Changes in the Glucose Concentration Affect the Formation of Humic-like Substances in Polyphenol–Maillard Reactions Involving Gibbsite
Abstract
:1. Introduction
2. Results
2.1. E4/E6 Ratio and Total Organic C (TOC) of the Supernatant Fluid
2.2. C Content of Humic-like Acid (CHLA), Ratio of C Contents of Humic Acid and Fulvic Acid (CHLA/CFLA Ratio) and FTIR Spectra of the HLA Obtained from Polyphenol–Maillard Reaction
2.3. E4/E6 Ratio and Elemental Composition of the HLA Obtained from Polyphenol-Maillard Reaction
3. Materials and Methods
3.1. Materials and Reagents
3.2. Experimental Design
3.3. Analytical Methods and Data Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, H.S.; Wei, Z.M.; Zhang, J.M.; Zhao, Y.; Wu, J.Q.; Gao, X.T.; Liu, Z.Y.; Li, Y.J. Effect of MnO2 on biotic and abiotic pathways of humic-like substance formation during composting of different raw materials. Waste Manag. 2019, 87, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Q.; Qi, H.S.; Huang, X.N.; Wei, D.; Zhao, Y.; Wei, Z.M.; Lu, Q.; Zhang, R.J.; Tong, T.J. How does manganese dioxide affect humus formation during bio-composting of chicken manure and corn straw. Bioresour. Technol. 2018, 269, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Z.; Li, Y.H.; Wen, X.F.; Fang, Z.Q.; Zheng, X.Z.; Di, J.D.; Li, H.; Li, C.L.; Fang, J. Experimental and theoretical study on the catalytic degradation of lignin by temperature-responsive deep eutectic solvents. Ind. Crop Prod. 2022, 177, 114430. [Google Scholar] [CrossRef]
- Mu, D.C.; Qu, F.T.; Zhu, Z.C.; Wu, D.; Qi, H.S.; Mohamed, T.A.; Liu, Y.M.; Wei, Z.M. Effect of Maillard reaction on the formation of humic acid during thermophilic phase of aerobic fermentation. Bioresour. Technol. 2022, 357, 127362. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, R.; Fukuchi, S.; Qi, G.; Fukushima, M.; Sato, T. Effects of surface Fe(III) oxides in a steel slag on the formation of humic-like dark-colored polymers by the polycondensation of humic precursors. Colloids Surf. A Physicochem. Eng. Asp. 2013, 418, 117–123. [Google Scholar] [CrossRef]
- Hardie, A.G.; Dynes, J.J.; Kozak, L.M.; Huang, P.M. The role of glucose in abiotic humification pathways as catalyzed by birnessite. J. Mol. Catal. A Chem. 2009, 308, 114–126. [Google Scholar] [CrossRef]
- Wang, X.G.; Tian, L.; Li, Y.X.; Zhong, C.; Tian, C.J. Effects of exogenous cellulose-degrading bacteria on humus formation and bacterial community stability during composting. Bioresour. Technol. 2022, 359, 127458. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Zhao, Y.; Wang, R.X.; Lu, Q.; Wu, J.Q.; Zhang, D.Y.; Nie, Z.F.; Wei, Z.M. Effect of the addition of exogenous precursors on humic substance formation during composting. Waste Manag. 2018, 79, 462–471. [Google Scholar] [CrossRef]
- Wu, J.Q.; Zhao, Y.; Zhao, W.; Yang, T.X.; Zhang, X.; Xie, X.Y.; Cui, H.Y.; Wei, Z.M. Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting. Bioresour. Technol. 2017, 226, 191–199. [Google Scholar] [CrossRef]
- Chen, A.Q.; Han, Z.Y.; Xie, X.Y.; Song, C.H.; Zhang, X.; Zhao, Y. Co-composting sugar-containing waste with chicken manure-A new approach to carbon sequestration. J. Environ. Manage. 2024, 356, 120609. [Google Scholar] [CrossRef]
- Bui, V.K.H.; Truong, H.B.; Hong, S.; Li, X.W.; Hur, J. Biotic and abiotic catalysts for enhanced humification in composting: A comprehensive review. J. Clean. Prod. 2023, 402, 136832. [Google Scholar] [CrossRef]
- Qi, H.S.; Wang, J.L.; Zhang, L.Y.; Chen, L.H.; Zhao, Y.; Wei, Z.M. Activation effect of catechol on biotic and abiotic factors of humus formation during chicken manure composting. Waste Manag. 2022, 149, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.X.; Zhang, C.Y.; Xu, H.X.; Jiang, Z.X. Co-applying biochar and manganese ore can improve the formation and stability of humic acid during co-composting of sewage sludge and corn straw. Bioresour. Technol. 2022, 358, 127297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Yue, D.B.; Lu, X.F.; Zhao, K.Y.; Ma, H. Role of ferric oxide in abiotic humification enhancement of organic matter. J. Mater. Cycles Waste 2017, 19, 585–591. [Google Scholar] [CrossRef]
- Wei, S.X.; Li, Z.C.; Sun, Y.; Zhang, J.M.; Ge, Y.Y.; Li, Z.L. A comprehensive review on biomass humification: Recent advances in pathways, challenges, new applications, and perspectives. Renew. Sust. Energ. Rev. 2022, 170, 112984. [Google Scholar] [CrossRef]
- Hu, J.; Wu, J.G.; Qu, X.J.; Li, J.M. Effects of organic wastes on structural characterizations of humic acid in semiarid soil under plastic mulched drip irrigation. Chemosphere 2018, 200, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Sarlaki, E.; Ghofrani-Isfahani, P.; Ghorbani, M.; Benedini, L.; Kermani, A.; Rezaei, M.; Marzban, N.; Filonenko, S.; Peng, W.X.; Tabatabaei, M. Oxidation-alkaline-enhanced abiotic humification valorizes lignin-rich biogas digestate into artificial humic acids. J. Clean. Prod. 2024, 435, 140409. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Q.; Li, W.H.; Bai, C.X.; Song, Y.; Wang, S.; Liu, Z.J. Effect of exogenous glucose at different concentrations on the formation of dark-brown humic-like substances in the Maillard reaction pathway based on the abiotic condensation of precursors involving δ-MnO2. Sustainability 2022, 14, 11603. [Google Scholar] [CrossRef]
- Raj, D.; Antil, R.S. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour. Technol. 2011, 102, 2868–2873. [Google Scholar] [CrossRef]
- Song, C.H.; Li, M.X.; Xi, B.D.; Wei, Z.M.; Zhao, Y.; Jia, X.; Qi, H.; Zhu, C.W. Characterisation of dissolved organic matter extracted from the bio-oxidative phase of co-composting of biogas residues and livestock manure using spectroscopic techniques. Int. Biodeter. Biodegr. 2015, 103, 38–50. [Google Scholar] [CrossRef]
- Baddi, G.A.; Hafidi, M.; Cegarra, J.; Alburquerque, J.A.; Gonzálvez, J.; Gilard, V.; Revel, J.C. Characterization of fulvic acids by elemental and spectroscopic (FTIR and 13C-NMR) analyses during composting of olive mill wastes plus straw. Bioresour. Technol. 2004, 93, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.M.; Senes, N.; Plaza, C.; Brunetti, G.; Polo, A. Effects of composted and thermally dried sewage sludges on soil and soil humic acid properties. Pedosphere 2009, 19, 281–291. [Google Scholar] [CrossRef]
- Cai, S.Y.; Zhang, Y.; Hu, A.B.; Liu, M.; Wu, H.J.; Wang, D.S.; Zhang, W.J. Dissolved organic matter transformation mechanisms and process optimization of wastewater sludge hydrothermal humification treatment for producing plant biostimulants. Water Res. 2023, 235, 119910. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Rosenqvist, J.; Persson, P.; Sjöberg, S. Protonation and charging of nanosized Gibbsite (α-Al(OH)3) particles in aqueous suspension. Langmuir 2002, 18, 4598–4604. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.T.; Peng, H.; Wang, J.L.; Li, Q.C.; Li, P.F.; Fan, J.X.; Liu, S.; Zheng, G.X. Review: Biotic and abiotic approaches to artiffcial humic acids production. Renew. Sust. Energ. Rev. 2023, 187, 113771. [Google Scholar] [CrossRef]
- Tiwari, J.; Ramanathan, A.; Bauddh, K.; Korstad, J. Humic substances: Structure, function and benefits for agroecosystems-a review. Pedosphere 2023, 33, 237–249. [Google Scholar] [CrossRef]
- Pan, C.N.; Yang, H.Y.; Gao, W.F.; Wei, Z.M.; Song, C.H.; Mi, J.Y. Optimization of organic solid waste composting process through iron-related additives: A systematic review. J. Environ. Manag. 2024, 351, 119952. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.N.; Li, Y.P.; Liu, Y.H.; Jiang, H.J.; Li, H.; Yuan, Y.; Chen, Y.R.; Zou, B. Improving the humification by additives during composting: A review. Waste Manag. 2023, 158, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.C.; Yue, D.B.; Ma, H. Darkening mechanism and kinetics of humification process in catechol-Maillard system. Chemosphere 2015, 130, 40–45. [Google Scholar] [CrossRef]
- Zou, J.M.; Huang, J.Z.; Yue, D.B.; Zhang, H.C. Roles of oxygen and Mn (IV) oxide in abiotic formation of humic substances by oxidative polymerization of polyphenol and amino acid. Chem. Eng. J. 2020, 393, 124734. [Google Scholar] [CrossRef]
- Xing, C.M.; He, Z.L.; Lan, T.; Yan, B.; Zhao, Q.; Wu, Q.L.; Wang, H.Z.; Wang, C.X.; Guo, W.Q. Enhanced humus synthesis from Chinese medicine residues composting by lignocellulose-degrading bacteria stimulation: Upregulation of key enzyme activity and neglected indirect effects on humus formation. Sci. Total Environ. 2024, 907, 167754. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.M.; Zhao, Y.; Zhao, L.; Wang, L.Q.; Wu, J.Q. The contribution of microbial shikimic acid to humus formation during organic wastes composting: A review. World J. Microb. Biot. 2023, 39, 240. [Google Scholar] [CrossRef] [PubMed]
- Trusiak, A.; Treibergs, L.A.; Kling, G.W.; Cory, R.M. The controls of iron and oxygen on hydroxyl radical (•OH) production in soils. Soil. Syst. 2018, 3, 1. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Yao, S.H.; Cao, X.Y.; Schmidt-Rohr, K.; Olk, D.C.; Mao, J.D.; Zhang, B. Structural evidence for soil organic matter turnover following glucose addition and microbial controls over soil carbon change at different horizons of a Mollisol. Soil Biol. Biochem. 2018, 119, 63–73. [Google Scholar] [CrossRef]
- Asses, N.; Farhat, A.; Cherif, S.; Hamdi, M.; Bouallagui, H. Comparative study of sewage sludge co-composting with olive mill wastes or green residues: Process monitoring and agriculture value of the resulting composts. Process Saf. Environ. Protect. 2018, 114, 25–35. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Bi, Z.T.; Tian, W.X.; Ge, Z.Y.; Xu, Y.; Xu, R.; Zhang, H.Q.; Tang, S.F. Synergistic effect triggered by Fe2O3 and oxygen-induced hydroxyl radical enhances formation of amino-phenolic humic-like substance. J. Environ. Manag. 2023, 348, 119312. [Google Scholar] [CrossRef] [PubMed]
- Edge, R.; Truscott, T.G. The reactive oxygen species singlet oxygen, hydroxy radicals, and the superoxide radical anion-examples of their roles in biology and medicine. Oxygen 2021, 1, 77–95. [Google Scholar] [CrossRef]
- Gao, J.; Li, L.; Yuan, S.J.; Chen, S.S.; Dong, B. The neglected effects of polysaccharide transformation on sludge humification during anaerobic digestion with thermal hydrolysis pretreatment. Water Res. 2022, 226, 119249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Zong, Y.; Xu, L.Q.; Mao, Y.F.; Wu, D.L. Enhanced abiotic integrated polyphenol-Maillard humification by Mg/Fe layered double hydroxide (LDH): Role of Fe(III)-polyphenol complexation. Chem. Eng. J. 2021, 425, 130521. [Google Scholar] [CrossRef]
- Watteau, F.; Villemin, G. Characterization of organic matter microstructure dynamics during co-composting of sewage sludge, barks and green waste. Bioresour. Technol. 2011, 102, 9313–9317. [Google Scholar] [CrossRef]
- Xu, Z.B.; Tsang, D.C.W. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms. Eco-Environ. Health 2024, 3, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Moore, O.W.; Curti, L.; Woulds, C.; Bradley, J.A.; Babakhani, P.; Mills, B.J.W.; Homoky, W.B.; Xiao, K.Q.; Bray, A.W.; Fisher, B.J.; et al. Long-term organic carbon preservation enhanced by iron and manganese. Nature 2023, 621, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Q.; Wei, Z.M.; Zhu, Z.C.; Zhao, Y.; Jia, L.M.; Lv, P. Humus formation driven by ammonia-oxidizing bacteria during mixed materials composting. Bioresour. Technol. 2020, 311, 123500. [Google Scholar] [CrossRef] [PubMed]
Wavenumbers (cm−1) | 3431~3438 | 1626~1635 | 1481~1483 | 1385~1387 | 1288~1302 | 1090~1117 | 611~670 | |
---|---|---|---|---|---|---|---|---|
Treatments | ||||||||
Glu0 | 70.9 | 16.0 | 1.46 | 0.55 | 2.29 | 1.63 | 3.59 | |
Glu0.03 | 77.8 | 15.3 | 0.70 | 0.59 | 1.84 | 3.45 | 4.95 | |
Glu0.06 | 75.8 | 15.9 | 0.36 | 0.52 | 0.85 | 5.45 | 6.55 | |
Glu0.12 | 71.7 | 14.8 | 1.16 | 0.55 | 1.42 | 6.52 | 7.83 | |
Glu0.24 | 75.4 | 14.2 | 0.24 | 0.41 | 0.50 | 6.83 | 8.31 | |
CK control | 70.7 | 14.0 | 1.59 | 0.69 | 2.31 | 1.52 | 3.21 |
Treatments | H/C Ratio | C/N Ratio | O/C Ratio |
---|---|---|---|
Glu0 | 1.39 ± 0.03 d | 19.3 ± 0.8 a | 1.06 ± 0.03 a |
Glu0.03 | 1.45 ± 0.05 c | 18.7 ± 0.3 b | 1.01 ± 0.02 b |
Glu0.06 | 1.38 ± 0.02 d | 17.6 ± 0.6 c | 1.07 ± 0.05 a |
Glu0.12 | 1.52 ± 0.04 b | 15.9 ± 0.2 d | 0.98 ± 0.05 c |
Glu0.24 | 1.61 ± 0.06 a | 14.3 ± 0.4 e | 0.94 ± 0.04 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Cui, Y.; Zhou, Y.; Liu, P.; Wang, M.; Sun, H.; Huang, Y.; Wang, S. Changes in the Glucose Concentration Affect the Formation of Humic-like Substances in Polyphenol–Maillard Reactions Involving Gibbsite. Molecules 2024, 29, 2115. https://doi.org/10.3390/molecules29092115
Wang N, Cui Y, Zhou Y, Liu P, Wang M, Sun H, Huang Y, Wang S. Changes in the Glucose Concentration Affect the Formation of Humic-like Substances in Polyphenol–Maillard Reactions Involving Gibbsite. Molecules. 2024; 29(9):2115. https://doi.org/10.3390/molecules29092115
Chicago/Turabian StyleWang, Nan, Yongquan Cui, Yanhui Zhou, Pingxin Liu, Mingshuo Wang, Haihang Sun, Yubao Huang, and Shuai Wang. 2024. "Changes in the Glucose Concentration Affect the Formation of Humic-like Substances in Polyphenol–Maillard Reactions Involving Gibbsite" Molecules 29, no. 9: 2115. https://doi.org/10.3390/molecules29092115
APA StyleWang, N., Cui, Y., Zhou, Y., Liu, P., Wang, M., Sun, H., Huang, Y., & Wang, S. (2024). Changes in the Glucose Concentration Affect the Formation of Humic-like Substances in Polyphenol–Maillard Reactions Involving Gibbsite. Molecules, 29(9), 2115. https://doi.org/10.3390/molecules29092115