Heptamethine Cyanine Dye-Doped Single-Walled Carbon Nanotube Electrodes for Improving Performance of HTL-Free Perovskite Solar Cells
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. SWCNT Preparation
3.3. FA0.88Cs0.12PbI3 Solution Preparation
3.4. SnO2 Solution Preparation
3.5. Device Fabrication
3.6. Device Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Li, B.; Wu, X.; Sheppard, S.A.; Zhang, S.; Gao, D.; Long, N.J.; Zhu, Z. Organometallic-Functionalized Interfaces for Highly Efficient Inverted Perovskite Solar Cells. Science 2022, 376, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; Noh, J.H.; Jeon, N.J.; Kim, Y.C.; Ryu, S.; Seo, J.; Seok, S.I. High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015, 348, 1234–1237. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Xiong, Z.; Zhou, H.; Zhang, Q.; Wang, Z.; Ma, F.; Qu, Z.; Zhao, Y.; Chu, X.; Zhang, X.; et al. Homogenized NiOx Nanoparticles for Improved Hole Transport in Inverted Perovskite Solar Cells. Science 2023, 382, 1399–1404. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y.; Yue, Y.; Liu, J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; et al. Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Charge Extraction Layers. Science 2015, 350, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A.J.; Gupta, G.; Crochet, J.J.; Chhowalla, M.; Tretiak, S.; Alam, M.A.; et al. High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. Science 2015, 347, 522–525. [Google Scholar] [CrossRef]
- Shui, Q.-J.; Shan, S.; Zhai, Y.-C.; Aoyagi, S.; Izawa, S.; Huda, M.; Yu, C.-Y.; Zuo, L.; Chen, H.; Lin, H.-S.; et al. Evaporable Fullerene Indanones with Controlled Amorphous Morphology as Electron Transport Layers for Inverted Perovskite Solar Cells. J. Am. Chem. Soc. 2023, 145, 27307–27315. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Gao, L.; Lu, J.; Ma, C.; Du, Y.; Wang, P.; Ding, Z.; Wang, S.; Xu, P.; Liu, D.; et al. One-Stone-for-Two-Birds Strategy to Attain beyond 25% Perovskite Solar Cells. Nat. Commun. 2023, 14, 839. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Huang, Z.; Xu, Q.; Zhu, S.; Li, M.; Zhao, P.; Cui, H.; Li, S.; Jin, X.; et al. Coordination Engineering with Crown Ethers for Perovskite Precursor Stabilization and Defect Passivation. Energy Environ. Sci. 2024, 17, 7182–7192. [Google Scholar] [CrossRef]
- Chen, R.; Feng, Y.; Zhang, C.; Wang, M.; Jing, L.; Ma, C.; Bian, J.; Shi, Y. Carbon-Based HTL-Free Modular Perovskite Solar Cells with Improved Contact at Perovskite/Carbon Interfaces. J. Mater. Chem. C 2020, 8, 9262–9270. [Google Scholar] [CrossRef]
- Chen, H.; Yang, S. Methods and Strategies for Achieving High-Performance Carbon-Based Perovskite Solar Cells without Hole Transport Materials. J. Mater. Chem. A 2019, 7, 15476–15490. [Google Scholar] [CrossRef]
- Maniarasu, S.; Korukonda, T.B.; Manjunath, V.; Ramasamy, E.; Ramesh, M.; Veerappan, G. Recent Advancement in Metal Cathode and Hole-Conductor-Free Perovskite Solar Cells for Low-Cost and High Stability: A Route towards Commercialization. Renew. Sustain. Energy Rev. 2018, 82, 845–857. [Google Scholar] [CrossRef]
- Kaskela, A.; Nasibulin, A.G.; Timmermans, M.Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D.P.; Zakhidov, A.; et al. Aerosol-Synthesized SWCNT Networks with Tunable Conductivity and Transparency by a Dry Transfer Technique. Nano Lett. 2010, 10, 4349–4355. [Google Scholar] [CrossRef] [PubMed]
- Hata, K. A Super-Growth Method for Single-Walled Carbon Nanotube Synthesis. Synth. Engl. Ed. 2016, 9, 167–179. [Google Scholar]
- Luo, Q.; Ma, H.; Hou, Q.; Li, Y.; Ren, J.; Dai, X.; Yao, Z.; Zhou, Y.; Xiang, L.; Du, H.; et al. All-Carbon-Electrode-Based Endurable Flexible Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1706777. [Google Scholar] [CrossRef]
- Jeon, I.; Seo, S.; Sato, Y.; Delacou, C.; Anisimov, A.; Suenaga, K.; Kauppinen, E.I.; Maruyama, S.; Matsuo, Y. Perovskite Solar Cells Using Carbon Nanotubes Both as Cathode and as Anode. J. Phys. Chem. C 2017, 121, 25743–25749. [Google Scholar] [CrossRef]
- Domanski, K.; Correa-Baena, J.-P.; Mine, N.; Nazeeruddin, M.K.; Abate, A.; Saliba, M.; Tress, W.; Hagfeldt, A.; Grätzel, M. Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. ACS Nano 2016, 10, 6306–6314. [Google Scholar] [CrossRef]
- Zhang, B.-W.; Lin, H.-S.; Qiu, X.-Y.; Shui, Q.-J.; Zheng, Y.-J.; Almesfer, M.; Kauppinen, E.I.; Matsuo, Y.; Maruyama, S. Spiro-OMeTAD versus PTAA for Single-Walled Carbon Nanotubes Electrode in Perovskite Solar Cells. Carbon 2023, 205, 321–327. [Google Scholar] [CrossRef]
- Ueoka, N.; Hidayat, A.S.; Oshima, H.; Hijikata, Y.; Matsuo, Y. Facile Doping of 2,2,2-Trifluoroethanol to Single-Walled Carbon Nanotubes Electrodes for Durable Perovskite Solar Cells. Photochem 2024, 4, 319–333. [Google Scholar] [CrossRef]
- Lee, J.-W.; Jeon, I.; Lin, H.-S.; Seo, S.; Han, T.-H.; Anisimov, A.; Kauppinen, E.I.; Matsuo, Y.; Maruyama, S.; Yang, Y. Vapor-Assisted Ex-Situ Doping of Carbon Nanotube toward Efficient and Stable Perovskite Solar Cells. Nano Lett. 2019, 19, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Jeon, I.; Shawky, A.; Seo, S.; Qian, Y.; Anisimov, A.; Kauppinen, E.I.; Matsuo, Y.; Maruyama, S. Carbon Nanotubes to Outperform Metal Electrodes in Perovskite Solar Cells via Dopant Engineering and Hole-Selectivity Enhancement. J. Mater. Chem. A 2020, 8, 11141–11147. [Google Scholar] [CrossRef]
- Li, L.; Han, X.; Wang, M.; Li, C.; Jia, T.; Zhao, X. Recent Advances in the Development of Near-Infrared Organic Photothermal Agents. Chem. Eng. J. 2021, 417, 128844. [Google Scholar] [CrossRef]
- Tian, Y.; Yin, D.; Yan, L. J-Aggregation Strategy of Organic Dyes for near-Infrared Bioimaging and Fluorescent Image-Guided Phototherapy. WIREs Nanomed. Nanobiotechnol. 2023, 15, e1831. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhao, M.; Zhang, F. Rational Design of Near-Infrared-II Organic Molecular Dyes for Bioimaging and Biosensing. ACS Mater. Lett. 2020, 2, 905–917. [Google Scholar] [CrossRef]
- Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS Nano 2020, 14, 14417–14492. [Google Scholar] [CrossRef]
- Ochi, J.; Tanaka, K.; Chujo, Y. Recent Progress in the Development of Solid-State Luminescent o-Carboranes with Stimuli Responsivity. Angew. Chem. Int. Ed. 2020, 59, 9841–9855. [Google Scholar] [CrossRef]
- Uno, K.; Kim, D.; Bucevicius, J.; Bossi, M.L.; Belov, V.N.; Hell, S.W. Synthesis, Structure–Property Relationships and Absorbance Modulation of Highly Asymmetric Photochromes with Variable Oxidation and Substitution Patterns. Org. Chem. Front. 2022, 9, 6295–6304. [Google Scholar] [CrossRef]
- Young, M.; Suddard-Bangsund, J.; Patrick, T.J.; Pajares, N.; Traverse, C.J.; Barr, M.C.; Lunt, S.Y.; Lunt, R.R. Organic Heptamethine Salts for Photovoltaics and Detectors with Near-Infrared Photoresponse up to 1600 Nm. Adv. Opt. Mater. 2016, 4, 1028–1033. [Google Scholar] [CrossRef]
- Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y. Highly Efficient Near-Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene-Based Charge-Transfer Compound. Angew. Chem. Int. Ed. 2015, 54, 13068–13072. [Google Scholar] [CrossRef]
- Zhang, H.; Jenatsch, S.; De Jonghe, J.; Nüesch, F.; Steim, R.; Véron, A.C.; Hany, R. Transparent Organic Photodetector Using a Near-Infrared Absorbing Cyanine Dye. Sci. Rep. 2015, 5, 9439. [Google Scholar] [CrossRef]
- Wang, Y.; Kublitski, J.; Xing, S.; Dollinger, F.; Spoltore, D.; Benduhn, J.; Leo, K. Narrowband Organic Photodetectors—Towards Miniaturized, Spectroscopic Sensing. Mater. Horiz. 2022, 9, 220–251. [Google Scholar] [CrossRef]
- Funabiki, K.; Yagi, K.; Ueta, M.; Nakajima, M.; Horiuchi, M.; Kubota, Y.; Mastui, M. Rational Molecular Design and Synthesis of Highly Thermo- and Photostable Near-Infrared-Absorbing Heptamethine Cyanine Dyes with the Use of Fluorine Atoms. Chem. Eur. J. 2016, 22, 12282–12285. [Google Scholar] [CrossRef]
- Shibayama, M.; Uehashi, Y.; Ajioka, S.; Kubota, Y.; Inuzuka, T.; Funabiki, K. Vapochromism of Indolenine-Based Heptamethine Cyanine Dye Adsorbed on Silica Gel. New J. Chem. 2023, 47, 5262–5269. [Google Scholar] [CrossRef]
- Gao, J.-S.; Xu, X.-C. Improvement of Electrical Conductivity of Multi-walled Carbon Nanotubes by Chlorine-doping. Acta Chim. Sin. 2011, 69, 1403–1407. [Google Scholar]
- Ding, E.-X.; Hussain, A.; Ahmad, S.; Zhang, Q.; Liao, Y.; Jiang, H.; Kauppinen, E.I. High-performance transparent conducting films of long single-walled carbon nanotubes synthesized from toluene alone. Nano Res. 2019, 13, 112–120. [Google Scholar] [CrossRef]
Dopants | JSC [mA/cm2] | VOC [V] | FF [-] | PCE [%] |
---|---|---|---|---|
GWN-5 0.25 mg/mL | 23.60 | 0.82 | 0.51 | 9.82 |
GWN-5 0.50 mg/mL | 24.71 | 0.84 | 0.52 | 10.70 |
GWN-5 1.00 mg/mL | 23.71 | 0.82 | 0.49 | 9.55 |
Pristine SWCNT | 22.68 | 0.84 | 0.38 | 7.43 |
CNTs | Sheet Resistance [Ω/sq] | Transmittance [%] |
---|---|---|
GNW-5-doped SWCNT | 107 | 70 a |
Pristine SWCNT | 156 | 65 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, M.-G.; Watanabe, A.; Xu, Z.; Zhai, Y.-C.; Hidayat, A.S.; Ueoka, N.; Huda, M.; Higuchi, K.; Kauppinen, E.I.; Funabiki, K.; et al. Heptamethine Cyanine Dye-Doped Single-Walled Carbon Nanotube Electrodes for Improving Performance of HTL-Free Perovskite Solar Cells. Molecules 2025, 30, 60. https://doi.org/10.3390/molecules30010060
Cai M-G, Watanabe A, Xu Z, Zhai Y-C, Hidayat AS, Ueoka N, Huda M, Higuchi K, Kauppinen EI, Funabiki K, et al. Heptamethine Cyanine Dye-Doped Single-Walled Carbon Nanotube Electrodes for Improving Performance of HTL-Free Perovskite Solar Cells. Molecules. 2025; 30(1):60. https://doi.org/10.3390/molecules30010060
Chicago/Turabian StyleCai, Man-Ge, Arina Watanabe, Zhenyu Xu, Yong-Chang Zhai, Achmad Syarif Hidayat, Naoki Ueoka, Miftakhul Huda, Kimitaka Higuchi, Esko I. Kauppinen, Kazumasa Funabiki, and et al. 2025. "Heptamethine Cyanine Dye-Doped Single-Walled Carbon Nanotube Electrodes for Improving Performance of HTL-Free Perovskite Solar Cells" Molecules 30, no. 1: 60. https://doi.org/10.3390/molecules30010060
APA StyleCai, M.-G., Watanabe, A., Xu, Z., Zhai, Y.-C., Hidayat, A. S., Ueoka, N., Huda, M., Higuchi, K., Kauppinen, E. I., Funabiki, K., & Matsuo, Y. (2025). Heptamethine Cyanine Dye-Doped Single-Walled Carbon Nanotube Electrodes for Improving Performance of HTL-Free Perovskite Solar Cells. Molecules, 30(1), 60. https://doi.org/10.3390/molecules30010060