Y(OTf)3-Salazin-Catalyzed Asymmetric Aldol Condensation
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Instruments
3.2. General Procedure for the Asymmetric Catalytic Aldol Condensation of Aromatic Aldehydes 1 and Ketones 2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidt, F.; Keller, F.; Vedrenne, E.; Aggarwal, V.K. Stereocontrolled Synthesis of β-Amino Alcohols from Lithiated Aziridines and Boronic Esters. Angew. Chem. Int. Ed. Engl. 2009, 48, 1149–1152. [Google Scholar] [CrossRef]
- Tanner, D. Stereocontrolled synthesis via chiral aziridines. Pure Appl. Chem. 1993, 65, 1319–1328. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, L.B.; Chen, N.; Du, D.-M.; Xu, J.X. Synthesis of NH-aziridines from vicinal amino alcohols via the Wenker reaction: Scope and limitation. Lett. Org. Chem. 2008, 5, 212–217. [Google Scholar] [CrossRef]
- Li, X.Y.; Chen, N.; Xu, J.X. An improved and mild Wenker synthesis of aziridines. Synthesis 2010, 2010, 3423–3428. [Google Scholar]
- Jarzyński, S.; Utecht, G.; Leśniak, S.; Rachwalski, M. Highly enantioselective asymmetric reactions involving zinc ions promoted by chiral aziridine alcohols. Tetrahedron Asymmetry 2017, 28, 1774–1779. [Google Scholar] [CrossRef]
- Jarzyński, S.; Leśniak, S.; Pieczonka, A.M.; Rachwalski, M. N-Trityl-aziridinyl alcohols as highly efficient chiral catalysts in asymmetric additions of organozinc species to aldehydes. Tetrahedron Asymmetry 2015, 26, 35–40. [Google Scholar] [CrossRef]
- Rachwalski, M.; Jarzyński, S.; Jasiński, M.; Leśniak, S. Mandelic acid derived α-aziridinyl alcohols as highly efficient ligands for asymmetric additions of zinc organyls to aldehydes. Tetrahedron Asymmetry 2013, 24, 689–693. [Google Scholar] [CrossRef]
- Pieczonka, A.M.; Leśniak, S.; Jarzyński, S.; Rachwalski, M. Aziridinylethers as highly enantioselective ligands for the asymmetric addition of organozinc species to carbonyl compounds. Tetrahedron Asymmetry 2015, 26, 148–151. [Google Scholar] [CrossRef]
- Pieczonka, A.M.; Jarzyński, S.; Wujkowska, Z.; Leśniak, S.; Rachwalski, M. Zinc(II) mediated asymmetric aldol condensation catalyzed by chiral aziridine ligands. Tetrahedron Lett. 2015, 56, 6506–6507. [Google Scholar] [CrossRef]
- Jarzyński, S.; Rachwalski, M.; Pieczonka, A.M.; Wujkowska, Z.; Leśniak, S. Highly efficient conjugate additions of diethylzinc to enones promoted by chiral aziridine alcohols and aziridine ethers. Tetrahedron Asymmetry 2015, 26, 924–927. [Google Scholar] [CrossRef]
- Rachwalski, M.; Jarzyński, S.; Leśniak, S. Aziridine ring-containing chiral ligands as highly efficient catalysts in asymmetric synthesis. Tetrahedron Asymmetry 2013, 24, 421–425. [Google Scholar] [CrossRef]
- Adam, E.M.; Pieczonka, M.; Rachwalski, M.; Leśniak, S. Synthesis of chiral 1-(2-aminoalkyl)aziridines via the self-opening reaction of aziridine. ARKIVOC 2017, 2017, 223–234. [Google Scholar]
- Pieczonka, A.M.; Marciniak, L.; Rachwalski, M.; Leśniak, S. Enantiodivergent aldol condensation in the presence of aziridine/acid/water systems. Symmetry 2020, 12, 930. [Google Scholar] [CrossRef]
- Pieczonka, A.M.; Leśniak, S.; Rachwalski, M. Direct asymmetric aldol condensation catalyzed by aziridine semicarbazide zinc(II) complexes. Tetrahedron Lett. 2014, 55, 2373–2375. [Google Scholar] [CrossRef]
- Leśniak, S.; Pieczonka, A.M.; Jarzyński, S.; Justyna, K.; Rachwalski, M. Synthesis and evaluation of the catalytic properties of semicarbazides derived from N-triphenylmethyl-aziridine-2-carbohydrazides. Tetrahedron Asymmetry 2013, 24, 1341–1344. [Google Scholar] [CrossRef]
- Buchcic-Szychowska, A.; Zawisza, A.; Le’sniak, S.; Rachwalski, M. Highly efficient asymmetric Morita–Baylis–Hillman reaction promoted by chiral aziridine-phosphines. Catalysts 2022, 12, 394. [Google Scholar] [CrossRef]
- Buchcic-Szychowska, A.; Lésniak, S.; Rachwalski, M. Chiral aziridine phosphines as highly effective promoters of asymmetric Rauhut–Currier reaction. Symmetry 2022, 14, 1631. [Google Scholar] [CrossRef]
- Buchcic, A.; Zawisza, A.; Lésniak, S.; Adamczyk, J.; Pieczonka, A.M.; Rachwalski, M. Enantioselective Mannich reaction promoted by chiral phosphinoyl-aziridines. Catalysts 2019, 9, 837. [Google Scholar] [CrossRef]
- Tanner, D.; Johansson, F.; Harden, A.; Andersson, P.G. A comparative study of C2-symmetric bis(aziridine) ligands in some transition metal-mediated asymmetric transformations. Tetrahedron 1998, 54, 15731–15738. [Google Scholar] [CrossRef]
- Tanner, D.; Harden, A.; Johansson, F.; Wyatt, P.; Andersson, P.G.; Zhang, S.Y.; Zhao, S.H.; Ciglic, M.I.; Haugg, M.; Trabesinger-Rüf, N.; et al. Asymmetric catalysis via chiral aziridines. Acta Chem. Scand. 1996, 50, 361–368. [Google Scholar] [CrossRef]
- Andersson, P.G.; Harden, A.; Tanner, D.; Norrby, P.-O. Studies of Allylic Substitution Catalysed by a Palladium Complex of a C2-Symmetric Bis(aziridine): Preparation and NMR Spectroscopic Investigation of a Chiral π-Allyl Species. Chem.-Eur. J. 1995, 1, 12–16. [Google Scholar] [CrossRef]
- Tanner, D.; Andersson, P.G.; Harden, A.; Somfai, P. C2-symmetric bis(aziridines): A new class of chiral ligands for transition metal-mediated asymmetric synthesis. Tetrahedron Lett. 1994, 35, 4631–4634. [Google Scholar] [CrossRef]
- Rachwalski, M.; Leśniak, S.; Kiełbasiński, P. Highly enantioselective addition of phenylethynylzinc to aldehydes using aziridine-functionalized tridentate sulfinyl ligands. Tetrahedron Asymmetry 2010, 21, 2687–2689. [Google Scholar] [CrossRef]
- Rachwalski, M.; Leśniak, S.; Kiełbasiński, P. Highly enantioselective conjugate addition of diethylzinc to enones using aziridine-functionalized tridentate sulfinyl ligands. Tetrahedron Asymmetry 2010, 21, 1890–1892. [Google Scholar] [CrossRef]
- Leśniak, S.; Rachwalski, M.; Sznajder, E.; Kiełbasiński, P. New highly efficient aziridine-functionalized tridentate sulfinyl catalysts for enantioselective diethylzinc addition to carbonyl compounds. Tetrahedron Asymmetry 2009, 20, 2311–2314. [Google Scholar] [CrossRef]
- Chen, X.P.; Lin, C.; Du, H.G.; Xu, J.X. Efficient direct synthesis of aziridine-containing chiral tridentate ligands by the iminium-mediated self-ring opening reaction of enantiopure aziridines and salicylaldehydes. Adv. Synth. Catal. 2019, 361, 1647–1661. [Google Scholar] [CrossRef]
- Ma, L.G.; Xu, J.X. Nucleophilic ring opening reaction of unsymmetric aziridines and its regioselectivity. Prog. Chem. (Huaxue Jinzhan) 2004, 16, 220–235. [Google Scholar]
- Wu, Y.-H.; Zhang, L.-Y.; Wang, N.-X.; Xing, Y.L. Recent advances in the rare-earth metal triflates catalyzed organic reactions. Catal. Rev. 2020, 64, 679–715. [Google Scholar] [CrossRef]
- Feng, X.M.; Wang, Z.; Liu, X.L. Chiral Lewis acid rare-earth metal complexes in enantioselective catalysis. In Topics in Organometallic Chemistry; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Ma, L.G.; Jiao, P.; Zhang, Q.H.; Du, D.-M.; Xu, J.X. Ligand and substrate π-stacking interaction contro-lled enantioselectivity in the asymmetric aziridination. Tetrahedron Asymmetry 2007, 18, 878–884. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Chen, Y.; Zheng, C.-Q.; Yin, Y.; Wang, L.; Sun, X.-Q. Highly enantioselective aldol reactions catalyzed by reusable upper rim-functionalized calix[4]arene-based l-proline organocatalyst in aqueous conditions. Tetrahedron 2017, 73, 78–85. [Google Scholar] [CrossRef]
- Vlasserou, I.; Sfetsa, M.; Gerokonstantis, D.-T.; Kokotos, C.G.; Moutevelis-Minakakis, P. Combining prolinamides with 2-pyrrolidinone: Novel organocatalysts for the asymmetric aldol reaction. Tetrahedron 2018, 74, 2338–2349. [Google Scholar] [CrossRef]
- Chen, G.; Fu, X.; Li, C.; Wu, C.; Miao, Q. Highly efficient direct a larger-scale aldol reactions catalyzed by a flexible prolinamide based-metal Lewis acid bifunctional catalyst in the presence of water. J. Organomet. Chem. 2012, 702, 19–26. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Chen, Y.X.; Xu, J.X. π-Stacking-controlled dearomatic sulfur-shifted ene reaction of ketenes and polycyclic arylthiiranes: Access to areno[d]-ε-thiolactones. J. Org. Chem. 2024, 89, 4749–4759. [Google Scholar] [CrossRef] [PubMed]
- Li, B.N.; Wang, Y.K.; Du, D.-M.; Xu, J.X. Notable and obvious ketene substituent-dependent effect of temperature on the stereoselectivity in the Staudinger reaction. J. Org. Chem. 2007, 72, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.X. Recent advances in π-stacking interaction-controlled asymmetric synthesis. Molecules 2024, 29, 1454. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Yu, M.; Wu, X.; Zhang, Y.; Zhao, G. 4,4′-Disubstituted L-prolines as highly enantioselective catalysts for direct aldol reactions. Adv. Synth. Catal. 2006, 348, 2223–2228. [Google Scholar] [CrossRef]
- Tang, Z.; Jiang, F.; Yu, L.T.; Cui, X.; Gong, L.Z.; Mi, A.Q.; Jiang, Y.Z.; Wu, Y.D. Novel small organic molecules for a highly enantioselective direct aldol reaction. J. Am. Chem. Soc. 2003, 125, 5262–5263. [Google Scholar] [CrossRef] [PubMed]
- Kucherenko, A.S.; Kostenko, A.A.; Gerasimchuk, V.V.; Zlotin, S.G. Stereospecific diaza-Cope rearrangement as an efficient tool for the synthesis of DPEDA pyridine analogs and related C2-symmetric organocatalysts. Org. Biomol. Chem. 2017, 15, 7028–7033. [Google Scholar] [CrossRef]
- Edwards, M.L.; Ritter, H.W.; Stemerick, D.M.; Stewart, K.T. Mannich bases of 4-phenyl-3-buten-2-one. A new class of antiherpes agent. J. Med. Chem. 1983, 26, 431–436. [Google Scholar] [CrossRef]
- Cobb, A.J.A.; Shaw, D.M.; Longbottom, D.A.; Gold, J.B.; Ley, S.V. Organocatalysis with proline derivatives: Improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions. Org. Biomol. Chem. 2005, 3, 84–96. [Google Scholar] [CrossRef]
- Guo, G.; Wu, Y.; Zhao, X.; Wang, J.; Zhang, L.; Cui, Y. Polymerization of L-proline functionalized styrene and its catalytic performance as a supported organocatalyst for direct enantioselective aldol reaction. Tetrahedron Asymmetry 2016, 27, 740–746. [Google Scholar] [CrossRef]
- Da, C.-S.; Che, L.-P.; Guo, Q.-P.; Wu, F.-C.; Ma, X.; Jia, Y.-N. 2,4-Dinitrophenol as an effective cocatalyst: Greatly improving the activities and enantioselectivities of primary amine organocatalysts for asymmetric aldol reactions. J. Org. Chem. 2009, 74, 2541–2546. [Google Scholar] [CrossRef] [PubMed]
- Downey, C.W.; Johnson, M.W. A tandem enol silane formation-Mukaiyama aldol reaction mediated by TMSOTf. Tetrahedron Lett. 2007, 48, 3559–3562. [Google Scholar] [CrossRef]
- Li, L.; Gou, S.H.; Liu, F. Highly stereoselective direct aldol reactions catalyzed by a bifunctional chiral diamine. Tetrahedron Asymmetry 2014, 25, 193–197. [Google Scholar] [CrossRef]
Entry | Solvent | Yield/% | ee/% |
---|---|---|---|
1 | PhMe | 3 | 38 |
2 | EtOH | 98 | 53 |
3 | DCM | 10 | 60 |
4 | THF | 20 | 49 |
5 | acetone | 96 | 87 |
Entry | Metal Salt | Ligand | Temp./°C | Time/h | Yield/% | ee/% |
---|---|---|---|---|---|---|
1 | Sc(OTf)3 | Salazin-Bn | 15 | 40 | 96 | 81 |
2 | Sc(OTf)3 | Salazin-tBu-Bn | 15 | 40 | 96 | 70 |
3 | Sc(OTf)3 | Salazin-Br-Bn | 15 | 40 | 55 | 78 |
4 | Sc(OTf)3 | Salazin-NO2-iPr | 15 | 40 | 91 | 86 |
5 | Sc(OTf)3 | Salazin-Br-iPr | 15 | 40 | 89 | 87 |
6 | Sc(OTf)3 | Salazin-I-iPr | 15 | 40 | 60 | 80 |
7 | Sc(OTf)3 | Salazin-iPr | 15 | 26 | 98 | 88 |
8 | Y(OTf)3 | Salazin-iPr | 15 | 26 | 98 | 88 |
9 | La(OTf)3 | Salazin-iPr | 15 | 26 | 93 | 83 |
10 | Ce(OTf)3 | Salazin-iPr | 15 | 26 | 91 | 86 |
11 | Eu(OTf)3 | Salazin-iPr | 15 | 26 | 98 | 85 |
12 | Gd(OTf)3 | Salazin-iPr | 15 | 26 | 98 | 87 |
13 | Lu(OTf)3 | Salazin-iPr | 15 | 26 | 96 | 87 |
14 | Zn(OTf)2 | Salazin-iPr | 15 | 40 | 90 | 70 |
15 | Sc(OTf)3 | Salazin-iPr | 40 | 20 | 98 | 85 |
16 | Sc(OTf)3 | Salazin-iPr | 20 | 26 | 98 | 88 |
17 | Sc(OTf)3 | Salazin-iPr | 0 | 30 | 98 | 98 |
18 | Y(OTf)3 | Salazin-iPr | 40 | 20 | 96 | 89 |
19 | Y(OTf)3 | Salazin-iPr | 20 | 26 | 98 | 88 |
20 | Y(OTf)3 | Salazin-iPr | 0 | 30 | 98 | 98 |
Entry | Product 5 | n | Yield/% | anti:syn | ee of anti/% | ee of syn/% |
---|---|---|---|---|---|---|
1 | 5a | 1 | 25 | 53:47 | 83 | 69 |
2 | 5b | 2 | 81 | 83:17 | 96 | - b |
3 | 5c | 3 | 94 | 94:6 | 91 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Chen, N.; Yang, Z.; Xu, J. Y(OTf)3-Salazin-Catalyzed Asymmetric Aldol Condensation. Molecules 2024, 29, 1963. https://doi.org/10.3390/molecules29091963
Wang C, Chen N, Yang Z, Xu J. Y(OTf)3-Salazin-Catalyzed Asymmetric Aldol Condensation. Molecules. 2024; 29(9):1963. https://doi.org/10.3390/molecules29091963
Chicago/Turabian StyleWang, Chengzhuo, Ning Chen, Zhanhui Yang, and Jiaxi Xu. 2024. "Y(OTf)3-Salazin-Catalyzed Asymmetric Aldol Condensation" Molecules 29, no. 9: 1963. https://doi.org/10.3390/molecules29091963
APA StyleWang, C., Chen, N., Yang, Z., & Xu, J. (2024). Y(OTf)3-Salazin-Catalyzed Asymmetric Aldol Condensation. Molecules, 29(9), 1963. https://doi.org/10.3390/molecules29091963