Heat-Insulated Regenerated Fibers with UV Resistance: Silk Fibroin/Al2O3 Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology of RSF/Al2O3 NPs Hybrid Fibers
2.2. Mechanical Properties of RSF/Al2O3 NPs Hybrid Fibers
2.3. Structure Analysis of RSF/Al2O3 NPs Hybrid Fibers
2.4. UV Resistance of RSF/Al2O3 NPs Hybrid Fibers
2.5. Thermal Insulation Properties of RSF/Al2O3 NPs Hybrid Fibers
2.6. Perspiration Resistance of RSF/Al2O3 NPs Hybrid Fibers
2.7. Cell Cytotoxicity and Antioxidant of RSF/Al2O3 NPs Hybrid Fibers
3. Experimental
3.1. Materials
3.2. Preparation of RSF Solution
3.3. Preparation of RSF/Al2O3 NPs Hybrid Fiber
3.4. Characterization of RSF/Al2O3 NPs Hybrid Fiber
3.5. Mechanical Property Measurement
3.6. Determination of Sweat Resistance and Cytotoxicity
3.7. Determination of Anti-Ultraviolet and Thermal Insulation Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.R.; Sun, J.; Li, B.; Yang, C.J.; Shen, J.L.; Wang, N.; Gu, R.; Wang, D.G.; Chen, D.; Hu, H.G.; et al. Robust biological fibers based on widely available proteins: Facile fabrication and suturing application. Small 2020, 16, 1907598. [Google Scholar] [CrossRef]
- Guo, J.J.; Jia, L.L.; Fometu, S.S.; Ma, Q.; Wang, J.J.; Li, H.; Jiang, L.; Wu, G.H. Fabrication of High Toughness Silk Fibroin/Tungsten Disulfide Nanoparticles Hybrid Fiber and Self-Heating Textile by Wet Spinning. J. Renew. Mater. 2022, 10, 3373–3389. [Google Scholar] [CrossRef]
- Guo, J.J.; Yang, B.; Ma, Q.; Fomentu, S.S.; Wu, G.H. Photothermal Regenerated Fibers with Enhanced Toughness: Silk Fibroin/MoS2 Nanoparticles. Polymers 2021, 13, 3937. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Yang, H.W.; Li, Y.; Zheng, X.H. Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles. ACS Appl. Mater. Interfaces 2020, 12, 15726–15736. [Google Scholar] [CrossRef]
- Cai, H.H.; Gao, L.; Chen, L.Z.; Chen, X.; Liu, Z.L.; Li, Z.; Dai, F.Y. An effective, low-cost and eco-friendly method for preparing UV resistant silk fabric. J. Nat. Fibers 2022, 19, 5173–5185. [Google Scholar] [CrossRef]
- Wang, S.D.; Wang, K.; Ma, Q.; Qu, C.X. Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets. Mater. Today Commun. 2020, 23, 100893. [Google Scholar] [CrossRef]
- Abo El-Ola, S.M.; Kotb, R.M.; Shaker, R.N. Photocatalytic finishing of silk and viscose fabrics. J. Text. Ins. 2021, 112, 820–827. [Google Scholar] [CrossRef]
- Gao, L.Z.; Bao, Y.; Cai, H.H.; Zhang, A.P.; Ma, Y.; Tong, X.L.; Li, Z.; Dai, F.Y. Multifunctional silk fabric via surface modification of nano-SiO2. Text. Res. J. 2020, 90, 1616–1627. [Google Scholar] [CrossRef]
- Subburaayasaran, A.S.; Sampath Kumar, K.S.; Kumar, D.V.; Ramachandran, T.; Prakash, C.; Vijayakumar, H.L. Comparative Studies on Thermal Comfort Properties of Eri Silk, Wool/Eri Silk, Cotton, and Micro-denier Acrylic Double-layered Knitted Fabrics. J. Nat. Fibers 2022, 19, 11449–11457. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, H.L.; Zhou, H.T.; Wang, K.; Wang, S.D. Natural flat cocoon materials constructed by eri silkworm with high strength and excellent anti-ultraviolet performance. J. Eng. Fibers Fabr. 2020, 15, 155. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, M.W.; Bao, L.Z.; Yin, Z.C.; Zhang, J.C.; Pan, G.Z.; Zheng, S.A.; Zheng, Y.F.; Wu, C.J.; Li, M.; et al. Preparation and characterization of silk fibroin/silica thermal insulation coatings on catheters. Surf. Innov. 2022, 11, 155–168. [Google Scholar] [CrossRef]
- Nayar, P.; Waghmare, S.; Singh, P.; Najar, M.; Puttewar, S.; Agnihotri, A. Comparative study of phase transformation of Al2O3 nanoparticles prepared by chemical precipitation and sol-gel auto combustion methods. Mater. Today Proc. 2020, 26, 122–125. [Google Scholar] [CrossRef]
- Deng, Y.; Li, J.H.; Deng, Y.X.; Nian, H.E.; Jiang, H. Supercooling suppression and thermal conductivity enhancement of Na2HPO4·12H2O/expanded vermiculite form-stable composite phase change materials with alumina for heat storage. ACS Sustain. Chem. Eng. 2018, 6, 6792–6801. [Google Scholar] [CrossRef]
- Gong, S.Q.; Cheng, X.M.; Li, Y.Y.; Shi, D.W.; Wang, X.L.; Zhong, H. Enhancement of ceramic foam modified hierarchical Al2O3@expanded graphite on thermal properties of 1-octadecanol phase change materials. J. Energy Storage 2019, 26, 101025. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, C.M.; Cai, J.X.; Wang, J.; Liu, K.Q.; Cheng, X.W. Synthesis and characterization of activated alumina with high thermal stability by a low-heat solid-phase precursor method. Microporous Mesoporous Mater. 2022, 337, 111921. [Google Scholar] [CrossRef]
- Ghanizadeh, S.; Bao, X.J.; Vaidhyanathan, B.; Binner, J. Synthesis of nano α-alumina powders using hydrothermal and precipitation routes: A comparative study. Ceram. Int. 2014, 40, 1311–1319. [Google Scholar] [CrossRef]
- Fu, L.P.; Huang, A.; Gu, H.Z.; Ni, H.W. Properties and microstructures of lightweight alumina containing different types of nano-alumina. Ceram. Int. 2018, 44, 17885–17894. [Google Scholar] [CrossRef]
- Ji, Q.Y.; Zhang, L.; Jiao, X.L.; Chen, D.R. Alpha Al2O3 Nanosheet-Based Biphasic Aerogels with High-Temperature Resistance up to 1600 °C. ACS Appl. Mater. Interfaces 2023, 15, 6848–6858. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, N.; Aksoy, S.A. Enhancing the performance properties of ester-cross-linked cotton fabrics using Al2O3-NPs. Text. Res. J. 2016, 86, 636–648. [Google Scholar] [CrossRef]
- Zheng, K.S.; Zhang, Z.P.; Wang, X.M.; Zhan, R.Z.; Chen, H.J.; Deng, S.Z.; Xu, N.S.; Chen, J. Mechanism of photoluminescence quenching in visible and ultraviolet emissions of ZnO nanowires decorated with gold nanoparticles. Jpn. J. Appl. Phys. 2019, 58, 051005. [Google Scholar] [CrossRef]
- Guo, J.J.; Xu, C.; Yang, B.; Li, H.; Wu, G.H. The size effect of silver nanoparticles on reinforcing the mechanical properties of regenerated fibers. Molecules 2023, 28, 1750. [Google Scholar] [CrossRef]
- Ling, S.J.; Qi, Z.M.; Knight, D.P.; Shao, Z.Z.; Chen, X. Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules 2011, 12, 3344–3349. [Google Scholar] [CrossRef]
- Yazawa, K.; Hidaka, K. Pressure-and humidity-induced structural transition of silk fibroin. Polymer 2020, 211, 123082. [Google Scholar] [CrossRef]
- Lin, N.; Cao, L.; Huang, Q.; Wang, C.; Wang, Y.; Zhou, J.; Liu, X.Y. Functionalization of silk fibroin materials at mesoscale. Adv. Funct. Mater. 2016, 26, 8885–8902. [Google Scholar] [CrossRef]
- Keten, S.; Xu, Z.; Ihle, B.; Buehler, M.J. Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nat. Mater. 2010, 9, 359–367. [Google Scholar] [CrossRef]
- Fang, G.; Zheng, Z.; Yao, J.; Chen, M.; Tang, Y.; Zhong, J.; Qi, Z.; Li, Z.; Shao, Z.; Chen, X. Tough protein-carbon nanotube hybrid fibers comparable to natural spider silks. J. Mater. Chem. B 2015, 3, 3940–3947. [Google Scholar] [CrossRef]
- Nova, A.; Keten, S.; Pugno, N.M.; Redaelli, A.; Buehler, M.J. Molecular and nanostructural mechanisms of deformation strength and toughness of spider silk fibril. Nano Lett. 2010, 10, 2626–2634. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, H.; Li, X.; Hou, K.; Wang, J.; Cai, Z. Double-sided functional infrared camouflage flexible composite fabric for thermal management. Ceram. Int. 2023, 49, 16422–16432. [Google Scholar] [CrossRef]
- Hao, X.Y.; Wang, X.; Yang, W.M.; Ran, J.B.; Ni, F.F.; Tong, T.; Dai, W.; Zhang, L.Y.; Shen, X.Y.; Tong, H. Comparisons of the restoring and reinforcement effects of carboxymethyl chitosan-silk fibroin (Bombyx Mori/Antheraea Yamamai/Tussah) on aged historic silk. Int. J. Biol. Macromol. 2019, 124, 71–79. [Google Scholar] [CrossRef]
- GB/T3922-2013; Textiles—Tests for Colour Fastness—Colour Fastness to Perspiration. Standardization Administration of China: Beijing, China, 2013.
- Holland, C.; Hawkins, N.; Frydrych, M.; Laity, P.; Porter, D.; Vollrath, F. Differential scanning calorimetry of native silk feedstock. Macromol. Biosci. 2019, 19, 1800228. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.T.; Guan, X.Y.; Wang, Y.Q.; Chen, X.G.; Liu, X.Q. Tannic interfacial linkage within ZnO-loaded fabrics for durable UV-blocking applications. Appl. Surf. Sci. 2021, 568, 150960. [Google Scholar] [CrossRef]
- Cui, Y.; Gong, H.X.; Wang, Y.J.; Li, D.W.; Bai, H. A thermally insulating textile inspired by polar bear hair. Adv. Mater. 2018, 30, 1706807. [Google Scholar] [CrossRef] [PubMed]
Samples | Crystallite Size (nm) | ||||
---|---|---|---|---|---|
a | b | c | V/nm3 | Crystallinity | |
RSF fibers | 1.82 | 2.37 | 2.09 | 9.02 | 40.61% |
0.8 wt% RSF/Al2O3 NPs hybrid fibers | 1.83 | 2.42 | 1.71 | 7.57 | 41.85% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Lu, S.; Zhou, Y.; Yang, Y.; Yao, X.; Wu, G. Heat-Insulated Regenerated Fibers with UV Resistance: Silk Fibroin/Al2O3 Nanoparticles. Molecules 2024, 29, 2023. https://doi.org/10.3390/molecules29092023
Guo J, Lu S, Zhou Y, Yang Y, Yao X, Wu G. Heat-Insulated Regenerated Fibers with UV Resistance: Silk Fibroin/Al2O3 Nanoparticles. Molecules. 2024; 29(9):2023. https://doi.org/10.3390/molecules29092023
Chicago/Turabian StyleGuo, Jianjun, Song Lu, Yi Zhou, Yuanyuan Yang, Xiaoxian Yao, and Guohua Wu. 2024. "Heat-Insulated Regenerated Fibers with UV Resistance: Silk Fibroin/Al2O3 Nanoparticles" Molecules 29, no. 9: 2023. https://doi.org/10.3390/molecules29092023
APA StyleGuo, J., Lu, S., Zhou, Y., Yang, Y., Yao, X., & Wu, G. (2024). Heat-Insulated Regenerated Fibers with UV Resistance: Silk Fibroin/Al2O3 Nanoparticles. Molecules, 29(9), 2023. https://doi.org/10.3390/molecules29092023