Surface Charge Effects for the Hydrogen Evolution Reaction on Pt(111) Using a Modified Grand-Canonical Potential Kinetics Method
Abstract
:1. Introduction
2. Results and Discussions
2.1. Structure Models
2.2. Hydrogen Adsorption Energies
2.3. Reaction Kinetics
3. Methods
3.1. DFT Computational Details
3.2. Canonical Calculation of Hydrogen Adsorption Energy
3.3. Grand-Canonical Calculation of Hydrogen Adsorption Energy
3.4. Modified GCP-K Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kreuter, W.; Hofmann, H. Electrolysis: The important energy transformer in a world of sustainable energy. Int. J. Hydrogen Energy 1998, 23, 661–666. [Google Scholar] [CrossRef]
- Christopher, K.; Dimitrios, R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ. Sci. 2012, 5, 6640–6651. [Google Scholar] [CrossRef]
- Wang, J.; Xu, F. Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Adv. Mater. 2017, 29, 1605838. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46. [Google Scholar] [CrossRef]
- Conway, B.E.; Bockris, J.O.M. Electrolytic Hydrogen Evolution Kinetics and Its Relation to the Electronic and Adsorptive Properties of the Metal. J. Chem. Phys. 2004, 26, 532–541. [Google Scholar] [CrossRef]
- Hansen, H.A.; Rossmeisl, J. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 2008, 10, 3722–3730. [Google Scholar] [CrossRef]
- Rossmeisl, J.; Skúlason, E. Modeling the electrified solid–liquid interface. Chem. Phys. Lett. 2008, 466, 68–71. [Google Scholar] [CrossRef]
- Skúlason, E.; Karlberg, G.S. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys. 2007, 9, 3241–3250. [Google Scholar] [CrossRef]
- Lamoureux, P.S.; Singh, A.R. pH Effects on Hydrogen Evolution and Oxidation over Pt(111): Insights from First-Principles. ACS Catal. 2019, 9, 6194–6201. [Google Scholar] [CrossRef]
- Kronberg, R.; Laasonen, K. Reconciling the Experimental and Computational Hydrogen Evolution Activities of Pt(111) through DFT-Based Constrained MD Simulations. ACS Catal. 2021, 11, 8062–8078. [Google Scholar] [CrossRef]
- Kim, D.; Shi, J. Substantial Impact of Charge on Electrochemical Reactions of Two-Dimensional Materials. J. Am. Chem. Soc. 2018, 140, 9127–9131. [Google Scholar] [CrossRef]
- Kim, K.Y.; Lee, J. Role of Hyper-Reduced States in Hydrogen Evolution Reaction at Sulfur Vacancy in MoS2. ACS Catal. 2018, 8, 4508–4515. [Google Scholar] [CrossRef]
- Huang, Y.; Nielsen, R.J. Reaction Mechanism for the Hydrogen Evolution Reaction on the Basal Plane Sulfur Vacancy Site of MoS2 Using Grand Canonical Potential Kinetics. J. Am. Chem. Soc. 2018, 140, 16773–16782. [Google Scholar] [CrossRef]
- Melander, M.M.; Kuisma, M.J. Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and electrode potentials. J. Chem. Phys. 2018, 150, 041706. [Google Scholar] [CrossRef]
- Huang, J.; Climent, V. Understanding surface charge effects in electrocatalysis. Part 2: Hydrogen peroxide reactions at platinum. Chin. J. Catal. 2022, 43, 2837–2849. [Google Scholar] [CrossRef]
- An, Y.; Cao, W. Substantial impact of surface charges on electrochemical reaction kinetics on S vacancies of MoS2 using grand-canonical iteration method. J. Chem. Phys. 2023, 159, 144702. [Google Scholar] [CrossRef]
- Rossmeisl, J.; Chan, K. pH in atomic scale simulations of electrochemical interfaces. Phys. Chem. Chem. Phys. 2013, 15, 10321–10325. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005, 152, J23. [Google Scholar] [CrossRef]
- Jaramillo, T.F.; Jørgensen, K.P. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317, 100–102. [Google Scholar] [CrossRef]
- Chen, X.; Gu, Y. Origin of hydrogen evolution activity on MS 2 (M = Mo or Nb) monolayers. J. Mater. Chem. A 2015, 3, 18898–18905. [Google Scholar] [CrossRef]
- Strmcnik, D.; Uchimura, M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300–306. [Google Scholar] [CrossRef]
- Skúlason, E.; Tripkovic, V. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations. J. Phys. Chem. C 2010, 114, 18182–18197. [Google Scholar] [CrossRef]
- Sarwar, S.; Ali, A. Towards thermoneutral hydrogen evolution reaction using noble metal free molybdenum ditelluride/graphene nanocomposites. J. Colloid Interface Sci. 2021, 581, 847–859. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Dion, M.; Rydberg, H. Van der Waals Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92, 246401. [Google Scholar] [CrossRef] [PubMed]
- Román-Pérez, G.; Soler, J.M. Efficient Implementation of a van der Waals Density Functional: Application to Double-Wall Carbon Nanotubes. Phys. Rev. Lett. 2009, 103, 096102. [Google Scholar] [CrossRef] [PubMed]
- Klimes, J.; Bowler, D. Van der Waals density functional applied to solids. Phys. Rev. B 2011, 83, 195131. [Google Scholar] [CrossRef]
- Sheppard, D.; Henkelman, G. Paths to which the nudged elastic band converges. J. Comput. Chem. 2011, 32, 1769–1771. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, D.; Xiao, P. A generalized solid-state nudged elastic band method. J. Chem. Phys. 2012, 136, 074103. [Google Scholar] [CrossRef]
- Sheppard, D.; Terrell, R. Optimization methods for finding minimum energy paths. J. Chem. Phys. 2008, 128, 134106. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Jónsson, H.; Mills, G. Classical and Quantum Dynamics in Condensed Phase Simulations; World Scientific: Singapore, 1998; pp. 385–404. [Google Scholar]
- Chan, K.; Nørskov, J.K. Electrochemical Barriers Made Simple. J. Phys. Chem. Lett. 2015, 6, 2663–2668. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X. Reaction Mechanism with Thermodynamic Structural Screening for Electrochemical Hydrogen Evolution on Monolayer 1T′ Phase MoS2. Chem. Mater. 2018, 30, 5404–5411. [Google Scholar] [CrossRef]
- Sundararaman, R.; Goddard, W.A., III. The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. J. Chem. Phys. 2015, 142, 064107. [Google Scholar] [CrossRef]
- An, Y.; Ouyang, M. Electronegativity principle for hydrogen evolution activity using first-principles calculations. Phys. Chem. Chem. Phys. 2023, 25, 13289–13296. [Google Scholar] [CrossRef]
Species | nIS,total | nTS,total | Δntotal |
---|---|---|---|
H2O-1 | 7.94 | 7.90 | −0.04 |
H2O-2 | 7.95 | 7.95 | −0.004 |
H2O-3 | 8.04 | 7.98 | −0.06 |
H2O-4 * | 7.95 | 8.01 | +0.06 |
H2O-5 | 8.04 | 8.03 | −0.01 |
H2O-6 | 8.05 | 8.01 | −0.04 |
H2O-7 | 8.00 | 7.97 | −2.04 |
H2O-8 * | 8.03 | 8.04 | +0.01 |
H2O-9 * | 7.96 | 7.99 | +0.03 |
H2O-10 * | 8.00 | 8.05 | +0.05 |
Catalyst | 390.04 | 390.08 | +0.05 |
Total | 470.0002 | 470.0001 | −2.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, S.; Ouyang, M.; An, Y.; Cao, W.; Chen, X. Surface Charge Effects for the Hydrogen Evolution Reaction on Pt(111) Using a Modified Grand-Canonical Potential Kinetics Method. Molecules 2024, 29, 1813. https://doi.org/10.3390/molecules29081813
Kong S, Ouyang M, An Y, Cao W, Chen X. Surface Charge Effects for the Hydrogen Evolution Reaction on Pt(111) Using a Modified Grand-Canonical Potential Kinetics Method. Molecules. 2024; 29(8):1813. https://doi.org/10.3390/molecules29081813
Chicago/Turabian StyleKong, Shaoyu, Min Ouyang, Yi An, Wei Cao, and Xiaobo Chen. 2024. "Surface Charge Effects for the Hydrogen Evolution Reaction on Pt(111) Using a Modified Grand-Canonical Potential Kinetics Method" Molecules 29, no. 8: 1813. https://doi.org/10.3390/molecules29081813
APA StyleKong, S., Ouyang, M., An, Y., Cao, W., & Chen, X. (2024). Surface Charge Effects for the Hydrogen Evolution Reaction on Pt(111) Using a Modified Grand-Canonical Potential Kinetics Method. Molecules, 29(8), 1813. https://doi.org/10.3390/molecules29081813