, 119674. [Google Scholar] [CrossRef]
- Aranda, E.E.; da Luz, J.S.; Oliveira, C.C.; Divina Petersen, P.A.; Petrilli, H.M.; da Costa Ferreira, A.M. Heterobinuclear copper(II) platinum(II) complexes with oxindolimine ligands: Interactions with DNA, and inhibition of kinase and alkaline phosphatase proteins. J. Inorg. Biochem. 2020, 203, 110863. [Google Scholar] [CrossRef]
- Varna, D.; Geromichalos, G.; Gioftsidou, D.K.; Tzimopoulos, D.; Hatzidimitriou, A.G.; Dalezis, P.; Papi, R.; Trafalis, D.; Angaridis, P.A. N-heterocyclic-carbene vs diphosphine auxiliary ligands in thioamidato Cu(I) and Ag(I) complexes towards the development of potent and dual-activity antibacterial and apoptosis-inducing anticancer agents. J. Inorg. Biochem. 2024, 252, 112472. [Google Scholar] [CrossRef]
- Varna, D.; Geromichalos, G.D.; Dalezis, P.; Hatzidimitriou, A.G.; Psomas, G.; Zachariadis, G.; Psatha, K.; Aivaliotis, M.; Papi, R.; Trafalis, D.; et al. Amine-substituted heterocyclic thioamide Cu(I) and Ag(I) complexes as effective anticancer and antibacterial agents targeting the periplasm of E. coli bacteria. Eur. J. Med. Chem. 2024, 277, 116746. [Google Scholar] [CrossRef] [PubMed]
- Balsa, L.M.; Rodriguez, M.R.; Parajón-Costa, B.S.; González-Baró, A.C.; Lavecchia, M.J.; León, I.E. Anticancer Activity and Mechanism of Action Evaluation of an Acylhydrazone Cu(II) Complex toward Breast Cancer Cells, Spheroids, and Mammospheres. ChemMedChem 2022, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Fahim, A.M.; Dacrory, S.; Hashem, A.H.; Kamel, S. Antimicrobial, anticancer activities, molecular docking, and DFT/B3LYP/LANL2DZ analysis of heterocyclic cellulose derivative and their Cu-complexes. Int. J. Biol. Macromol. 2024, 269, 132027. [Google Scholar] [CrossRef]
- Mariani, D.; Ghasemishahrestani, Z.; Freitas, W.; Pezzuto, P.; Costa-da-Silva, A.C.; Tanuri, A.; Kanashiro, M.; Fernandes, C.; Horn, A.; Pereira, M.D. Antitumoral synergism between a copper(II) complex and cisplatin improves in vitro and in vivo anticancer activity against melanoma, lung and breast cancer cells. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2021, 1865, 129963. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Soltani, B.; Mota, A.; Jahanbin Sardroodi, J.; Mehdizadeh Aghdam, E.; Shayanfar, A.; Molavi, O.; Mohammad-Rezaei, R.; Ebadi-Nahari, M.; Ziegler, C.J. Copper (II) complexes with N, S donor pyrazole-based ligands as anticancer agents. BioMetals 2022, 35, 1095–1111. [Google Scholar] [CrossRef] [PubMed]
- Akhmetova, V.R.; Akhmadiev, N.S.; Gubaidullin, A.T.; Samigullina, A.I.; Glazyrin, A.B.; Sadykov, R.A.; Ishmetova, D.V.; Vakhitova, Y.V. Novel binuclear copper(II) complexes with sulfanylpyrazole ligands: Synthesis, crystal structure, fungicidal, cytostatic, and cytotoxic activity. Metallomics 2024, 16, mfae024. [Google Scholar] [CrossRef]
- Ajibade, P.A.; Andrew, F.P.; Botha, N.L.; Solomane, N. Synthesis, Crystal Structures and Anticancer Studies of Morpholinyldithiocarbamato Cu(II) and Zn(II) Complexes. Molecules 2020, 25, 3584. [Google Scholar] [CrossRef]
- Shao, J.; Zhang, Q.; Wei, J.; Yuchi, Z.; Cao, P.; Li, S.Q.; Wang, S.; Xu, J.-Y.; Yang, S.; Zhang, Y.; et al. Synthesis, crystal structures, anticancer activities and molecular docking studies of novel thiazolidinone Cu(II) and Fe(II) complexes targeting lysosomes: Special emphasis on their binding to DNA/BSA. Dalton Trans. 2021, 50, 13387–13398. [Google Scholar] [CrossRef]
- Śliwa, E.I.; Śliwińska-Hill, U.; Bażanów, B.; Siczek, M.; Kłak, J.; Smoleński, P. Synthesis, Structural, and Cytotoxic Properties of New Water-Soluble Copper(II) Complexes Based on 2,9-Dimethyl-1,10-Phenanthroline and Their One Derivative Containing 1,3,5-Triaza-7-Phosphaadamantane-7-Oxide. Molecules 2020, 25, 741. [Google Scholar] [CrossRef]
- Al-Harbi, S.A.; Al-Saidi, H.M.; Debbabi, K.F.; Allehyani, E.S.; Alqorashi, A.A.; Emara, A.A.A. Design and anti-tumor evaluation of new platinum(II) and copper(II) complexes of nitrogen compounds containing selenium moieties. J. Saudi Chem. Soc. 2020, 24, 982–995. [Google Scholar] [CrossRef]
- Al-Noaimi, M.; Awwadi, F.F.; Al-Wahaib, D.; Bardaweel, S.; Alhmaideen, A.; Alshammari, M. Competition between Cu-Br semi-coordinate bond and C-H∙∙∙Br, C-H∙∙∙S and S∙∙∙S interactions; new two thioalkylazothiophenol (SNS) copper (II) dimers [Cu(L)(µ-Br)]2. Polyhedron 2024, 250, 116827. [Google Scholar] [CrossRef]
- Patel, A.K.; Jadeja, R.N.; Roy, H.; Patel, R.N.; Patel, S.K.; Butcher, R.J.; Cortijo, M.; Herrero, S. Copper(II) hydrazone complexes with different nuclearities and geometries: Synthesis, structural characterization, antioxidant SOD activity and antiproliferative properties. Polyhedron 2020, 186, 114624. [Google Scholar] [CrossRef]
- Porchia, M.; Tisato, F.; Zancato, M.; Gandin, V.; Marzano, C. In vitro antitumor activity of water-soluble copper(I) complexes with diimine and monodentate phosphine ligands. Arab. J. Chem. 2020, 13, 998–1010. [Google Scholar] [CrossRef]
- Kiwaan, H.A.; El-Mowafy, A.S.; El-Bindary, A.A. Synthesis, spectral characterization, DNA binding, catalytic and in vitro cytotoxicity of some metal complexes. J. Mol. Liq. 2021, 326, 115381. [Google Scholar] [CrossRef]
- Babgi, B.A.; Mashat, K.H.; Abdellattif, M.H.; Arshad, M.N.; Alzahrani, K.A.; Asiri, A.M.; Du, J.; Humphrey, M.G.; Hussien, M.A. Synthesis, structures, DNA-binding, cytotoxicity and molecular docking of CuBr(PPh3)(diimine). Polyhedron 2020, 192, 114847. [Google Scholar] [CrossRef]
- Fatemikia, H.; Keypour, H.; Zeynali, H.; Karamian, R.; Ranjbar, N.; Gable, R.W. The X-ray crystal structures, molecular docking and biological activities of two novel Cu(II) and Zn(II) complexes with a ligand having a potentially N4O2 donor set and two nitro phenyl rings as pendant arms. J. Inorg. Biochem. 2022, 235, 111910. [Google Scholar] [CrossRef] [PubMed]
- Shahabadi, N.; Shiri, F.; Hadidi, S.; Farshadfar, K.; Sajadimajd, S.; Roe, S.M. Equilibrium and site selective analysis for DNA threading intercalation of a new phosphine copper(I) complex: Insights from X-ray analysis, spectroscopic and molecular modeling studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 235, 118280. [Google Scholar] [CrossRef]
- Memišević, M.; Zahirović, A.; Višnjevac, A.; Osmanović, A.; Žilić, D.; Kralj, M.; Muratović, S.; Martin-Kleiner, I.; Završnik, D.; Kahrović, E. Copper(II) salicylideneimine complexes revisited: From a novel derivative and extended characterization of two homologues to interaction with BSA and antiproliferative activity. Inorganica Chim. Acta 2021, 525, 120460. [Google Scholar] [CrossRef]
- Dimitrijević, J.; Arsenijević, A.N.; Milovanović, M.Z.; Arsenijević, N.N.; Milovanović, J.Z.; Stanković, A.S.; Bukonjić, A.M.; Tomović, D.L.; Ratković, Z.R.; Potočňák, I.; et al. Synthesis, characterization and cytotoxic activity of binuclear copper(II)-complexes with some S-isoalkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-isopropyl derivative of thiosalicylic acid. J. Inorg. Biochem. 2020, 208, 111078. [Google Scholar] [CrossRef]
- Petrasheuskaya, T.V.; Wernitznig, D.; Kiss, M.A.; May, N.V.; Wenisch, D.; Keppler, B.K.; Frank, É.; Enyedy, É.A. Estrone-salicylaldehyde N-methylated thiosemicarbazone hybrids and their copper complexes: Solution structure, stability and anticancer activity in tumour spheroids. J. Biol. Inorg. Chem. 2021, 26, 775–791. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, D.H.; Vaidya, F.U.; Pathak, C.; Patel, T.N.; Bhatt, B.S. Mechanistic insight of cell anti-proliferative activity of fluoroquinolone drug-based Cu(II) complexes. Mol. Divers. 2022, 26, 869–878. [Google Scholar] [CrossRef]
- Chrzanowska, A.; Drzewiecka-Antonik, A.; Dobrzyńska, K.; Stefańska, J.; Pietrzyk, P.; Struga, M.; Bielenica, A. The Ccytotoxic effect of copper (II) complexes with halogenated 1,3-Disubstituted arylthioureas on cancer and bacterial cells. Int. J. Mol. Sci. 2021, 22, 11415. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Neto, J.G.; Filho, J.G.S.; Bittar, E.M.; Silva, L.M.; de Sousa, F.F.; Domingos, H.V.; Costa-Lotufo, L.V.; Reis, A.S.; Dos Santos, A.O. Structural, thermal, electronic, vibrational, magnetic, and cytotoxic properties of chloro(glycinato-N,O)(1,10-phenanthroline-N,N′)-copper(II) trihydrate coordination complex. J. Inorg. Biochem. 2022, 226, 111658. [Google Scholar] [CrossRef] [PubMed]
- Faghih, Z.; Neshat, A.; Mastrorilli, P.; Gallo, V.; Faghih, Z.; Gilanchi, S. Cu(II), Ni(II) and Co(II) complexes with homoscorpionate Bis(2-Mercaptobenzimidazolyl) and Bis(2-Mercaptobenzothiazolyl)borate ligands: Synthesis and in vitro cytotoxicity studies. Inorganica Chim. Acta. 2020, 512, 119896. [Google Scholar] [CrossRef]
- Abousaty, A.I.; Reda, F.M.; Hassanin, W.A.; Felifel, W.M.; El-Shwiniy, W.H.; Selim, H.M.R.M.; Bendary, M.M. Sorbate metal complexes as newer antibacterial, antibiofilm, and anticancer compounds. BMC Microbiol. 2024, 24, 262. [Google Scholar] [CrossRef] [PubMed]
- Pinho, J.O.; da Silva, I.V.; Amaral, J.D.; Rodrigues, C.M.P.; Casini, A.; Soveral, G.; Gaspar, M.M. Therapeutic potential of a copper complex loaded in pH-sensitive long circulating liposomes for colon cancer management. Int. J. Pharm. 2021, 599, 120463. [Google Scholar] [CrossRef]
- Milunović, M.N.M.; Palamarciuc, O.; Sirbu, A.; Shova, S.; Dumitrescu, D.; Dvoranová, D.; Rapta, P.; Petrasheuskaya, T.V.; Enyedy, E.A.; Spengler, G.; et al. Insight into the anticancer activity of copper(II) 5-Methylenetrimethylammonium-Thiosemicarbazonates and their interaction with organic cation transporters. Biomolecules 2020, 10, 1213. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Attina, G.; Triarico, S.; Romano, A.; Maurizi, P.; Ruggiero, A. The DNA-topoisomerase inhibitors in cancer therapy. Biomed. Pharmacol. J. 2022, 15, 553–562. [Google Scholar] [CrossRef]
- Wittmann, C.; Bacher, F.; Enyedy, E.A.; Dömötör, O.; Spengler, G.; Madejski, C.; Reynisson, J.; Arion, V.B. Highly antiproliferative Latonduine and indolo [2,3-c]quinoline Derivatives: Complex Formation with copper(II) Markedly Changes the kinase Inhibitory Profile. J. Med. Chem. 2022, 65, 2238–2261. [Google Scholar] [CrossRef] [PubMed]
- Stevanović, N.; Zlatar, M.; Novaković, I.; Pevec, A.; Radanović, D.; Matić, I.Z.; Đorđić Crnogorac, M.; Stanojković, T.; Vujčić, M.; Gruden, M.; et al. Cu(ii), Mn(ii) and Zn(ii) complexes of hydrazones with a quaternary ammonium moiety: Synthesis, experimental and theoretical characterization and cytotoxic activity. Dalton Trans. 2022, 51, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Balewski, Ł.; Plech, T.; Korona-Głowniak, I.; Hering, A.; Szczesio, M.; Olczak, A.; Bednarski, P.J.; Kokoszka, J.; Kornicka, A. Copper(II) complexes with 1-(Isoquinolin-3-yl)heteroalkyl-2-ones: Synthesis, structure and evaluation of anticancer, antimicrobial and antioxidant potential. Int. J. Mol. Sci. 2023, 25, 8. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.C.; Perelmulter, K.; Levín, P.; Romo, A.I.B.; Lemus, L.; -Fogolín, M.B.; León, I.E.; Di Virgilio, A.L. Antiproliferative activity of two copper (II) complexes on colorectal cancer cell models: Impact on ROS production, apoptosis induction and NF-κB inhibition. Eur. J. Pharm. Sci. 2022, 169, 106092. [Google Scholar] [CrossRef]
- Gourdon-Grünewaldt, L.; Blacque, O.; Gasser, G.; Cariou, K. Towards Copper(I) Clusters for Photo-Induced Oxidation of Biological Thiols in Living Cells. ChemBioChem. 2024, 24, e202300496. [Google Scholar] [CrossRef] [PubMed]
- Klockner, I.; Schutt, C.; Gerhardt, T.; Boettger, T.; Braun, T. Control of CRK-RAC1 activity by the miR-1/206/133 miRNA family is essential for neuromuscular junction function. Nat. Commun. 2022, 13, 3180. [Google Scholar] [CrossRef]
- García-Valdivia, A.A.; Cepeda, J.; Fernández, B.; Medina-O’donnell, M.; Oyarzabal, I.; Parra, J.; Jannus, F.; Choquesillo-Lazarte, D.; García, J.A.; Lupiáñez, J.A.; et al. 5-Aminopyridine-2-carboxylic acid as appropriate ligand for constructing coordination polymers with luminescence, slow magnetic relaxation and anti-cancer properties. J. Inorg. Biochem. 2020, 207, 111051. [Google Scholar] [CrossRef]
- Joksimović, N.; Petronijević, J.; Radisavljević, S.; Petrović, B.; Mihajlović, K.; Janković, N.; Milović, E.; Milivojević, D.; Ilić, B.; Djurić, A. Synthesis, characterization, antitumor potential, and investigation of mechanism of action of copper(II) complexes with acylpyruvates as ligands: Interactions with biomolecules and kinetic study. RSC Adv. 2022, 12, 30501–30513. [Google Scholar] [CrossRef] [PubMed]
- Enyedy, É.A.; Petrasheuskaya, T.V.; Kiss, M.A.; Wernitznig, D.; Wenisch, D.; Keppler, B.K.; Spengler, G.; May, N.V.; Frank, É.; Dömötör, O. Complex formation of an estrone-salicylaldehyde semicarbazone hybrid with copper(II) and gallium(III): Solution equilibria and biological activity. J. Inorg. Biochem. 2021, 220, 111468. [Google Scholar] [CrossRef]
- Pellei, M.; Santini, C.; Bagnarelli, L.; Battocchio, C.; Iucci, G.; Venditti, I.; Meneghini, C.; Amatori, S.; Sgarbossa, P.; Marzano, C.; et al. Exploring the antitumor potential of copper complexes based on ester derivatives of Bis(pyrazol-1-yl)acetate ligands. Int. J. Mol. Sci. 2022, 23, 9397. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, L.; Lan, J.; Yang, F.; Huang, G.; Liu, W.; Gou, Y. Mixed-ligand copper(II) hydrazone complexes: Synthesis, structure, and anti-lung cancer properties. J. Mol. Struct. 2023, 1279, 134986. [Google Scholar] [CrossRef]
- Jain, S.; Bhar, K.; Kumar, S.; Bandyopadhyaya, S.; Tapryal, S.; Mandal, C.C.; Sharma, A.K. Homo- and heteroleptic trimethoxy terpyridine-Cu(ii) complexes: Synthesis, characterization, DNA/BSA binding, DNA cleavage and cytotoxicity studies. Dalton Trans. 2020, 49, 4100–4113. [Google Scholar] [CrossRef]
- Trávníček, Z.; Vančo, J.; Belza, J.; Zoppellaro, G.; Dvořák, Z.; Beláková, B.; Schmid, J.A.; Molčanová, L.; Šmejkal, K. C-Geranylated flavanone diplacone enhances in vitro antiproliferative and anti-inflammatory effects in its copper(II) complexes. J. Inorg. Biochem. 2024, 258, 112639. [Google Scholar] [CrossRef] [PubMed]
- Caro-Ramírez, J.Y.; Rivas, M.G.; Gonzalez, P.J.; Williams, P.A.M.; Naso, L.G.; Ferrer, E.G. Copper(II) cation and bathophenanthroline coordination enhance therapeutic effects of naringenin against lung tumor cells. BioMetals 2022, 35, 1059–1076. [Google Scholar] [CrossRef]
- Lu, X.; Lin, B.; Xu, N.; Huang, H.; Wang, Y.; Lin, J.M. Evaluation of the accumulation of disulfiram and its copper complex in A549 cells using mass spectrometry. Talanta 2020, 211, 120732. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Deng, C.-X.; Zhou, W.-F.; Zhou, L.-Y.; Cao, Q.-Q.; Shen, W.-Y.; Liang, H.; Chen, Z.-F. Synthesis and in vitro antitumor activity evaluation of copper(II) complexes with 5-pyridin-2-yl-[1,3]dioxolo [4,5-g]isoquinoline derivatives. J. Inorg. Biochem. 2019, 201, 110820. [Google Scholar] [CrossRef]
- Enikeeva, K.R.; Shamsieva, A.V.; Kasimov, A.I.; Litvinov, I.A.; Lyubina, A.P.; Voloshina, A.D.; Musina, E.I.; Karasik, A.A. Pyridyl-containing dialkylphosphine oxides and their chelate copper(II) complexes. Inorganica Chim. Acta 2023, 545, 121286. [Google Scholar] [CrossRef]
- Adhikari, S.; Bhattacharjee, T.; Butcher, R.J.; Porchia, M.; De Franco, M.; Marzano, C.; Gandin, V.; Tisato, F. Synthesis and characterization of mixed-ligand Zn(II) and Cu(II) complexes including polyamines and dicyano-dithiolate(2-): In vitro cytotoxic activity of Cu(II) compounds. Inorganica Chim. Acta. 2019, 498, 119098. [Google Scholar] [CrossRef]
- Pantelic, L.; Skaro Bogojevic, S.; Andrejević, T.P.; Pantović, B.V.; Marković, V.R.; Ašanin, D.P.; Milanović, Ž.; Ilic-Tomic, T.; Nikodinovic-Runic, J.; Glišić, B.Đ.; et al. Copper(II) and Zinc(II) Complexes with Bacterial Prodigiosin Are Targeting Site III of Bovine Serum Albumin and Acting as DNA Minor Groove Binders. Int. J. Mol. Sci. 2024, 25, 8395. [Google Scholar] [CrossRef]
- Komarnicka, U.K.; Pucelik, B.; Wojtala, D.; Lesiów, M.K.; Stochel, G.; Kyzioł, A. Evaluation of anticancer activity in vitro of a stable copper(I) complex with phosphine-peptide conjugate. Sci. Rep. 2021, 11, 23943. [Google Scholar] [CrossRef]
- Pradhan, R.; Tiwari, L.; Groner, V.M.; Leach, C.; Lusk, K.; Harrison, N.S.; Cornell, K.A.; Waynant, K.V. Evaluation of azothioformamides and their copper(I) and silver(I) complexes for biological activity. J. Inorg. Biochem. 2023, 246, 112294. [Google Scholar] [CrossRef]
- Jozefíková, F.; Perontsis, S.; Koňáriková, K.; Švorc, Ľ.; Mazúr, M.; Psomas, G.; Moncol, J. In vitro biological activity of copper(II) complexes with NSAIDs and nicotinamide: Characterization, DNA- and BSA-interaction study and anticancer activity. J. Inorg. Biochem. 2022, 228, 111696. [Google Scholar] [CrossRef]
- Wojciechowska, A.; Bregier−Jarzębowska, R.; Komarnicka, U.K.; Kozieł, S.; Szuster−Ciesielska, A.; Sztandera−Tymoczek, M.; Jarząb, A.; Staszak, Z.; Witkowska, D.; Bojarska−Junak, A.; et al. Isothiocyanate l−argininato copper(II) complexes—Solution structure, DNA interaction, anticancer and antimicrobial activity. Chem. Biol. Interact. 2021, 348, 109636. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Saleh-E-In, M.d.M.; Kar, P.; Roy, A.; Sharma, N.R. Synthesis of Carvacrol Derivatives as Potential New Anticancer Agent against Lung Cancer. Molecules 2022, 27, 4597. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Chen, Y.; Zhang, S.; Huang, Q.; Zhang, Y.; Li, G. Six novel complexes based on 5-Acetoxy-1-(6-chloro-pyridin-2-yl)-1H-pyrazole-3-carboxylic acid methyl ester derivatives: Syntheses, crystal structures, and anti-cancer activity. Arab. J. Chem. 2021, 14, 103237. [Google Scholar] [CrossRef]
- Jain, S.; Bhar, K.; Bandyopadhayaya, S.; Singh, V.K.; Mandal, C.C.; Tapryal, S.; Sharma, A.K. Development, evaluation and effect of anionic co-ligand on the biological activity of benzothiazole derived copper(II) complexes. J. Inorg. Biochem. 2020, 210, 111174. [Google Scholar] [CrossRef]
- Umar, Q.; Huang, Y.H.; Nazeer, A.; Yin, H.; Zhang, J.C.; Luo, M.; Meng, X.G. Synthesis, characterization and anticancer activities of Zn2+, Cu2+, Co2+ and Ni2+ complexes involving chiral amino alcohols. RSC Adv. 2022, 12, 32119–32128. [Google Scholar] [CrossRef]
- Du, L.-Q.; Zeng, C.-J.; Mo, D.-Y.; Qin, Q.-P.; Tan, M.-X.; Liang, H. 8-hydroxyquinoline-N-oxide copper(II)- and zinc(II)-phenanthroline and bipyridine coordination compounds: Design, synthesis, structures, and antitumor evaluation. J. Inorg. Biochem. 2024, 251, 112443. [Google Scholar] [CrossRef]
- Liu, M.; Song, X.Q.; Wu, Y.D.; Qian, J.; Xu, J.Y. Cu(ii)-TACN complexes selectively induce antitumor activity in HepG-2 cells via DNA damage and mitochondrial-ROS-mediated apoptosis. Dalton Trans. 2020, 49, 114–123. [Google Scholar] [CrossRef]
- Gou, Y.; Chen, M.; Li, S.; Deng, J.; Li, J.; Fang, G.; Yang, F.; Huang, G. Dithiocarbazate-copper complexes for bioimaging and treatment of pancreatic cancer. J. Med. Chem. 2021, 64, 5485–5499. [Google Scholar] [CrossRef]
- Asadi, Z.; Zarei, L.; Golchin, M.; Skorepova, E.; Eigner, V.; Amirghofran, Z. A novel Cu(II) distorted cubane complex containing Cu4O4 core as the first tetranuclear catalyst for temperature dependent oxidation of 3,5-di-tert-butyl catechol and in interaction with DNA & protein (BSA). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117593. [Google Scholar] [CrossRef]
- Novoa-Ramírez, C.S.; Silva-Becerril, A.; González-Ballesteros, M.M.; Gomez-Vidal, V.; Flores-Álamo, M.; Ortiz-Frade, L.; Gracia-Mora, J.; Ruiz-Azuara, L. Biological activity of mixed chelate copper(II) complexes, with substituted diimine and tridentate Schiff bases (NNO) and their hydrogenated derivatives as secondary ligands: Casiopeina’s fourth generation. J. Inorg. Biochem. 2023, 242, 112097. [Google Scholar] [CrossRef]
- Godínez-Loyola, Y.; Gracia-Mora, J.; Rojas-Montoya, I.D.; Hernández-Ayala, L.F.; Reina, M.; Ortiz-Frade, L.A.; Rascón-Valenzuela, L.A.; Robles-Zepeda, R.E.; Gómez-Vidales, V.; Bernad-Bernad, M.J.; et al. Casiopeinas® third generation, with indomethacin: Synthesis, characterization, DFT studies, antiproliferative activity, and nanoencapsulation. RSC Adv. 2022, 12, 21662–21673. [Google Scholar] [CrossRef] [PubMed]
- Reheman, D.; Zhao, J.; Guan, S.; Xu, G.C.; Li, Y.J.; Sun, S.R. Apoptotic effect of novel pyrazolone-based derivative [Cu(PMPP-SAL)(EtOH)] on HeLa cells and its mechanism. Sci. Rep. 2020, 10, 18235. [Google Scholar] [CrossRef] [PubMed]
- Barad, S.; Chaudhari, K.; Jadeja, R.N.; Roy, H.; Choquesillo-Lazarte, D. Square pyramidal Cu(II) acylpyrazolone complex: Synthesis, characterization, crystal structure, DFT and Hirshfeld analysis, in-vitro anti-cancer evaluation. J. Mol. Struct. 2023, 1294, 136345. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, D.D.; Wang, Z.Z.; Liu, H.Z.; Shi, Q.S.; Xie, X.B. Copper(II) complexes with NNO ligands: Synthesis, crystal structures, DNA cleavage, and anticancer activities. Dalton Trans. 2019, 48, 17925–17935. [Google Scholar] [CrossRef]
- Jana, A.; Aher, A.; Brandao, P.; Sharda, S.; Bera, P.; Phadikar, U.; Manna, S.K.; Mahapatra, A.K.; Bera, P. Dissociation of a tripodal pyridyl-pyrazole ligand and assortment of metal complex: Synthesis, structure, DFT, thermal stability, cytotoxicity, DNA cleavage, and molecular docking studies. J. Mol. Struct. 2022, 1256, 132479. [Google Scholar] [CrossRef]
- Parsekar, S.U.; Velankanni, P.; Sridhar, S.; Haldar, P.; Mate, N.A.; Banerjee, A.; Sudhadevi Antharjanam, P.K.; Koley, A.P.; Kumar, M. Protein binding studies with human serum albumin, molecular docking and in vitro cytotoxicity studies using HeLa cervical carcinoma cells of Cu(II)/Zn(II) complexes containing a carbohydrazone ligand. Dalton Trans. 2020, 49, 2947–2965. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, N.; Viña, D.; Leite, C.M.; Mendes, L.F.S.; Batista, A.A.; Ellena, J.; Costa-Filho, A.J.; Facchin, G. Synthesis and structural characterization of a series of ternary copper(II)-L-dipeptide-neocuproine complexes. Study of their cytotoxicity against cancer cells including MDA-MB-231, triple negative breast cancer cells. J. Inorg. Biochem. 2020, 203, 110930. [Google Scholar] [CrossRef]
- Qu, J.-J.; Bai, P.; Liu, W.-N.; Liu, Z.-L.; Gong, J.-F.; Wang, J.-X.; Zhu, X.; Song, B.; Hao, X.-Q. New NNN pincer copper complexes as potential anti-prostate cancer agents. Eur. J. Med. Chem. 2022, 244, 114859. [Google Scholar] [CrossRef]
- Machado, J.F.; Marques, F.; Pinheiro, T.; Villa de Brito, M.J.; Scalese, G.; Pérez-Díaz, L.; Otero, L.; António, J.P.M.; Gambino, D.; Morais, T.S. Copper(I)-thiosemicarbazone complexes with dual anticancer and antiparasitic activity. ChemMedChem 2023, 18, e202300074. [Google Scholar] [CrossRef]
- Terra, W.D.S.; Bull, É.S.; Morcelli, S.R.; Moreira, R.R.; Maciel, L.L.F.; Almeida, J.C.A.; Kanashiro, M.M.; Fernandes, C.; Horn, A. Antitumor activity via apoptotic cell death pathway of water soluble copper(II) complexes: Effect of the diamino unit on selectivity against lung cancer NCI-H460 cell line. BioMetals 2021, 34, 661–674. [Google Scholar] [CrossRef]
- Biswas, S.; Wasai, A.; Ghosh, M.; Rizzoli, C.; Roy, A.; Saha, S.; Mandal, S. A mononuclear N,N,N,O donor schiff base Cu(II) complex inhibits bacterial biofilm formation and promotes apoptosis and cell cycle arrest in prostate cancer cells. J. Inorg. Biochem. 2023, 247, 112314. [Google Scholar] [CrossRef] [PubMed]
- Pósa, V.; Hajdu, B.; Tóth, G.; Dömötör, O.; Kowol, C.R.; Keppler, B.K.; Spengler, G.; Gyurcsik, B.; Enyedy, É.A. The coordination modes of (thio)semicarbazone copper(II) complexes strongly modulate the solution chemical properties and mechanism of anticancer activity. J. Inorg. Biochem. 2022, 231, 111786. [Google Scholar] [CrossRef]
- Cruz, N.; Pinho, J.O.; Soveral, G.; Ascensão, L.; Matela, N.; Reis, C.; Gaspar, M.M. A Novel hybrid nanosystem integrating cytotoxic and magnetic properties as a tool to potentiate melanoma therapy. Nanomaterials 2020, 10, 693. [Google Scholar] [CrossRef] [PubMed]
- Sk, S.; Majumder, A.; Sow, P.; Samadder, A.; Bera, M. Exploring a new family of designer copper(II) complexes of anthracene-appended polyfunctional organic assembly displaying potential anticancer activity via cytochrome c mediated mitochondrial apoptotic pathway. J. Inorg. Biochem. 2023, 243, 112182. [Google Scholar] [CrossRef]
- Li, S.; Zhao, J.; Yuan, B.; Wang, X.; Zhang, J.; Yue, L.; Hou, H.; Hu, J.; Chen, S. Crystal structure, DNA interaction and in vitro anticancer activity of Cu(II) and Pt(II) compounds based on benzimidazole-quinoline derivative. Polyhedron 2020, 179, 114369. [Google Scholar] [CrossRef]
- Bontempo, N.J.S.; Paixão, D.A.; Lima, P.M.A.P.; Barros, D.C.T.; Borges, D.S.; Orsolin, P.C.; Martins, I.C.; Machado, P.H.A.; Lino, R.C.; Souza, T.R.; et al. Copper(II) complex containing 4-Fluorophenoxyacetic acid hydrazide and 1,10-phenanthroline: A prostate cancer cell-selective and low-toxic copper(II) compound. Molecules 2022, 27, 7097. [Google Scholar] [CrossRef]
- Maciel, L.L.F.; de Freitas, W.R.; Bull, E.S.; Fernandes, C.; Horn, A.; de Aquino Almeida, J.C.; Kanashiro, M.M. In vitro and in vivo anti-proliferative activity and ultrastructure investigations of a copper(II) complex toward human lung cancer cell NCI-H460. J. Inorg. Biochem. 2020, 210, 111166. [Google Scholar] [CrossRef]
- Moawed, F.S.; Haroun, R.A.H.; Abou Zaid, E.S.; Mansour, S.Z.; Badawi, A.M.; Kandil, E.I. In vitro and in vivo studies of a newly synthesized copper-cetyl tri-methyl ammonium bromide combined with gallium oxide nanoparticles complex as an antitumor agent against hepatocellular carcinoma. Int. J. Immunopathol. Pharmacol. 2023, 37, 3946320231180708. [Google Scholar] [CrossRef]
- Nonkuntod, P.; Senawong, T.; Soikum, C.; Chaveerach, P.; Watwiangkham, A.; Suthirakun, S.; Chaveerach, U. Copper(II) compounds of 4-nitrobenzohydrazide with different anions (ClO4−, NO3− and Br−): Synthesis, characterization, DFT calculations, DNA interactions and cytotoxic properties. Chem. Biodivers. 2022, 19, e202100708. [Google Scholar] [CrossRef]
- Lopes, J.C.; Botelho, F.V.; Barbosa Silva, M.J.; Silva, S.F.; Polloni, L.; Alves Machado, P.H.; Rodrigues de Souza, T.; Goulart, L.R.; Silva Caldeira, P.P.; Pereira Maia, E.C.; et al. In vitro and in vivo antitumoral activity of a ternary copper (II) complex. Biochem. Biophys. Res. Commun. 2020, 533, 1021–1026. [Google Scholar] [CrossRef]
- Parsa, F.G.; Feizi, M.A.H.; Safaralizadeh, R.; Hosseini-Yazdi, S.A.; Mahdavi, M. Molecular mechanisms of apoptosis induction in K562 and KG1a leukemia cells by a water-soluble copper(II) thiosemicarbazone complex. J. Biol. Inorg. Chem. 2020, 25, 383–394. [Google Scholar] [CrossRef]
- Camargo, T.P.; Oliveira, J.A.F.; Costa, T.G.; Szpoganicz, B.; Bortoluzzi, A.J.; Marzano, I.M.; Silva-Caldeira, P.P.; Bucciarelli-Rodriguez, M.; Pereira-Maia, E.C.; Castellano, E.E.; et al. New AlIIIZnII and AlIIICuII dinuclear complexes: Phosphatase-like activity and cytotoxicity. J. Inorg. Biochem. 2021, 219, 111392. [Google Scholar] [CrossRef]
- Trofimova, T.P.; Tafeenko, V.A.; Borodkov, A.S.; Proshin, A.N.; Orlova, M.A. New copper complexes with N-(5,6-dihydro-4H-1,3-thiazin-2-yl)benzamide ligand. Mendeleev. Commun. 2021, 31, 552–554. [Google Scholar] [CrossRef]
- Rostas, A.M.; Badea, M.; Ruta, L.L.; Farcasanu, I.C.; Maxim, C.; Chifiriuc, M.C.; Popa, M.; Luca, M.; Celan Korosin, N.; Cerc Korosec, R.; et al. Copper(II) complexes with mixed heterocycle ligands as promising antibacterial and antitumor species. Molecules 2020, 25, 3777. [Google Scholar] [CrossRef]
- Pitucha, M.; Korga-Plewko, A.; Czylkowska, A.; Rogalewicz, B.; Drozd, M.; Iwan, M.; Kubik, J.; Humeniuk, E.; Adamczuk, G.; Karczmarzyk, Z.; et al. Influence of complexation of thiosemicarbazone derivatives with Cu (II) ions on their antitumor activity against melanoma cells. Int. J. Mol. Sci. 2021, 22, 3104. [Google Scholar] [CrossRef] [PubMed]
- Climova, A.; Pivovarova, E.; Szczesio, M.; Gobis, K.; Ziembicka, D.; Korga-Plewko, A.; Kubik, J.; Iwan, M.; Antos-Bielska, M.; Krzyżowska, M.; et al. Anticancer and antimicrobial activity of new copper (II) complexes. J. Inorg. Biochem. 2023, 240, 112108. [Google Scholar] [CrossRef]
- Diz, M.; Durán-Carril, M.L.; Castro, J.; Alvo, S.; Bada, L.; Viña, D.; García-Vázquez, J.A. Antitumor activity of copper(II) complexes with Schiff bases derived from N’-tosylbenzene-1,2-diamine. J. Inorg. Biochem. 2022, 236, 111975. [Google Scholar] [CrossRef] [PubMed]
- Illán-Cabeza, N.A.; Jiménez-Pulido, S.B.; Hueso-Ureña, F.; Ramírez-Expósito, M.J.; Martínez-Martos, J.M.; Moreno-Carretero, M.N. Relationship between the antiproliferative properties of Cu(II) complexes with the Schiff base derived from pyridine-2-carboxaldehyde and 5,6-diamino-1,3-dimethyluracil and the redox status mediated by antioxidant defense systems on glioma tumoral cells. J. Inorg. Biochem. 2020, 207, 111053. [Google Scholar] [CrossRef]
- González-Ballesteros, M.M.; Sánchez-Sánchez, L.; Espinoza-Guillén, A.; Espinal-Enríquez, J.; Mejía, C.; Hernández-Lemus, E.; Ruiz-Azuara, L. Antitumoral and antimetastatic activity by mixed chelate copper(II) compounds (Casiopeínas®) on triple-negative breast cancer, in vitro and in vivo models. Int. J. Mol. Sci. 2024, 25, 8803. [Google Scholar] [CrossRef]
- Mishra, A.; Djoko, K.Y.; Lee, Y.H.; Lord, R.M.; Kaul, G.; Akhir, A.; Saxena, D.; Chopra, S.; Walton, J.W. Water-soluble copper pyrithione complexes with cytotoxic and antibacterial activity. Org. Biomol. Chem. 2023, 21, 2539–2544. [Google Scholar] [CrossRef]
- Balsa, L.M.; Solernó, L.M.; Rodriguez, M.R.; Parajón-Costa, B.S.; Gonzalez-Baró, A.C.; Alonso, D.F.; Garona, J.; León, I.E. Cu(II)-acylhydrazone complex, a potent and selective antitumor agent against human osteosarcoma: Mechanism of action studies over in vitro and in vivo models. Chem. Biol. Interact. 2023, 384, 110685. [Google Scholar] [CrossRef]
- Durigon, D.C.; Glitz, V.A.; Pimenta, B.F.; Guedes, A.M.V.; Silva, J.V.O.; Bella Cruz, C.C.; Andrade, L.M.; Pereira-Maia, E.C.; Mikcha, J.M.G.; Bella Cruz, A.; et al. The influence of thioether-substituted ligands in dicopper(II) complexes: Enhancing oxidation and biological activities. J. Inorg. Biochem. 2024, 256, 112573. [Google Scholar] [CrossRef] [PubMed]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef] [PubMed]
- Pilleron, S.; Gower, H.; Janssen-Heijnen, M.; Signal, V.C.; Gurney, J.K.; Morris, E.J.; Cunningham, R.; Sarfati, D. Patterns of age disparities in colon and lung cancer survival: A systematic narrative literature review. BMJ Open 2021, 11, e044239. [Google Scholar] [CrossRef]
- Gallicchio, L.; Daee, D.L.; Rotunno, M.; Barajas, R.; Fagan, S.; Carrick, D.M.; Divi, R.L.; Filipski, K.K.; Freedman, A.N.; Gillanders, E.M.; et al. Epidemiologic research of rare cancers: Trends, resources, and challenges. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1305–1311. [Google Scholar] [CrossRef]
- Swarbrick, A.; Fernandez-Martinez, A.; Perou, C.M. Gene-expression profiling to decipher breast cancer inter- and intratumor heterogeneity. Cold Spring Harb. Perspect. Med. 2024, 14, a041320. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, T.L.; Hancock, M.; Sun, S.; Gersch, C.L.; Larios, J.M.; David, W.; Hu, J.; Hayes, D.F.; Wang, S.; Rae, J.M. Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer. Breast Cancer Res. Treat. 2020, 180, 611–622. [Google Scholar] [CrossRef]
- Yu, M.; Sun, Y.; Yang, G.; Wang, Z. An experimental study on [125I]I-pHLIP (Var7) for SPECT/CT imaging of an MDA-MB-231 triple-negative breast cancer mouse model by targeting the tumor microenvironment. Mol. Imaging 2021, 2021, 5565932. [Google Scholar] [CrossRef]
- Tsuji, K.; Kida, Y.; Koshikawa, N.; Yamamoto, S.; Shinozaki, Y.; Watanabe, T.; Lin, J.; Nagase, H.; Takenaga, K. Suppression of non-small-cell lung cancer A549 tumor growth by an mtDNA mutation-targeting pyrrole-imidazole polyamide-triphenylphosphonium and a senolytic drug. Cancer Sci. 2022, 113, 1321–1337. [Google Scholar] [CrossRef]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef]
- Acevedo-Sánchez, V.; Martínez-Ruiz, R.S.; Aguilar-Ruíz, S.R.; Torres-Aguilar, H.; Chávez-Olmos, P.; Garrido, E.; Baltiérrez-Hoyos, R.; Romero-Tlalolini, M.L.A. Quantitative proteomics for the identification of differentially expressed proteins in the extracellular vesicles of cervical cancer cells. Viruses 2023, 15, 702. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C. Cell culture: In vitro model system and a promising path to in vivo applications. J. Histotechnol. 2023, 46, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Li, L.; Yu, X. Comprehension characterization of prostate cancer cell lines identified JAK-STAT3 signaling in lineage-switched non-neuroendocrine cells. J. Clin. Oncol. 2023, 41 (Suppl. 16), e17005. [Google Scholar] [CrossRef]
- Zahed, H.; Feng, X.; Sheikh, M.; Bray, F.; Ferlay, J.; Ginsburg, O.; Shiels, M.S.; Robbins, H.A. Age at diagnosis for lung, colon, breast and prostate cancers: An international comparative study. Int. J. Cancer 2024, 154, 28–40. [Google Scholar] [CrossRef]
- Moreira-Silva, F.; Henrique, R.; Jerónimo, C. From therapy resistance to targeted therapies in prostate cancer. Front. Oncol. 2022, 12, 877379. [Google Scholar] [CrossRef]
- Rahman, M.M.; Opo, F.A.D.M.; Asiri, A.M. Cytotoxicity study of cadmium-selenium quantum dots (Cdse QDs) for destroying the human HepG2 liver cancer cell. J. Biomed. Nanotechnol. 2021, 17, 2153–2164. [Google Scholar] [CrossRef]
- Lin, L.; Yan, L.; Liu, Y.; Qu, C.; Ni, J.; Li, H. The burden and trends of primary liver cancer caused by specific etiologies from 1990 to 2017 at the global, regional, national, age, and sex level results from the global burden of disease Study 2017. Liver Cancer 2020, 9, 563–582. [Google Scholar] [CrossRef]
- De Souza, Í.P.; de Melo, A.C.C.; Rodrigues, B.L.; Bortoluzzi, A.; Poole, S.; Molphy, Z.; McKee, V.; Kellett, A.; Fazzi, R.B.; da Costa Ferreira, A.M.; et al. Antitumor copper(II) complexes with hydroxyanthraquinones and N,N-heterocyclic ligands. J. Inorg. Biochem. 2023, 241, 112121. [Google Scholar] [CrossRef]
- Zehra, S.; Tabassum, S.; Arjmand, F. Biochemical pathways of copper complexes: Progress over the past 5 years. Drug Discov. Today 2021, 26, 1086–1096. [Google Scholar] [CrossRef]
- Dias, M.P.; Moser, S.C.; Ganesan, S.; Jonkers, J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 2021, 18, 773–791. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, R.H.; Cook, J.G. Stress relief techniques: p38 MAPK determines the balance of cell cycle and apoptosis pathways. Biomolecules 2021, 11, 1444. [Google Scholar] [CrossRef]
- Bhangu, J.S.; Macher-Beer, A.; Schimek, V.; Garmroudi, B.; Tamandl, D.; Unger, L.W.; Bachleitner-Hofmann, T.; Oehler, R. Circulating caspase-cleaved cytokeratin 18 correlates with tumour burden and response to therapy in patients with colorectal cancer liver metastasis. Clin. Chim. Acta 2023, 538, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Munsayac, A.; Hall, I.; Keane, S.C. Solution structure of NPSL2, A regulatory element in the oncomiR-1 RNA. J. Mol. Biol. 2022, 434, 167688. [Google Scholar] [CrossRef]
- Petronijević, J.; Joksimović, N.; Milović, E.; Crnogorac, M.Đ.; Petrović, N.; Stanojković, T.; Milivojević, D.; Janković, N. Antitumor activity, DNA and BSA interactions of novel copper(II) complexes with 3,4-dihydro-2(1H)-quinoxalinones. Chem. Biol. Interact. 2021, 348, 109647. [Google Scholar] [CrossRef]
- Hossan, M.S.; Break, M.K.B.; Bradshaw, T.D.; Collins, H.M.; Wiart, C.; Khoo, T.J.; Alafnan, A. Novel semi-synthetic Cu (II)-cardamonin complex exerts potent anticancer activity against triple-negative breast and pancreatic cancer cells via inhibition of the Akt signaling pathway. Molecules 2021, 26, 2166. [Google Scholar] [CrossRef] [PubMed]
- Fouad, R.; Adly, O.M.I. Novel Cu2+ and Zn2+ nanocomplexes drug based on hydrazone ligand bearings chromone and triazine moieties: Structural, spectral, DFT, molecular docking and cytotoxic studies. J. Mol. Struct. 2021, 1225, 129158. [Google Scholar] [CrossRef]
- Shi, F.; Qiao, H. Preparations, properties and applications of gallium oxide nanomaterials—A review. Nano Sel. 2022, 3, 348–373. [Google Scholar] [CrossRef]
- He, Y.; Yang, M.; Yang, L.; Hao, M.; Wang, F.; Li, X.; Taylor, E.W.; Zhang, X.; Zhang, J. Preparation and anticancer actions of CuET-nanoparticles dispersed by bovine serum albumin. Colloids Surf. B Biointerfaces 2023, 226, 113329. [Google Scholar] [CrossRef]
- Mandour, A.A.; Nassar, I.F.; Abdel Aal, M.T.; Shahin, M.A.E.; El-Sayed, W.A.; Hegazy, M.; Yehia, A.M.; Ismail, A.; Hagras, M.; Elkaeed, E.B.; et al. Synthesis, biological evaluation, and in silico studies of new CDK2 inhibitors based on pyrazolo [3,4-d]pyrimidine and pyrazolo [4,3-e][1,2,4]triazolo [1,5-c]pyrimidine scaffold with apoptotic activity. J. Enzym. Inhib. Med. Chem. 2022, 37, 1957–1973. [Google Scholar] [CrossRef]
- Dasari, S.; Njiki, S.; Mbemi, A.; Yedjou, C.G.; Tchounwou, P.B. Pharmacological effects of cisplatin combination with natural products in cancer chemotherapy. Int. J. Mol. Sci. 2022, 23, 1532. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.M.P. Cisplatin in cancer treatment. Biochem. Pharmacol. 2022, 206, 115323. [Google Scholar] [CrossRef] [PubMed]
- Kapustina, A.; Tupolova, Y.; Popov, L.; Vlasenko, V.; Gishko, K.; Berejnaya, A.; Shcherbatykh, A.; Golubeva, Y.; Klyushova, L.; Lider, E.; et al. Copper(II) coordination compounds based on bis-hydrazones of 2,6-diacetylpyridine: Synthesis, structure, and cytotoxic activity. Dalton Trans. 2024, 53, 3330–3347. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Pan, Q.; Gao, W.; Pu, Y.; He, B. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J. Mater. Chem. B 2022, 10, 6296–6630. [Google Scholar] [CrossRef]
- Li, A.; Huang, K.; Pan, W.; Wu, Y.; Liang, Y.; Zhang, Z.; Wu, D.; Ma, L.; Gou, Y. Thiosemicarbazone Mixed-Valence Cu(I/II) Complex against Lung Adenocarcinoma Cells through Multiple Pathways Involving Cuproptosis. J. Med. Chem. 2024, 67, 9091–9103. [Google Scholar] [CrossRef]
Type of Cancer | Cell Lines | Total |
---|---|---|
Breast cancer | MDA-MB-231 [11,14,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55], MMT06056 [56], MCF-7 [3,6,11,14,17,19,20,21,22,25,26,29,33,35,40,43,45,50,51,54,55,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98], T47D [29], JC [56], ZR-75-1 [33], SUM-159 [99], BT-549 [49], HS-578 [49], and 4T1 [30,31,45]. | 114 |
Colon cancer | HCT 116 [12,13,52,63,65,77,89,100,101,102,103,104,105], CT-26 [51,61,98,106], LoVo [10,88], Colo-205 [78,80,100,104,107,108,109,110], LS-180 [111], Colo-320 [70,100,107,108,109], HT29 [39,61,68,112,113], SW620 [9,15], SW1116 [97], LS174T [52,75,112,114,115], SW480 [9,15,77,116], CaCo2 [17,112], HuTu80 [117], HCT-15 [10,11,59,67,69,86,91,118,119], T-24 [42], HCT-8 [64], and DLD-1 [30,33,40]. | 68 |
Lung cancer | A549 [6,17,19,20,21,23,24,25,40,52,54,60,62,63,64,71,73,78,80,83,87,88,90,92,97,100,114,115,116,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135], Sk-lu-1 [59], Hop-62 [136], A-427 [137], LCLC-103 [137], H157 [119], NCI-H460 [68,110,138,139], NCIH1975 [77], NCI-H23 [139], and M109 [56]. | 57 |
Uterine cancer | HELLA [4,6,16,17,19,20,32,35,39,47,60,62,69,71,76,78,87,88,114,115,117,124,132,140,141,142,143,144,145,146], MES-SA [147], SISO [137], and ECC-1 [39]. | 33 |
Prostate cancer | PC-3 [9,10,15,17,19,20,32,39,42,43,44,47,53,59,68,69,71,80,86,92,148,149,150,151] DU-145 [39,151], LNCaP [148,150], Myc-CaP [148], and 22Rv1 [17]. | 28 |
Liver cancer | HepG2 [6,16,37,44,58,66,79,81,89,93,94,111,113,132,139,145,152,153,154], HL-7702 [124,136], SMMC7721 [155], Bel-7402 [60,72], Bel-7404 [77], H22 [156], and HCCLM3 [37,157]. | 30 |
Ovarian cancer | SK-OV-3/DDP [136,158], 2008 [10,11,56,67,118,119], A2780 [13,17,24,35,65,67,86,121,159], CH1/PA [100,116], OVCAR3 [68,149], and NCI-ADR/RES [68]. | 22 |
Leukemia | THP-1 [85,110], K562 [29,49,59,68,86,128,160,161,162], KG1a [161], HEL [49], Jurkat [29,85,135,163], L1210FR [56], HL60 [49], and Molt-4 [110,138]. | 21 |
Human melanoma | B16-F10 [83,113,147,160,164], A375 [10,19,33,46,65,71,92,111,165], G361 [165], MV3 [43], SK-MEL-28 [165], and UACC62 [55,68]. | 19 |
Glioblastoma glioma | A172 [32,47], LN229 [32,33,35,47,166], U-87 [32,47,53,167], U-251 [59,63,68] U373-MG [167], T98G [111], and C6 [68,168]. | 19 |
Pancreatic cancer | PANC-1 [17,28,63,73,169], PaCa-2 [170], DAN-G [137], Capan-2 [132], BxPc-3 [10,92,107,169], ASPC-1 [169], and PSN-1 [10,11,118]. | 16 |
Neuroblastoma | SH-SY5Y [139,167] and IMR-32 [78,79,91,145]. | 6 |
Osteosarcoma | HOS [17,121], MG-63 [21,23,171], and 143B [170]. | 6 |
Squamous cell carcinoma | A431 [11,67,118,119,172]. | 5 |
Gastric cancer | MGC803 [77,124,132] and BGC823 [155]. | 4 |
Renal cancer | RD0995 [56], TK10 [55], RENCA [56], and 786-0 [68]. | 4 |
Lymphoma | Ragi [135], DL [18], and U937 [29,110]. | 4 |
Others | RT-4 [137], TCA8113 [152], BCPAP [10], TFK-1 [155], Eca-109 [60], and P815 [56]. | 6 |
Total strains studied | 110 |
Single Ligand Pharmacological Action | Pharmacological Action of Complexes with Ligands |
---|---|
PHEN: Delayed apoptosis and release of interleukin 6 (IL-6) [23]; inhibition of aquaglyceroporins, which reduced glycerol permeation and impaired cell migration [106]; induction of ROS and apoptosis [112]; effective binding with antiapoptotic proteins of the BCL family [76]; not investigated [147]. BYP: Cell cycle arrest in the G0/G1 phase and inhibited signaling pathways regulated by Cathepsin D [148]. TERP: ROS production, inhibition in the G0/G1 phase and subsequent apoptosis [63]; ROS production and apoptosis [61]; strong affinity of the compounds to bind to DNA as intercalators and induce DNA conformational transitions [60]; not demonstrated [64]. TSC: inhibition of protein disulfide isomerase [10,11]; inhibition of EGFR protein [66]; activation of caspases 3 and 7 leading to apoptosis [100]; G2/M phase cell cycle arrest and DNA damage [165]; inhibition of OCT1-3 [107]; accumulation of cells in the sub-G1 fraction, as well as reversible arrest in the G0/G1 and G2/M phases in K562 and KG1a cells [161], externalization of phosphatidylserine and activation of caspase-3 leading to apoptosis, increased formation of ROS in K562 and KG1a cells [161]; reduction in catalase activity [25]; inhibition of glutathione synthesis [25,152]; inhibition of topoisomerase [152]; not demonstrated [3,19,65,129]. | PHEN + Schiff base: ROS [167]; DNA and FGRF receptor binding; increased planarity, chelation [58]. PHEN + diplacone: G2/M cell cycle arrest; ROS [121]. PHEN + biotin: DIP inhibition together with nuclear DNA and apoptosis [52]. PHEN + phenylmethyltriazolol: Methanuclease activity and DNA degradation [164]. PHEN + hydrazide: Reduced expression of the Ki-67 substance and the Cyclin D1 protein [156]. PHEN + hydroxyphenylimino: Apoptosis induced by intrinsic and extrinsic pathways [57]. PHEN + 8-hydroxyquinolone: Apoptosis via mitophagy and ATP depletion [136]. PHEN + hydrazone: Apoptosis and DNA cleavage [21,171]. PHEN + quercetin: Apoptosis; caspase 3/7 activity; mitochondrial depolarization [185]; PHEN + hydrocyananthracene: inhibition of topoisomerase I, ROS, DNA cleavage [188]; PHEN + phenolate; PHEN + naphthenolate: π-stacking interaction; DNA cleavage [140]. PHEN + TERP: Not demonstrated [120]. BYP + 8-hydroxyquinoline: Apoptosis via mitophagy and ATP depletion [136]. BYP + Schiff base: ROS [167] BYP + phenylmethyltriazolol: Elimination of superoxide; methanuclease activity [164]. BYP + quercetin: Apoptosis; caspase 3/7 activity; mitochondrial depolarization [185]. BYP + hydrazone: apoptosis and DNA cleavage [21,171]. BYP + hydrocyananthracene: Inhibition of topoisomerase I, ROS, DNA cleavage [188]. BYP + phenolate; BYP + naphthenolate: π-stacking interaction; DNA cleavage [140]. TERP + phosphine: Not demonstrated [62]; TERP + BYP: Not demonstrated [120]. TSC + phosphane: Apoptosis [149]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, C.M.F.; Lino, R.C.; de Moura, M.C.T.; de Sá Borges, A.P.; de Oliveira Júnior, R.J. Innovative Approaches in the Synthesis and Optimization of Copper Complexes for Antitumor Therapies: A Comprehensive Review. Molecules 2025, 30, 2104. https://doi.org/10.3390/molecules30102104
Silva CMF, Lino RC, de Moura MCT, de Sá Borges AP, de Oliveira Júnior RJ. Innovative Approaches in the Synthesis and Optimization of Copper Complexes for Antitumor Therapies: A Comprehensive Review. Molecules. 2025; 30(10):2104. https://doi.org/10.3390/molecules30102104
Chicago/Turabian StyleSilva, Clara Maria Faria, Ricardo Campos Lino, Mariana Cristina Teixeira de Moura, Anna Paula de Sá Borges, and Robson José de Oliveira Júnior. 2025. "Innovative Approaches in the Synthesis and Optimization of Copper Complexes for Antitumor Therapies: A Comprehensive Review" Molecules 30, no. 10: 2104. https://doi.org/10.3390/molecules30102104
APA StyleSilva, C. M. F., Lino, R. C., de Moura, M. C. T., de Sá Borges, A. P., & de Oliveira Júnior, R. J. (2025). Innovative Approaches in the Synthesis and Optimization of Copper Complexes for Antitumor Therapies: A Comprehensive Review. Molecules, 30(10), 2104. https://doi.org/10.3390/molecules30102104