Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors
Abstract
:1. Introduction
2. Immobilization Methods for Enzyme-Immobilized Reactors
2.1. Carrier Binding
2.1.1. Adsorptive Binding
2.1.2. Ionic Binding
2.1.3. Covalent Binding
2.1.4. Affinity Binding
2.2. Cross-Linking
2.3. Entrapment
3. Reactor Types Using Immobilized Enzymes
3.1. Stirred Reactor
3.2. Fixed-Bed Reactor
3.3. Fluidized-Bed Reactor
3.4. Enzymatic Membrane Reactor
4. Degradation of Pollutants Using Enzyme-immobilized Reactors
4.1. Dyes
Enzyme | Immobilization Method | Support Material | Reactor | Pollutant | Degradation a | Conditions | Ref. |
---|---|---|---|---|---|---|---|
laccase | physical adsorption | kaolinite | Batch | MG | 80% (10 mg/L) | 0.5 mM SA, 30 °C, 300 min | [69] |
laccase | physical encapsulation | Co/Cu-MOF | batch (12 wells plate) | RB171, RB198 | 78% (200 mg/L), 61% (150 mg/L) | 50 °C, 60 min | [71] |
laccase | physical encapsulation | Cu/Zn-ZIF | Batch | RG, RB, CR | 69% (50 mg/L), 54% (50 mg/L), 45% (50 mg/L) | 240 min | [72] |
laccase | physical adsorption | vault nanoparticles | batch (flask) | RB19, AO7 | 72% (50 mg/L), 80% (50 mg/L) | 27 °C, 8–24 h | [74] |
laccase | affinity binding | Fe3O4@C-Cu2+ | Batch | MG, BG, CV, Azophloxine, Procion Red, RB19 | 94% (50 mg/L), 80% (40 mg/L), 71% (5 mg/L), 78% (50 mg/L), 60% (20 mg/L), 65% (100 mg/L) | 25 μM ABTS, 50 °C, 150 min | [75] |
laccase | covalent binding | magnetite nanoparticles | microfluidic reactor | Eriochrome Black T | 93% (20 mg/L) | 12 mL/h for 25 min | [76] |
peroxidase | cross-linking | − b | microfluidic reactor | AV109 | 65% (10 mg/L) | 0.2 mM H2O2 | [77] |
laccase | CLEAs | − b | batch (tube) | MG, RB2 | 89% (500 ppm), 12% (100 ppm) | 50 °C, 120 min | [78] |
laccase | entrapment | CTS-g-PAM hydrogels | Batch | MG | 87% (50 μM) | co-immobilized AA, 25 °C, 120 min | [79] |
laccase | entrapment | PVA@Cu-ZIF hydrogels | Batch | MG | 90% (10 mg/L) | co-immobilized ABTS, 55 °C, 300 min | [80] |
4.2. Phenolic Compounds
Enzyme | Immobilization Method | Support Material | Reactor | Pollutant | Degradation a | Conditions | Ref. |
---|---|---|---|---|---|---|---|
laccase | CLEAs | magnetic porous | Batch | PCP | 65% (100 ppm) | 0.1 mM 2,6-DMP, 50 °C, 48 h | [84] |
laccase | cross-linking | PEES/PMVEAMA | Batch | PCP | 62% (100 ppm) | 0.1 mM 2,6-DMP, 50 °C, 24 h | [85] |
laccase | affinity binding | Cu2+@Fe3O4 | Batch | BPA | 85% (20 mg/L) | 30 °C, 12 h | [87] |
laccase | CLEAs | Fe3O4 | Batch | BPA | 87% (60 ppm) | 45 °C, 11 h | [88] |
peroxidase, glucose oxidase | combi-CLEAs | C-Cu2+@Fe3O4 | membrane reactor | BPA | 100% (10 mg/L) | 0.55 mL/min, 43 h | [89] |
laccase | covalent binding | PEI-Fe3O4 | fixed-bed reactor | phenol | 70% (50 mg/L) | 25 μL/min for 43h | [90] |
laccase | entrapment | alginate@Al2O3 | fixed-bed reactor | acetaminophen | 72% (18 mg/L) | 2 mL/h, 30 min | [91] |
laccase | covalent binding | PAN | fixed-bed reactor | nonylphenol, octylphenol | 60% (1 mM), 80% (1 mM) | 25 °C, 90 min | [92] |
laccase | cross-linking | porous silica | fluidized-bed reactor | BPA | 80% (25 mg/L) | 28.8 mL/min for 6 h | [93] |
laccase | CLEAs | PEGA | fixed-bed reactor | BPA | 2880 μM/h (100 μM) | 50 °C | [46] |
4.3. Pharmaceuticals
Enzyme | Immobilization Method | Support Material | Reactor | Pollutant | Degradation a | Conditions | Ref. |
---|---|---|---|---|---|---|---|
laccase | ionic binding | nanobiochar | batch (flask) | CBZ | 83% (20 ng/L) | 25 °C, 24 h | [102] |
laccase | cross-linking | magnetic biochar | batch (tube) | norfloxacin, enrofloxacin, moxifloxacin | 94% (10 mg/L), 65% (10 mg/L), 77% (10 mg/L) | 1 mM ABTS, 40 °C, 48 h | [103] |
laccase | physical encapsulation | ZIF | batch (tube) | CBZ | 92% (5 mg/L) | 24 h | [104] |
laccase, tyrosinase, peroxidase | physical adsorption | cellulose membrane | membrane reactor | tetracycline | 60% (1 μg/L), 50% (1 μg/L), 23% (1 μg/L) | 5 mM ABTS, 25 °C, 24–40 min | [105] |
laccase | covalent binding | PVDF/MWCNTs | membrane reactor | CBZ, DCF | 95% (5 ppm), 27% (5 ppm) | 25 °C, 4–48 h | [57] |
laccase | CLEAs | − b | fixed-bed reactor | E1, E2, EE2, NPX, DCF | >99% (18 μM), >99% (18 μM), >99% (18 μM), 71% (18 μM), 90% (18 μM) | 0.5 mM ABTS, 0.5 μL/min | [107] |
laccase | cross-linking | gelatin beads | fluidized-bed reactor | tetracycline | 72% (20 ppm) | 15 mL/min, 25 °C | [108] |
5. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ukaogo, P.O.; Ewuzie, U.; Chibuzo, V.; Onwuka, C.V. Environmental pollution: Causes, effects, and the remedies. Microorg. Sustain. Environ. Health 2020, 419–429. [Google Scholar] [CrossRef]
- Moradi, H.; Sabbaghi, S.; Mirbagheri, N.S.; Chen, P.; Rasouli, K.; Kamyab, H.; Chelliapan, S. Removal of chloride ion from drinking water using Ag NPs-Modified bentonite: Characterization and optimization of effective parameters by response surface methodology-central composite design. Environ. Res. 2023, 223, 115484. [Google Scholar] [CrossRef] [PubMed]
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater treatment and reuse: A review of its applications and health implications. Water Air Soil Pollut. 2021, 232, 208. [Google Scholar] [CrossRef]
- Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Emerging contaminants of high concern and their enzyme-assisted biodegradation—A review. Environ. Int. 2019, 124, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.S.; Deepthi, D.; Harshitha, S.; Sonkusare, S.; Naik, P.B.; Kumari, N.S.; Madhyastha, H. Environmental pollutants and their effects on human health. Heliyon 2023, 9, e19496. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yang, H.; Xu, X. Effects of water pollution on human health and disease heterogeneity: A review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Adil, S.; Maryam, B.; Kim, E.J.; Dulova, N. Individual and simultaneous degradation of sulfamethoxazole and trimethoprim by ozone, ozone/hydrogen peroxide and ozone/persulfate processes: A comparative study. Environ. Res. 2020, 189, 109889. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lin, X.; Ma, W.; Huo, M.; Tian, X.; Wang, H.; Huang, L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. Sci. Total Environ. 2024, 912, 169598. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Biodegradation and metabolic pathway of sulfamethoxazole by a novel strain Acinetobacter sp. Appl. Microbiol. Biotechnol. 2018, 102, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review. Environ. Sci. Technol. 2019, 53, 7234–7264. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Zhao, J.; Xia, L. Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes. Bioprocess Biosyst. Eng. 2017, 40, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Mashhadi, N.; Taylor, K.E.; Jimenez, N.; Varghese, S.T.; Levi, Y.; Lonergan, C.; Lebeau, E.; Lamé, M.; Lard, E.; Biswas, N. Removal of selected pharmaceuticals and personal care products from wastewater using soybean peroxidase. Environ. Manag. 2019, 63, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Mathur, P.; Sanyal, D.; Dey, P. The optimization of enzymatic oxidation of levofloxacin, a fluoroquinolone antibiotic for wastewater treatment. Biodegradation 2021, 32, 467–485. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Leng, Y.; Wan, D.; Chang, F.; Huang, Y.; Li, Z.; Xiong, W.; Wang, J. Transformation of tetracycline by manganese peroxidase from Phanerochaete chrysosporium. Molecules 2021, 26, 6803. [Google Scholar] [CrossRef] [PubMed]
- Zerva, A.; Simić, S.; Topakas, E.; Nikodinovic-Runic, J. Applications of microbial laccases: Patent review of the past decade (2009–2019). Catalysts 2019, 9, 1023. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Keerthana Devi, M.; Senthil Kumar, P. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. Chemosphere 2022, 299, 134390. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Miyazaki, M. Enzyme-immobilized microfluidic devices for biomolecule detection. TrAC Trends Anal. Chem. 2022, 159, 116908. [Google Scholar] [CrossRef]
- Honda, T.; Yamaguchi, H.; Miyazaki, M. Development of enzymatic reactions in miniaturized reactors. In Innovations and Future Directions Applied Bioengineering; Wiley-VCH: Hoboken, NJ, USA, 2017; pp. 99–166. [Google Scholar]
- Sheldon, R.A.; Woodley, J.M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 2018, 118, 801–838. [Google Scholar] [CrossRef]
- Franssen, M.C.R.; Steunenberg, P.; Scott, E.L.; Zuilhofac, H.; Sanders, J.P.M. Immobilised enzymes in biorenewables production. Chem. Soc. Rev. 2013, 42, 6491–6533. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Iqbal, H.M.N.; Guo, S.; Hu, H.; Wang, W.; Zhang, X. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point. Int. J. Biol. Macromol. 2018, 108, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Miyazaki, M.; Asanomi, Y.; Maeda, H. Poly-lysine supported cross-linked enzyme aggregates with efficient enzymatic activity and high operational stability. Catal. Sci. Technol. 2011, 1, 1256–1261. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Kiyota, Y.; Miyazaki, M. Techniques for preparation of cross-linked enzyme aggregates and their applications in bioconversions. Catalysts 2018, 8, 174. [Google Scholar] [CrossRef]
- Rodríguez-Couto, S. Immobilized-laccase bioreactors for wastewater treatment. Biotechnol. J. 2023, 19, e2300354. [Google Scholar] [CrossRef]
- Boudrant, J.; Woodley, J.M.; Fernández-Lafuente, R. Parameters necessary to define an immobilized enzyme preparation. Process Biochem. 2020, 90, 66–80. [Google Scholar] [CrossRef]
- Nájera-Martínez, E.F.; Melchor-Martínez, E.M.; Sosa-Hernández, J.E.; Levin, L.N.; Parra-Saldívar, R.; Iqbal, H.M.N. Lignocellulosic residues as supports for enzyme immobilization, and biocatalysts with potential applications. Int. J. Biol. Macromol. 2022, 208, 748–759. [Google Scholar] [CrossRef]
- Sharma, K.; Tewatia, P.; Kaur, M.; Pathania, D.; Banat, F.; Rattan, G.; Singhal, S.; Kaushik, A. Bioremediation of multifarious pollutants using laccase immobilized on magnetized and carbonyldiimidazole-functionalized cellulose nanofibers. Sci. Total Environ. 2023, 864, 161137. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Liao, Z.; Gao, B.; He, B. Emerging 3D printing strategies for enzyme immobilization: Materials, methods, and applications. ACS Omega 2022, 7, 11530–11543. [Google Scholar] [CrossRef]
- Ye, J.; Chu, T.; Chu, J.; Gao, B.; He, B. A versatile approach for enzyme immobilization using chemically modified 3D-printed scaffolds. ACS Sustain. Chem. Eng. 2019, 7, 18048–18054. [Google Scholar] [CrossRef]
- Rybarczyk, A.; Smułek, W.; Grzywaczyk, A.; Kaczorek, E.; Jesionowski, T.; Nghiem, L.D.; Zdarta, J. 3D printed polylactide scaffolding for laccase immobilization to improve enzyme stability and estrogen removal from wastewater. Bioresour. Technol. 2023, 381, 129144. [Google Scholar] [CrossRef] [PubMed]
- Basso, A.; Serban, S. Industrial applications of immobilized enzymes—A review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption 2014, 20, 801–821. [Google Scholar] [CrossRef]
- Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R.C.; Fernandez-Lafuente, R. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 2015, 33, 435–456. [Google Scholar] [CrossRef] [PubMed]
- Bagewadi, Z.K.; Mulla, S.I.; Ninnekar, H.Z. Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. J. Genet. Eng. Biotechnol. 2017, 15, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Brugnari, T.; Pereira, M.G.; Bubna, G.A.; de Freitas, E.N.; Contato, A.G.; Corrêa, R.C.G.; Castoldi, R.; de Souza, C.G.M.; de Moraes Polizeli, M.d.L.T.; Bracht, A.; et al. A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci. Total Environ. 2018, 634, 1346–1351. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, J.; Głodek, M.; Li, G.; Al-Gharabli, S.; Knozowska, K.; Kujawski, W. Highly effective enzymes immobilization on ceramics: Requirements for supports and enzymes. Sci. Total Environ. 2021, 801, 149647. [Google Scholar] [CrossRef] [PubMed]
- Pei, X.; Luo, Z.; Qiao, L.; Xiao, Q.; Zhang, P.; Wang, A.; Sheldon, R.A. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry. Chem. Soc. Rev. 2022, 51, 7281–7304. [Google Scholar] [CrossRef]
- Tvorynska, S.; Barek, J.; Josypcuk, B. Influence of different covalent immobilization protocols on electroanalytical performance of laccase-based biosensors. Bioelectrochemistry 2022, 148, 108223. [Google Scholar] [CrossRef]
- Leonhardt, F.; Gennari, A.; Paludo, G.B.; Schmitz, C.; da Silveira, F.X.; Moura, D.C.D.A.; Renard, G.; Volpato, G.; Volken de Souza, C.F. A systematic review about affinity tags for one-step purification and immobilization of recombinant proteins: Integrated bioprocesses aiming both economic and environmental sustainability. 3 Biotech 2023, 13, 186. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Basso, A.; Brady, D. New frontiers in enzyme immobilisation: Robust biocatalysts for a circular bio-based economy. Chem. Soc. Rev. 2021, 50, 5850–5862. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; van Langen, L.; Sheldon, R.A. Immobilised enzymes: Carrier-bound or carrier-free? Curr. Opin. Biotechnol. 2003, 14, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A. Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl. Microbiol. Biotechnol. 2011, 92, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Miyazaki, M. Laccase aggregates via poly-lysine-supported immobilization onto PEGA resin, with efficient activity and high operational stability and can be used to degrade endocrine-disrupting chemicals. Catal. Sci. Technol. 2021, 11, 934–942. [Google Scholar] [CrossRef]
- Karim, A.; Rehman, A.; Feng, J.; Noreen, A.; Assadpour, E.; Kharazmi, M.S.; Lianfu, Z.; Jafari, S.M. Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Adv. Colloid. Interface Sci. 2022, 307, 102744. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, X.; Fan, W.; Liu, Y.; Wang, Q.; Weng, L. Fabrication, property and application of calcium alginate fiber: A review. Polymers 2022, 14, 3227. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 2012, 33, 3279–3305. [Google Scholar] [CrossRef]
- Xu, D.Y.; Yang, Z. Cross-linked tyrosinase aggregates for elimination of phenolic compounds from wastewater. Chemosphere 2013, 92, 391–398. [Google Scholar] [CrossRef]
- Ghaffar, I.; Hussain, A.; Hasan, A.; Deepanraj, B. Microalgal-induced remediation of wastewaters loaded with organic and inorganic pollutants: An overview. Chemosphere 2023, 320, 137921. [Google Scholar] [CrossRef]
- He, R.; Sun, J.; Bai, X.; Lin, Q.; Yuan, Y.; Zhang, Y.; Dai, K.; Xu, Z. A novel alginate-embedded magnetic biochar-anoxygenic photosynthetic bacteria composite microspheres for multipollutant removal: Mechanisms of photo-bioelectrochemical enhancement and excellent reusability performance. Environ. Res. 2024, 247, 118158. [Google Scholar] [CrossRef] [PubMed]
- Ekeoma, B.C.; Ekeoma, L.N.; Yusuf, M.; Haruna, A.; Ikeogu, C.K.; Merican, Z.M.A.; Kamyab, H.; Pham, C.Q.; Vo, D.-V.N.; Chelliapan, S. Recent advances in the biocatalytic mitigation of emerging pollutants: A comprehensive review. J. Biotechnol. 2023, 369, 14–34. [Google Scholar] [CrossRef]
- Zanuso, E.; Gomes, D.G.; Ruiz, H.A.; Teixeira, J.A.; Domingues, L. Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: Current status and perspectives. Sustain. Energy Fuels 2021, 5, 4233–4247. [Google Scholar] [CrossRef]
- Tamborini, L.; Fernandes, P.; Paradisi, F.; Molinari, F. Flow bioreactors as complementary tools for biocatalytic process intensification. Trends Biotechnol. 2018, 36, 73–88. [Google Scholar] [CrossRef]
- Nguyen, L.N.; van de Merwe, J.P.; Hai, F.I.; Leusch, F.D.; Kang, J.; Price, W.E.; Roddick, F.; Magram, S.F.; Nghiem, L.D. Laccase-syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: Removal efficiency and effluent toxicity. Bioresour. Technol. 2016, 200, 477–484. [Google Scholar] [CrossRef]
- Masjoudi, M.; Golgoli, M.; Ghobadi Nejad, Z.; Sadeghzadeh, S.; Borghei, S.M. Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes. Chemosphere 2021, 263, 128043. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, M.; Sanromán, M.Á.; Moldes, D. Recent developments and applications of immobilized laccase. Biotechnol. Adv. 2013, 31, 1808–1825. [Google Scholar] [CrossRef]
- Zofair, S.F.F.; Ahmad, S.; Hashmi, M.A.; Khan, S.H.; Khan, M.A.; Younus, H. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry. J. Environ. Manag. 2022, 309, 114676. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.D.; Tiwari, A.; Anisha, G.S.; Chen, C.W.; Singh, A.; Haldar, D.; Patel, A.K.; Singhania, R.R. Laccase: A potential biocatalyst for pollutant degradation. Environ. Pollut. 2023, 319, 120999. [Google Scholar] [CrossRef]
- Viswanath, B.; Rajesh, B.; Janardhan, A.; Kumar, A.P.; Narasimha, G. Fungal laccases and their applications in bioremediation. Enzym. Res. 2014, 2014, 163242. [Google Scholar] [CrossRef]
- Christopher, L.P.; Yao, B.; Ji, Y. Lignin biodegradation with laccase-mediator systems. Front. Energy Res. 2014, 2, 12. [Google Scholar] [CrossRef]
- Jinga, L.I.; Tudose, M.; Ionita, P. Laccase-TEMPO as an efficient system for doxorubicin removal from wastewaters. Int. J. Environ. Res. Public Health 2022, 19, 6645. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Sun, H.; Zhang, S.; Wu, B.; Pan, B. Potential of acetylacetone as a mediator for Trametes versicolor laccase in enzymatic transformation of organic pollutants. Environ. Sci. Pollut. Res. Int. 2015, 22, 10882–10889. [Google Scholar] [CrossRef] [PubMed]
- Espina, G.; Cáceres-Moreno, P.; Mejías-Navarrete, G.; Ji, M.; Sun, J.; Blamey, J.M. A novel and highly active recombinant spore-coat bacterial laccase, able to rapidly biodecolorize azo, triarylmethane and anthraquinonic dyestuffs. Int. J. Biol. Macromol. 2021, 170, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Alves, M. Dyes—Environmental impact and remediation. Environmental Protection Strategies for Sustainable Development. Strategies for Sustainability; Malik, A., Grohmann, E., Eds.; Springer: Dordrecht, The Netherland, 2012; pp. 111–162. [Google Scholar] [CrossRef]
- Hassaan, M.A.; El Nemr, A. Health and environmental impacts of dyes: Mini review. Am. J. Environ. Sci. Eng. 2017, 1, 64–67. [Google Scholar] [CrossRef]
- Schneider, K.; Hafner, C.; Jäger, I. Mutagenicity of textile dye products. J. Appl. Toxicol. 2004, 24, 83–91. [Google Scholar] [CrossRef]
- Wen, X.; Du, C.; Wan, J.; Zeng, G.; Huang, D.; Yin, L.; Deng, R.; Tan, S.; Zhang, J. Immobilizing laccase on kaolinite and its application in treatment of malachite green effluent with the coexistence of Cd (II). Chemosphere 2019, 217, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Mohanty, S.K.; Mahendra, S. Nanomaterial-supported enzymes for water purification and monitoring in point-of-use water supply systems. Acc. Chem. Res. 2019, 52, 876–885. [Google Scholar] [CrossRef]
- Birhanlı, E.; Noma, S.A.A.; Boran, F.; Ulu, A.; Yeşilada, Ö.; Ateş, B. Design of laccase-metal-organic framework hybrid constructs for biocatalytic removal of textile dyes. Chemosphere 2022, 292, 133382. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, J.; Cavaco-Paulo, A.; Su, J.; Wang, H. Encapsulated laccase in bimetallic Cu/Zn ZIFs as stable and reusable biocatalyst for decolorization of dye wastewater. Int. J. Biol. Macromol. 2023, 233, 123410. [Google Scholar] [CrossRef]
- Kim, S.T.; Saha, K.; Kim, C.; Rotello, V.M. The role of surface functionality in determining nanoparticle cytotoxicity. Acc. Chem. Res. 2013, 46, 681–691. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, M.; Shah, K.; Singh Kalra, S.; Rome, L.H.; Mahendra, S. Decolorization and detoxification of synthetic dye compounds by laccase immobilized in vault nanoparticles. Bioresour. Technol. 2022, 351, 127040. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Zhu, Q.; Song, J.; Li, S.; Liu, X. Improved performance of immobilized laccase on Fe3O4@C-Cu2+ nanoparticles and its application for biodegradation of dyes. J. Hazard. Mater. 2020, 399, 123088. [Google Scholar] [CrossRef] [PubMed]
- Peñaranda, P.A.; Noguera, M.J.; Florez, S.L.; Husserl, J.; Ornelas-Soto, N.; Cruz, J.C.; Osma, J.F. Treatment of wastewater, phenols and dyes using novel magnetic torus microreactors and laccase immobilized on magnetite nanoparticles. Nanomaterials 2022, 12, 1688. [Google Scholar] [CrossRef]
- Svetozarević, M.; Šekuljica, N.; Onjia, A.; Barać, N.; Mihajlović, M.; Knežević-Jugović, Z.; Mijin, D. Biodegradation of synthetic dyes by free and cross-linked peroxidase in microfluidic reactor. Environ. Technol. Innov. 2022, 26, 102373. [Google Scholar] [CrossRef]
- George, J.; Rajendran, D.S.; Senthil Kumar, P.; Sonai Anand, S.; Vinoth Kumar, V.; Rangasamy, G. Efficient decolorization and detoxification of triarylmethane and azo dyes by porous-cross-linked enzyme aggregates of Pleurotus ostreatus laccase. Chemosphere 2023, 313, 137612. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Huang, W.; Yang, H.; Zhang, S. Co-immobilization of laccase and mediator through a self-initiated one-pot process for enhanced conversion of malachite green. J. Colloid Interface Sci. 2016, 471, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, X.; Wang, H.; Cavaco-Paulo, A.; Su, J. Co-immobilizing laccase-mediator system by in-situ synthesis of MOF in PVA hydrogels for enhanced laccase stability and dye decolorization efficiency. J. Environ. Manag. 2024, 353, 120114. [Google Scholar] [CrossRef] [PubMed]
- Martínková, L.; Kotik, M.; Marková, E.; Homolka, L. Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review. Chemosphere 2016, 149, 73–82. [Google Scholar] [CrossRef]
- Czaplicka, M. Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 2004, 322, 21–39. [Google Scholar] [CrossRef]
- Cooper, G.S.; Jones, S. Pentachlorophenol and cancer risk: Focusing the lens on specific chlorophenols and contaminants. Environ. Health Perspect. 2008, 116, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, S.; Vaidyanathan, V.K. Synthesis of magnetically recyclable porous cross-linked aggregates of Tramates versicolor MTCC 138 laccase for the efficient removal of pentachlorophenol from aqueous solution. Environ. Res. 2023, 229, 115899. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Alanazi, A.K.; Senthil Kumar, P.; Venkataraman, S.; Rajendran, D.S.; Athilakshmi, J.K.; Singh, I.; Singh, I.; Sen, P.; Purushothaman, M.; et al. Laccase-immobilized on superparamagnetic iron oxide nanoparticles incorporated polymeric ultrafiltration membrane for the removal of toxic pentachlorophenol. Chemosphere 2023, 331, 138734. [Google Scholar] [CrossRef] [PubMed]
- Barrios-Estrada, C.; de Jesús Rostro-Alanis, M.; Muñoz-Gutiérrez, B.D.; Iqbal, H.M.N.; Kannan, S.; Parra-Saldívar, R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation—A review. Sci. Total Environ. 2018, 612, 1516–1531. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Liu, Y.; Chen, S.; Le, X.; Zhou, X.; Zhao, Z.; Ou, Y.; Yang, J. Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal. Int. J. Biol. Macromol. 2016, 84, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Sadeghzadeh, S.; Ghobadi Nejad, Z.; Ghasemi, S.; Khafaji, M.; Borghei, S.M. Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsute. Bioresour. Technol. 2020, 306, 123169. [Google Scholar] [CrossRef] [PubMed]
- Taboada-Puig, R.; Junghanns, C.; Demarche, P.; Moreira, M.T.; Feijoo, G.; Lema, J.M.; Agathos, S.N. Combined cross-linked enzyme aggregates from versatile peroxidase and glucose oxidase: Production, partial characterization and application for the elimination of endocrine disruptors. Bioresour. Technol. 2011, 102, 6593–6599. [Google Scholar] [CrossRef]
- Xia, T.T.; Feng, M.; Liu, C.L.; Liu, C.Z.; Guo, C. Efficient phenol degradation by laccase immobilized on functional magnetic nanoparticles in fixed bed reactor under high-gradient magnetic field. Eng. Life Sci. 2021, 21, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, L.D.; Sotelo, D.C.; Ornelas-Soto, N.; Cruz, J.C.; Osma, J.F. Comparison of acetaminophen degradation by laccases immobilized by two different methods via a continuous flow microreactor process scheme. Membranes 2022, 12, 298. [Google Scholar] [CrossRef]
- Catapane, M.; Nicolucci, C.; Menale, C.; Mita, L.; Rossi, S.; Mita, D.G.; Diano, N. Enzymatic removal of estrogenic activity of nonylphenol and octylphenol aqueous solutions by immobilized laccase from Trametes versicolor. J. Hazard. Mater. 2013, 248–249, 337–346. [Google Scholar] [CrossRef]
- Piao, M.; Zou, D.; Ren, X.; Gao, S.; Qin, C.; Piao, Y. High efficiency biotransformation of bisphenol A in a fluidized bed reactor using stabilized laccase in porous silica. Enzyme Microb. Technol. 2019, 126, 1–8. [Google Scholar] [CrossRef] [PubMed]
- López-Serna, R.; Petrović, M.; Barceló, D. Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Sci. Total Environ. 2012, 440, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Negreira, N.; Mastroianni, N.; López De Alda, M.; Barceló, D. Multianalyte determination of 24 cytostatics and metabolites by liquid chromatography-electrospray-tandem mass spectrometry and study of their stability and optimum storage conditions in aqueous solution. Talanta 2013, 116, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Santana-Viera, S.; Hernández-Arencibia, P.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Simultaneous and systematic analysis of cytostatic drugs in wastewater samples by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2019, 1110–1111, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Teodosiu, C.; Gilca, A.F.; Barjoveanu, G.; Fiore, S. Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. J. Clean. Prod. 2018, 197, 1210–1221. [Google Scholar] [CrossRef]
- Rodriguez-Narvaez, O.M.; Peralta-Hernandez, J.M.; Goonetilleke, A.; Bandala, E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017, 323, 361–380. [Google Scholar] [CrossRef]
- Kelbert, M.; Pereira, C.S.; Daronch, N.A.; Cesca, K.; Michels, C.; de Oliveira, D.; Soares, H.M. Laccase as an efficacious approach to remove anticancer drugs: A study of doxorubicin degradation, kinetic parameters, and toxicity assessment. J. Hazard. Mater. 2021, 409, 124520. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P.; Kaur, N.; Selvaraj, M.; Ghramh, H.A.; Al-Shehri, B.M.; Singh, G.; Arya, S.K.; Bhatt, K.; Ghotekar, S.; Mani, R.; et al. Laccase-assisted degradation of emerging recalcitrant compounds—A review. Bioresour. Technol. 2022, 364, 128031. [Google Scholar] [CrossRef] [PubMed]
- Sá, H.; Michelin, M.; Tavares, T.; Silva, B. Current challenges for biological treatment of pharmaceutical-based contaminants with oxidoreductase enzymes: Immobilization processes, real aqueous matrices and hybrid techniques. Biomolecules 2022, 12, 1489. [Google Scholar] [CrossRef] [PubMed]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-Pour, A.; Verma, M.; Surampalli, R.Y. Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. Sci. Total Environ. 2017, 584–585, 393–401. [Google Scholar] [CrossRef]
- Zou, M.; Tian, W.; Chu, M.; Lu, Z.; Liu, B.; Xu, D. Magnetically separable laccase-biochar composite enable highly efficient adsorption-degradation of quinolone antibiotics: Immobilization, removal performance and mechanisms. Sci. Total Environ. 2023, 879, 163057. [Google Scholar] [CrossRef] [PubMed]
- Dlamini, M.L.; Lesaoana, M.; Kotze, I.; Richards, H.L. Zeolitic imidazolate frameworks as effective crystalline supports for aspergillus-based laccase immobilization for the biocatalytic degradation of carbamazepine. Chemosphere 2023, 311, 137142. [Google Scholar] [CrossRef] [PubMed]
- Zdarta, A.; Zdarta, J. Study of membrane-immobilized oxidoreductases in wastewater treatment for micropollutants removal. Int. J. Mol. Sci. 2022, 23, 14086. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Hou, J.; Chen, V. Cross-linked carbon nanotubes-based biocatalytic membranes for micro-pollutants degradation: Performance, stability, and regeneration. J. Membr. Sci. 2016, 520, 869–880. [Google Scholar] [CrossRef]
- Lloret, L.; Eibes, G.; Moreira, M.T.; Feijoo, G.; Lema, J.M.; Miyazaki, M. Improving the catalytic performance of laccase using a novel continuous-flow microreactor. Chem. Eng. J. 2013, 223, 497–506. [Google Scholar] [CrossRef]
- Harguindeguy, M.; Pochat-Bohatier, C.; Sanchez-Marcano, J.; Belleville, M.P. Enzymatic degradation of tetracycline by Trametes versicolor laccase in a fluidized bed reactor. Sci. Total Environ. 2024, 907, 168152. [Google Scholar] [CrossRef] [PubMed]
- Kothawale, S.S.; Kumar, L.; Singh, S.P. Role of organisms and their enzymes in the biodegradation of microplastics and nanoplastics: A review. Environ. Res. 2023, 232, 116281. [Google Scholar] [CrossRef]
- Tang, K.H.D.; Lock, S.S.M.; Yap, P.S.; Cheah, K.W.; Chan, Y.H.; Yiin, C.L.; Ku, A.Z.E.; Loy, A.C.M.; Chin, B.L.F.; Chai, Y.H. Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects. Sci. Total Environ. 2022, 832, 154868. [Google Scholar] [CrossRef]
- Melo, R.L.F.; Sales, M.B.; de Castro Bizerra, V.; de Sousa Junior, P.G.; Cavalcante, A.L.G.; Freire, T.M.; Neto, F.S.; Bilal, M.; Jesionowski, T.; Soares, J.M.; et al. Recent applications and future prospects of magnetic biocatalysts. Int. J. Biol. Macromol. 2023, 253, 126709. [Google Scholar] [CrossRef]
Method | Advantage | Disadvantage |
---|---|---|
Adsorptive binding |
|
|
Ionic binding |
|
|
Covalent binding |
|
|
Affinity binding |
|
|
Cross-linking |
|
|
Entrapment |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, H.; Miyazaki, M. Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors. Molecules 2024, 29, 2021. https://doi.org/10.3390/molecules29092021
Yamaguchi H, Miyazaki M. Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors. Molecules. 2024; 29(9):2021. https://doi.org/10.3390/molecules29092021
Chicago/Turabian StyleYamaguchi, Hiroshi, and Masaya Miyazaki. 2024. "Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors" Molecules 29, no. 9: 2021. https://doi.org/10.3390/molecules29092021
APA StyleYamaguchi, H., & Miyazaki, M. (2024). Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors. Molecules, 29(9), 2021. https://doi.org/10.3390/molecules29092021