Heteronuclear Dual Metal Atom Electrocatalysts for Water-Splitting Reactions
Abstract
:1. Introduction
2. Synthetic Strategies for DACs
2.1. High-Temperature Pyrolysis
2.2. Wet Chemistry Impregnation
2.3. Atomic Layer Deposition (ALD)
2.4. Template Assisted
2.5. Ball Milling
3. Characterizations of DACs
3.1. High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM)
3.2. X-ray Absorption Spectroscopy
4. Electrocatalytic Applications
4.1. Hydrogen Evolution Reaction
4.2. Oxygen Evolution Reaction
5. Summary and Perspective
- (1)
- Despite great progress in the synthesis of DACs, the accurate control of the atomic structure and uniform dispersion are still in the initial stage. For example, impurities (e.g., SACs and nanoclusters) are inclined to generate during high-temperature pyrolysis. Meanwhile, the accurate amount of metal precursors is difficult to control; single atoms or metal clusters generate inevitably at the same time. The question of how to synthesize DACs in which one metal atom is merely bonded to another remains unresolved. Thus, it is necessary to combine different synthetic strategies and develop new synthetic methods. Additionally, DACs consist of main group elements worth exploring. The design of heteronuclear DACs, which combines transition and main-group metals, can uncover the synergistic effect between these elements.
- (2)
- Different supports for DACs will bring different electronic structures and enhance performance. MOFs, ZIFs, covalent organic frameworks, and g-C3N4 are widely applied to serve as supports for DACs; there is plenty of room for optimization. An interesting aspect of metal supports, such as metallene [97,98], which has a two-dimensional nanosheet morphology, may offer cooperative electronic interactions with guest metal atoms. Meanwhile, the stability and catalytic properties of DACs supported by different supports need to be further explored.
- (3)
- Different characterization techniques can identify the structure of DACs, such as HAADF-STEM and XAS. For example, the HAADF-STEM can observe the DACs with an atomic-level resolution, and XAS can analyze the local structure of the DACs regarding the metal–metal interaction, oxidation state, bond length, and coordination environment. At the same time, it is difficult to monitor the structure change and evolution during the reaction in situ constantly. The real active sites under working conditions may be different from those of the ex situ conditions. More advanced in situ/operando equipment should be considered, which can provide more information about the structure–activity relationship and guide the design of DACs.
- (4)
- The stability timescale of electrocatalysts for water-splitting in industrial applications is usually months or even years, which is far beyond the laboratory research lever. Even the Pt/C catalyst with excellent performance can only be used for 40 h [99]. DACs face the risk of the agglomeration and leaching of metal atoms in actual operation (operating under high current densities); the controlled synthesis of high-quality and stable DACs remains a major obstacle.
- (5)
- Due to the shortage of freshwater resources, the electrolysis of seawater has become a research hotspot. Therefore, it is important to develop robust and inexpensive DACs for seawater electrolysis reactions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Huang, Q.; Shi, Y.; Chang, J.; Lu, S. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, Y.J.; Wang, B.Y.; Wang, Y.; Wu, M.; Li, W.D.; Liu, B.Z.; Lu, S.Y. Carbon dots-confined CoP-CoO nanoheterostructure with strong interfacial synergy triggered the robust hydrogen evolution from ammonia borane. J. Energy Chem. 2021, 57, 198–205. [Google Scholar] [CrossRef]
- Wang, X.; Xu, L.; Li, C.; Zhang, C.; Yao, H.; Xu, R.-b.; Cui, P.; Zheng, X.; Gu, M.D.; Lee, J.; et al. Developing a class of dual atom materials for multifunctional catalytic reactions. Nat. Commun. 2023, 14, 7210. [Google Scholar] [CrossRef]
- Tang, J.; Xu, X.; Tang, T.; Zhong, Y.; Shao, Z. Perovskite-Based Electrocatalysts for Cost-Effective Ultrahigh-Current-Density Water Splitting in Anion Exchange Membrane Electrolyzer Cell. Small Methods 2022, 6, 2201099. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xu, X.; Kim, H.; Shao, Z.; Jung, W. Advanced electrocatalysts with unusual active sites for electrochemical water splitting. InfoMat 2024, 6, e12494. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, H.; Yuan, P.; Jia, Y.A.; Zhuang, L.; Zhang, H.; Yan, X.; Liu, G.; Zhao, Y.; Liu, J.; et al. Single Carbon Vacancy Traps Atomic Platinum for Hydrogen Evolution Catalysis. J. Am. Chem. Soc. 2022, 144, 2171–2178. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Sheng, R.; Liu, Q.; Ding, J.; Wang, P.; Wang, X.; Wang, J.; Wang, Y.; Wang, B.; Huang, Y. Surface reconstruction of RuO2/Co3O4 amorphous-crystalline heterointerface for efficient overall water splitting. J. Colloid Interface Sci. 2024, 658, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zheng, Y.; Jiao, Y.; Wang, Z.; Lu, Z.; Vasileff, A.; Qiao, S.-Z. NiO as a Bifunctional Promoter for RuO2 toward Superior Overall Water Splitting. Small 2018, 14, 1704073. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, R.; Xie, M.; Xu, Y.; Chen, J.; Jiao, Y. Construction of trifunctional electrode material based on Pt-Coordinated Ce-Based metal organic framework. J. Colloid Interface Sci. 2022, 622, 378–389. [Google Scholar] [CrossRef]
- Wang, D.; Li, Q.; Han, C.; Lu, Q.; Xing, Z.; Yang, X. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899. [Google Scholar] [CrossRef]
- Abdelghafar, F.; Xu, X.; Jiang, S.P.; Shao, Z. Designing single-atom catalysts toward improved alkaline hydrogen evolution reaction. Mater. Rep. Energy 2022, 2, 100144. [Google Scholar] [CrossRef]
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Mosallanezhad, A.; Wei, C.; Ahmadian Koudakan, P.; Fang, Y.; Niu, S.; Bian, Z.; Liu, B.; Huang, T.; Pan, H.; Wang, G. Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. Appl. Catal. B 2022, 315, 121534. [Google Scholar] [CrossRef]
- Chen, W.; Pei, J.; He, C.-T.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W.-C.; Mao, J.; et al. Single Tungsten Atoms Supported on MOF-Derived N-Doped Carbon for Robust Electrochemical Hydrogen Evolution. Adv. Mater. 2018, 30, 1800396. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, X.; Chen, S.; Yan, H.; Wang, C.; Wu, C.; Haleem, Y.A.; Duan, S.; Lu, J.; Ge, B.; et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518. [Google Scholar] [CrossRef]
- Zhang, F.-F.; Cheng, C.-Q.; Wang, J.-Q.; Shang, L.; Feng, Y.; Zhang, Y.; Mao, J.; Guo, Q.-J.; Xie, Y.-M.; Dong, C.-K.; et al. Iridium Oxide Modified with Silver Single Atom for Boosting Oxygen Evolution Reaction in Acidic Media. ACS Energy Lett. 2021, 6, 1588–1595. [Google Scholar] [CrossRef]
- Cao, L.; Luo, Q.; Chen, J.; Wang, L.; Lin, Y.; Wang, H.; Liu, X.; Shen, X.; Zhang, W.; Liu, W.; et al. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Yu, L.; Ma, C.; Song, Y.; Tu, Y.; Zhang, Y.; Bo, X.; Deng, D. Three-dimensional CoOOH nanoframes confining high-density Mo single atoms for large-current-density oxygen evolution. J. Mater. Chem. A 2022, 10, 6242–6250. [Google Scholar] [CrossRef]
- Yin, J.; Jin, J.; Lu, M.; Huang, B.; Zhang, H.; Peng, Y.; Xi, P.; Yan, C.-H. Iridium Single Atoms Coupling with Oxygen Vacancies Boosts Oxygen Evolution Reaction in Acid Media. J. Am. Chem. Soc. 2020, 142, 18378–18386. [Google Scholar]
- Cao, D.; Wang, J.; Xu, H.; Cheng, D. Construction of Dual-Site Atomically Dispersed Electrocatalysts with Ru-C5 Single Atoms and Ru-O4 Nanoclusters for Accelerated Alkali Hydrogen Evolution. Small 2021, 17, 2101163. [Google Scholar]
- He, T.; Santiago, A.R.P.; Kong, Y.; Ahsan, M.A.; Luque, R.; Du, A.; Pan, H. Atomically Dispersed Heteronuclear Dual-Atom Catalysts: A New Rising Star in Atomic Catalysis. Small 2021, 18, e2106091. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, D. Superiority of Dual-Atom Catalysts in Electrocatalysis: One Step Further Than Single-Atom Catalysts. Adv. Energy Mater. 2022, 12, 2103564. [Google Scholar] [CrossRef]
- Ying, Y.; Luo, X.; Qiao, J.; Huang, H. “More is Different”: Synergistic Effect and Structural Engineering in Double-Atom Catalysts. Adv. Funct. Mater. 2020, 31, 2007423. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, B.; Wang, D. Microenvironment Engineering of Single/Dual-Atom Catalysts for Electrocatalytic Application. Adv. Mater. 2023, 35, 2209654. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhou, X.; Jia, Y.; Li, H.; Wang, Y.; Liu, Y.; Tan, Q. Advances in Transition-Metal-Based Dual-Atom Oxygen Electrocatalysts. Small 2023, 19, e2206477. [Google Scholar] [PubMed]
- Choi, J.; Seo, S.; Kim, M.; Han, Y.; Shao, X.; Lee, H. Relationship between Structure and Performance of Atomic-Scale Electrocatalysts for Water Splitting. Small 2023, e2304560. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Res. 2023, 16, 6477–6506. [Google Scholar]
- Xu, W.-X.; Wang, Y.; Zhang, C.; Ma, X.; Wu, J.; Liu, Y.; Lu, B.; Zhang, H.; Ming, C.; Xiang, J. Insights into the Electronic Structure Coupling Effect of Dual-metal Atomic Electrocatalytic Platform for Efficient Clean Energy Conversion. Chem. Eng. J. 2023, 461, 141911. [Google Scholar] [CrossRef]
- Li, M.; Zhu, H.; Yuan, Q.; Li, T.; Wang, M.; Zhang, P.; Zhao, Y.; Qin, D.; Guo, W.; Liu, B.; et al. Proximity Electronic Effect of Ni/Co Diatomic Sites for Synergistic Promotion of Electrocatalytic Oxygen Reduction and Hydrogen Evolution. Adv. Funct. Mater. 2022, 33, 2210867. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, F.; Jiao, L.; Fang, T.; Zhao, Z.; Xiao, X.; Li, D.; Yi, K.; Wang, R.; Jia, X. Atomically Dispersed Fe/N4 and Ni/N4 Sites on Separate-Sides of Porous Carbon Nanosheets with Janus Structure for Selective Oxygen Electrocatalysis. Small 2023, 19, e2300289. [Google Scholar]
- Fang, W.; Wu, Y.; Xin, S.; Hu, Y.; Dang, J.; Li, M.; Chen, B.; Zhao, H.; Lib, Z. Fe and Mo Dual-Site Single-Atom Catalysts for High-Efficiency Wide-pH Hydrogen Evolution and Alkaline Overall Water Splitting. Chem. Eng. J. 2023, 468, 143605. [Google Scholar]
- Da, Y.; Tian, Z.; Jiang, R.; Liu, Y.; Lian, X.; Xi, S.; Shi, Y.; Wang, Y.; Lu, H.; Cui, B.; et al. Dual Pt-Ni atoms dispersed on N-doped carbon nanostructure with novel (NiPt)-N4C2 configurations for synergistic electrocatalytic hydrogen evolution reaction. Sci. China Mater. 2022, 66, 1389–1397. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Fan, C.; Meng, Q.; Tang, Y.; Qiu, X.; Fu, G.; Ma, T. Dual Single-Atomic Ni-N4 and Fe-N4 Sites Constructing Janus Hollow Graphene for Selective Oxygen Electrocatalysis. Adv. Mater. 2020, 32, 2003134. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zong, L.; Cui, L.; Lu, F.; Xiao, Z.; Wang, L. Synthesis of dual-metal single atom in porous carbon with efficient oxygen reduction reaction in both acidic and alkaline electrolytes. J. Colloid Interface Sci. 2022, 633, 828–835. [Google Scholar] [PubMed]
- Han, X.; Ling, X.; Yu, D.; Xie, D.; Li, L.; Peng, S.; Zhong, C.; Zhao, N.; Deng, Y.; Hu, W. Atomically Dispersed Binary Co-Ni Sites in Nitrogen-Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. Adv. Mater. 2019, 31, 1905622. [Google Scholar]
- Du, C.; Gao, Y.; Chen, H.; Li, P.; Zhu, S.; Wang, J.; He, Q.; Chen, W. A Cu and Fe dual-atom nanozyme mimicking cytochrome c oxidase to boost the oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 16994. [Google Scholar]
- Xie, Y.; Kocaefe, D.; Chen, C.; Kocaefe, Y. Review of Research on Template Methods in Preparation of Nanomaterials. J. NanoMater. 2016, 2016, 2302595. [Google Scholar]
- Chen, Y.; Mao, J.; Zhou, H.; Xing, L.; Qiao, S.; Yuan, J.; Mei, B.; Wei, Z.; Zhao, S.; Tang, Y.; et al. Coordination Shell Dependent Activity of CuCo Diatomic Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reaction. Adv. Funct. Mater. 2024, 34, 2311664. [Google Scholar]
- Zheng, J.; Ye, J.; Ortuño, M.A.; Fulton, J.L.; Gutiérrez, O.Y.; Camaioni, D.M.; Motkuri, R.K.; Li, Z.; Webber, T.E.; Mehdi, B.L.; et al. Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal-Organic Framework. J. Am. Chem. Soc. 2019, 141, 9292–9304. [Google Scholar]
- Zhou, X.; Han, K.; Li, K.; Pan, J.; Wang, X.; Shi, W.; Song, S.; Zhang, H. Dual-Site Single-Atom Catalysts with High Performance for Three-Way Catalysis. Adv. Mater. 2022, 34, 2201859. [Google Scholar] [CrossRef]
- Bai, L.; Hsu, C.-S.; Alexander, D.T.L.; Chen, H.M.; Hu, X. A Cobalt-Iron Double-Atom Catalyst for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199. [Google Scholar] [CrossRef]
- Yang, Y.; Qian, Y.; Li, H.; Zhang, Z.; Mu, Y.; Do, D.; Zhou, B.; Dong, J.; Yan, W.; Qin, Y.; et al. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eaba6586. [Google Scholar] [CrossRef] [PubMed]
- Pu, T.; Ding, J.; Zhang, F.; Wang, K.; Cao, N.; Hensen, E.J.M.; Xie, P. Dual Atom Catalysts for Energy and Environmental Applications. Angew. Chem. Int. Ed. 2023, 62, e202305964. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Zhao, Y.; Wei, S.; Triana, C.A.; Li, J.; Arcifa, A.; Allen, C.S.; Cao, R.; Patzke, G.R. Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat. Commun. 2021, 12, 5589. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Zhang, D.; Yang, Y.; Peng, C.; Xue, D.; Zhi, C.; Zhu, M.; Liu, J. Dual-Sites Coordination Engineering of Single Atom Catalysts for Full-Temperature Adaptive Flexible Ultralong-Life Solid-State Zn−Air Batteries. Adv. Funct. Mater. 2023, 33, 2212299. [Google Scholar] [CrossRef]
- Rong, C.; Shen, X.; Wang, Y.; Thomsen, L.; Zhao, T.; Li, Y.; Lu, X.; Amal, R.; Zhao, C. Electronic Structure Engineering of Single-Atom Ru Sites via Co–N4 Sites for Bifunctional pH-Universal Water Splitting. Adv. Mater. 2022, 34, 2110103. [Google Scholar] [CrossRef]
- Sardar, K.; Petrucco, E.; Hiley, C.I.; Sharman, J.D.B.; Wells, P.P.; Russell, A.E.; Kashtiban, R.J.; Sloan, J.; Walton, R.I. Water-Splitting Electrocatalysis in Acid Conditions Using Ruthenate-Iridate Pyrochlores. Angew. Chem. Int. Ed. 2014, 53, 10960–10964. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.B.; Hung, S.-F.; Liu, S.; Yuan, K.; Miao, S.; Zhang, L.; Huang, X.; Wang, H.-Y.; Cai, W.; Chen, R.; et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, J.; Luo, T.; Yan, Y.; Huang, W.; Lee, J.M. π-Conjugated Macrocycles Confined Dual Single-Atom Catalysts on Graphitized Bubbles for Oxygen Reduction, Evolution, and Batteries. Small 2023, e2309351. [Google Scholar] [CrossRef]
- Wan, X.; Liu, X.; Li, Y.; Yu, R.; Zheng, L.; Yan, W.; Wang, H.; Xu, M.; Shui, J. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268. [Google Scholar] [CrossRef]
- Wei, Y.S.; Sun, L.; Wang, M.; Hong, J.; Zou, L.; Liu, H.; Wang, Y.; Zhang, M.; Liu, Z.; Li, Y.; et al. Fabricating Dual-Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angew. Chem. Int. Ed. 2020, 59, 16013–16022. [Google Scholar] [CrossRef]
- Lei, C.; Chen, H.; Cao, J.; Yang, J.; Qiu, M.; Xia, Y.-q.; Yuan, C.; Yang, B.; Li, Z.; Zhang, X.; et al. Fe-N4 Sites Embedded into Carbon Nanofiber Integrated with Electrochemically Exfoliated Graphene for Oxygen Evolution in Acidic Medium. Adv. Energy Mater. 2018, 8, 1801912. [Google Scholar] [CrossRef]
- Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; et al. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angew. Chem. Int. Ed. 2016, 55, 10800–10805. [Google Scholar] [CrossRef] [PubMed]
- Bhavani, P.; Praveen Kumar, D.; Suk Yoo, J.; Hussain, M.; Weon, S.; Kim, W.; Park, Y.-K. Dual-Atomic-Site-Integrated Photocatalysts for Green Energy Synthesis. Chem. Eng. J. 2023, 467, 143429. [Google Scholar]
- Liu, K.; Li, J.; Liu, Y.; Wang, M.; Cui, H. Dual metal atom catalysts: Advantages in electrocatalytic reactions. J. Energy Chem. 2023, 79, 515–534. [Google Scholar]
- Yang, J.; Li, W.-H.; Tan, S.; Xu, K.; Wang, Y.; Wang, D.; Li, Y. The electronic metal-support interaction directing the design of single atomic site catalyst: Achieving high efficiency towards hydrogen evolution. Angew. Chem. Int. Ed. 2021, 60, 19085–19091. [Google Scholar] [CrossRef] [PubMed]
- Adamson, W.; Bo, X.; Li, Y.; Suryanto, B.H.R.; Chen, X.; Zhao, C. Co-Fe binary metal oxide electrocatalyst with synergistic interface structures for efficient overall water splitting. Catal. Today 2020, 351, 44–49. [Google Scholar] [CrossRef]
- Yang, W.-D.; Xiang, J.; Zhao, R.-D.; Loy, S.; Li, M.-T.; Ma, D.-M.; Li, J.; Wu, F.-F. Nanoengineering of ZnCo2O4@CoMoO4 heterogeneous structures for supercapacitor and water splitting applications. Ceram. Int. 2023, 49, 4422–4434. [Google Scholar] [CrossRef]
- Chen, C.; Suo, N.; Han, X.; He, X.; Dou, Z.; Lin, Z.; Cui, L. Tuning the morphology and electron structure of metal-organic framework-74 as bifunctional electrocatalyst for OER and HER using bimetallic collaboration strategy. J. Alloys Compd. 2021, 865, 158795. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Ding, H.; He, L.; Wang, E.; Wang, B.; Fan, S.; Liu, K. A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 17527–17536. [Google Scholar] [CrossRef]
- Pang, C.; Zhu, S.; Xu, W.; Liang, Y.; Li, Z.; Wu, S.; Jiang, H.; Wang, H.; Cui, Z. Self-standing Mo-NiO/Ni electrocatalyst with nanoporous structure for hydrogen evolution reaction. Electrochim. Acta 2023, 439, 141621. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, Y.; Luo, J.; Jin, B.; Wu, Z.; Ning, X.; Zhan, L.; Fan, X.; Zhou, T.; Zhang, S.; et al. MoC Quantum Dots@N-Doped-Carbon for Low-Cost and Efficient Hydrogen Evolution Reaction: From Electrocatalysis to Photocatalysis. Adv. Funct. Mater. 2022, 32, 2201518. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, G.; Zheng, X.; Jiang, P.; Yi, J.D.; Zhou, H.; Gao, X.; Yu, Z.; Wu, Y. A Double Atomic-Tuned RuBi SAA/Bi@OG Nanostructure with Optimum Charge Redistribution for Efficient Hydrogen Evolution. Angew. Chem. Int. Ed. 2023, 62, e202300879. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xu, L.L.; Wu, X.C.; Tao, Y.R.; Xiong, W.W. Ta3N5 nanobelt-loaded Ru nanoparticle hybrids’ electrocatalysis for hydrogen evolution in alkaline media. Molecules 2023, 28, 1100. [Google Scholar] [CrossRef]
- Zhang, L.; Si, R.; Liu, H.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z.; Chen, J.; Song, Z.; Li, J.; et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 5453. [Google Scholar] [CrossRef]
- Zhao, W.; Luo, C.; Lin, Y.; Wang, G.-B.; Chen, H.M.; Kuang, P.; Yu, J. Pt–Ru Dimer Electrocatalyst with Electron Redistribution for Hydrogen Evolution Reaction. ACS Catal. 2022, 12, 5540–5548. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, E.; Chen, W.; Segre, C.U.; Zhou, J.; Lin, Y.C.; Zhu, C.; Ma, R.; Liu, P.; Chu, S.; et al. Dual-Metal Interbonding as the Chemical Facilitator for Single-Atom Dispersions. Adv. Mater. 2020, 32, 2003484. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Xia, W.; Guo, X.-W.; Liu, W.; Cao, D.; Cheng, D. Constructing Ni3Se2-Nanoisland-Confined Pt1Mo1 Dual-Atom Catalyst for Efficient Hydrogen Evolution in Basic Media. Small Struct. 2023, 5, 2300284. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, D.; Qin, Y.; Dou, T.; Jiang, M.; Zhang, F.; Lei, X. Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production. Appl. Catal. B 2021, 298, 120557. [Google Scholar] [CrossRef]
- Zhao, X.; Li, W.-P.; Cao, Y.; Portniagin, A.; Tang, B.; Wang, S.; Liu, Q.; Yu, D.Y.W.; Zhong, X.; Zheng, X.; et al. Dual-Atom Co/Ni Electrocatalyst Anchored at the Surface-Modified Ti3C2Tx MXene Enables Efficient Hydrogen and Oxygen Evolution Reactions. ACS Nano 2024, 18, 4256–4268. [Google Scholar] [CrossRef]
- Shi, J.; Li, R.; Zhang, J.; Wang, Y.; Ma, W.; Yue, Z.; Jin, C.; Liu, Y.; Zheng, L.; Bai, J.; et al. N-Coordinated Iridium–Molybdenum Dual-Atom Catalysts Enabling Efficient Bifunctional Hydrogen Electrocatalysis. ACS Appl. Mater. Interfaces 2024, 16, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yu, J.; Liu, Q.; Liu, J.; Song, D.; Zhang, H.; Li, R.; Zhang, Y.; Wang, J. Preparation of carbon sponge loaded NiPt dual-metal single atom as self-supporting electrode based on inkjet printing technology for efficient hydrogen evolution. Carbon 2023, 215, 118456. [Google Scholar] [CrossRef]
- Li, X.; Deng, C.; Kong, Y.; Huo, Q.; Mi, L.; Sun, J.; Cao, J.; Shao, J.; Chen, X.; Zhou, W.; et al. Unlocking the Transition of Electrochemical Water Oxidation Mechanism Induced by Heteroatom Doping. Angew. Chem. Int. Ed. 2023, 62, e202309732. [Google Scholar]
- Wang, A.; Dou, Y.; Yang, X.; Wang, Q.; Sudi, M.S.; Zhao, L.; Shang, D.; Zhu, W.; Ren, J. Efficient oxygen evolution reaction from iron-molybdenum nitride/molybdenum oxide heterostructured composites. Dalton Trans. 2023, 52, 11234–11242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Pan, L.; Guo, B.; Huang, Z.-F.; Chen, Z.; Wang, L.; Zhang, X.; Guo, Z.; Xu, W.; Loh, K.P.; et al. Tracking the Role of Defect Types in Co3O4 Structural Evolution and Active Motifs during Oxygen Evolution Reaction. J. Mater. Chem. A 2023, 145, 2271–2281. [Google Scholar]
- Li, J.; Li, J.; Ren, J.; Hong, H.; Liu, D.; Liu, L.; Wang, D. Electric-Field-Treated Ni/Co3O4 Film as High-Performance Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Nano-Micro Lett. 2022, 14, 148. [Google Scholar]
- Yan, L.; Zhang, B.; Wu, S.; Yu, J. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. J. Mater. Chem. A 2020, 8, 14234–14242. [Google Scholar]
- Oh, N.K.; Seo, J.; Lee, S.; Kim, H.-J.; Kim, U.; Lee, J.; Han, Y.-K.; Park, H. Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer. Nat. Commun. 2021, 12, 4606. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Ma, Y.; Hu, F.; Lin, C.C.; Li, L.; Chen, H.-Y.; Han, X.; Peng, S. Dual-Sites Coordination Engineering of Single Atom Catalysts for Flexible Metal–Air Batteries. Adv. Energy Mater. 2021, 11, 2101242. [Google Scholar] [CrossRef]
- Khan, K.; Yan, X.; Yu, Q.; Bae, S.-H.; White, J.J.; Liu, J.; Liu, T.; Sun, C.-J.; Kim, J.; Cheng, H.M.; et al. Stone-Wales defect-rich carbon-supported dual-metal single atom sites for Zn-air batteries. Nano Energy 2021, 90, 106488. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, D.; Chen, C.-J.; Zhang, Q.; Liu, R.S.; Xia, Z.; Dai, L.; Amal, R.; Lu, X. Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 2020, 71, 104597. [Google Scholar] [CrossRef]
- Yan, J.; Tian, M.; Shi, R.; Gu, T.; Zeng, K.; Zhou, J.; Zhang, Q.; Rümmeli, M.H.; Yang, R. Enhanced dual atomic Fe-Ni sites in N-doped carbon for bifunctional oxygen electrocatalysis. Mater. Today Energy 2022, 30, 101171. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Jiang, M.; Wei, J.; Ding, X.; Zhu, C.; He, H.; Lai, H.; Shi, J. Engineering the coordination environment in atomic Fe/Ni dual-sites for efficient oxygen electrocatalysis in Zn-air and Mg-air batteries. Chem. Eng. J. 2021, 426, 130758. [Google Scholar] [CrossRef]
- Meng, H.; Wu, B.; Zhang, D.; Zhu, X.; Luo, S.; You, Y.; Chen, K.; Long, J.; Zhu, J.; Liu, L.; et al. Optimizing electronic synergy of atomically dispersed dual-metal Ni–N4 and Fe–N4 sites with adjacent Fe nanoclusters for high-efficiency oxygen electrocatalysis. Energy Environ. Sci. 2024, 17, 704–716. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Liu, Y.; Wu, Y.; Zhang, S.; Deng, C. Atomically dispersed Fe-Ni dual sites in heteroatom doped carbon tyres for efficient oxygen electrocatalysis in rechargeable Zn-Air battery. J. Energy Chem. 2023, 83, 264–274. [Google Scholar] [CrossRef]
- Chen, C.; Sun, M.; Zhang, F.; Li, H.; Sun, M.; Fang, P.; Song, T.; Chen, W.; Dong, J.; Rosen, B.; et al. Adjacent Fe Site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design. Energy Environ. Sci. 2023, 16, 1685–1696. [Google Scholar] [CrossRef]
- He, Y.; Yang, X.; Li, Y.; Liu, L.; Guo, S.; Shu, C.; Liu, F.; Liu, Y.; Tan, Q.; Wu, G. Atomically Dispersed Fe–Co Dual Metal Sites as Bifunctional Oxygen Electrocatalysts for Rechargeable and Flexible Zn–Air Batteries. ACS Catal. 2022, 12, 1216–1227. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Wang, Z.; Li, C.; Wang, Z.; Zhang, S.; Deng, C. Fe-Co dual atomic doublets on N, P codoped carbon as active sites in the framework of heterostructured hollow fibers towards high-performance flexible Zn-Air battery. Energy Storage Mater. 2023, 59, 102772. [Google Scholar] [CrossRef]
- Li, Z.; He, H.; Cao, H.; Sun, S.; Diao, W.; Gao, D.; Lu, P.; Zhang, S.; Guo, Z.; Li, M.; et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B 2019, 240, 112–121. [Google Scholar] [CrossRef]
- Pei, Z.; Lu, X.F.; Zhang, H.; Li, Y.; Luan, D.; Lou, X.W. Highly Efficient Electrocatalytic Oxygen Evolution Over Atomically Dispersed Synergistic Ni/Co Dual Sites. Angew. Chem. Int. Ed. 2022, 61, e202207537. [Google Scholar] [CrossRef]
- Hu, B.; Huang, A.; Zhang, X.; Chen, Z.; Tu, R.; Zhu, W.; Zhuang, Z.; Chen, C.; Peng, Q.; Li, Y. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 2021, 14, 3482–3488. [Google Scholar] [CrossRef]
- Xiao, M.; Zhu, J.; Li, S.; Li, G.; Liu, W.; Deng, Y.-P.; Bai, Z.; Ma, L.; Feng, M.; Wu, T.; et al. 3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catal. 2021, 11, 8837–8846. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, J.; Zhang, J.; He, W.; Li, Y.; Liang, L.; Liu, C.; Liu, H.; Hao, Q. Engineering Co and Ru dual-metal atoms on nitrogen-doped carbon as highly efficient bifunctional oxygen electrocatalysts. Catal. Sci. Technol. 2022, 12, 5435–5441. [Google Scholar] [CrossRef]
- Cui, T.; Wang, Y.-P.; Ye, T.; Wu, J.; Chen, Z.; Li, J.; Lei, Y.; Wang, D.; Li, Y. Engineering Dual Single-Atom Sites on 2D Ultrathin N-doped Carbon Nanosheets Attaining Ultra-Low-Temperature Zinc-Air Battery. Angew. Chem. Int. Ed. 2022, 61, e202115219. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Lu, D.-Q.; Wang, K.; Li, B.; Peng, P.; Lan, Y.; Zang, S. A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting. Nat. Commun. 2023, 14, 1792. [Google Scholar] [CrossRef]
- Suen, N.T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.J.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef]
- Li, L.; Bu, L.; Huang, B.; Wang, P.; Shen, C.; Bai, S.; Chan, T.-S.; Shao, Q.; Hu, Z.; Huang, X. Compensating Electronic Effect Enables Fast Site-to-Site Electron Transfer over Ultrathin RuMn Nanosheet Branches toward Highly Electroactive and Stable Water Splitting. Adv. Mater. 2021, 33, 2105308. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, W.; Mao, Q.; Yu, H.; Deng, K.; Xu, Y.; Li, X.; Wang, Z.; Wang, L. Tensile strained PdNi bimetallene for energy-efficient hydrogen production integrated with formate oxidation. Chem. Eng. J. 2022, 450, 137995. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, S.; Wang, Z.; Liu, J.; Pei, W.; Yang, P.; Zhao, J.; Qiu, J. Engineering Multifunctional Collaborative Catalytic Interface Enabling Efficient Hydrogen Evolution in All pH Range and Seawater. Adv. Energy Mater. 2019, 9, 1901333. [Google Scholar] [CrossRef]
Acid | Alkaline |
---|---|
* + H+ + e− → H* | * + H2O + e− → OH− + H* |
* + H+ + e− + H* → H2 | Had + H2O + e− → OH− + H2 |
2 H* → H2 | 2 H* → H2 |
Electrocatalysts | Overpotential to Reach the Current Density of 10 mA cm−2 | Tafel Slope | Ref. |
---|---|---|---|
NiCo DASs/N-C | 189 mV in 1 M KOH 260 mV in 0.5 M H2SO4 | 72.5 mV dec−1 in 1 M KOH and 82.4 mV dec−1 0.5 M H2SO4 | [29] |
FeMo@CoNi-OH/Ni3S2 | 89 mV in 1 M KOH and 177 mV in 0.5 M H2SO4 | 92.2 mV dec−1 in 1 M KOH and 89.3 mV dec−1 in 0.5 M H2SO4 | [31] |
PtNi-NC | 30 mV in 0.5 M H2SO4 | 27 mVdec−1 in 0.5 M H2SO4 | [32] |
Fe/Ni-N-PCS | 360 mV in 1 M KOH | 57 mV dec−1 in 1 M KOH | [34] |
CuCo/NSC1 | 159 mV in 1 M KOH | 75.9 mV dec−1 in 1 M KOH | [38] |
W1Mo1-NG | 24 mV in 0.5 M H2SO4 and 67 mV in 1 M KOH | 30 mV dec−1 in 0.5 M H2SO4 and 45 mV dec−1 in 1 M KOH | [42] |
Ru/Co-N-C-800 °C | 19 mV in 1 M KOH and 17 mV in 0.5 M H2SO4 | 27.8 mV dec−1 in 1 M KOH and 23.3 mV dec−1 in 0.5 M H2SO4 | [46] |
Pt1Ru1/NMHCS-A | 22 mV in 0.5 M H2SO4 | 38 mV dec−1 in 0.5 M H2SO4 | [66] |
FR-NCS | 22 mV in 0.5 M H2SO4 | 26 mV dec−1 in 0.5 M H2SO4 | [67] |
Pt1Mo1/Ni3Se2 | 53 mV in 1 M KOH | 49.6 mV dec−1 in 1 M KOH | [68] |
Ru/Ni-MoS2 | 32 mV in 1 M KOH | 41 mV dec−1 in 1 M KOH | [69] |
CoNi-Ti3C2Tx | 31 mV in 1 M KOH | 33 mV dec−1 in 1 M KOH | [70] |
Ir-Mo DAC/NC | 11.3 mV in 0.5 M H2SO4 and 23 mV in 1 M KOH | 22.67 mV dec−1 in 0.5 M H2SO4 and 25.24 mV dec−1 in 1 M KOH | [71] |
NiPt/CMS | 66 mV in 0.5 M H2SO4 and 67 mV in 1 M KOH | 72 mV dec−1 in 0.5 M H2SO4 and 98 mV dec−1 in 1 M KOH | [72] |
Acid | Alkaline |
---|---|
H2O → OH* + H+ + e− | 2H2O → OH* + 3OH− + e− |
OH* → O* + H+ + e− | OH* + OH− → O* + H2O + e− |
O* + H2O → OOH* + H+ + e− | O* + OH− → OOH* + 3 e− |
OOH* → O2 + H+ + e− | OOH* + OH− → O2 + H2O + e− |
Electrocatalysts | Overpotential (Ej10) to Deliver a Current Density of 10 mA cm−2 | Tafel Slope | Ref. |
---|---|---|---|
FeNijns/NC | 440 mV in 1 M KOH | 106 mV dec−1 in 1 M KOH | [30] |
FeMo@CoNi-OH/Ni3S2 | 160 mV in 1 M KOH | 73.5 mV dec−1 in 1 M KOH | [31] |
Ni-N4/GHSs/Fe-N4 | 390 mV in 0.1 M KOH | 81 mV dec−1 in 0.1 M KOH | [33] |
CuCo/NSC2 | 339 mV in 1 M KOH | 45.3 mV dec−1 in 1 M KOH | [38] |
NiFe-CNG | 270 mV in 0.1 M KOH | 60 mV dec−1 in 0.1 M KOH | [44] |
Fe3Co7-NC | 343 mV in 0.1 M KOH | 69 mV dec−1 in 0.1 M KOH | [45] |
Ru/Co-N-C-800 °C | 232 mV in 0.5 M H2SO4 and 276 mV in 1 M KOH | 67.5 mV dec−1 in 0.5 M H2SO4 and 65.7 mV dec−1 in 1 M KOH | [46] |
Pt1Mo1/Ni3Se2 | 53 mV in 1 M KOH | 49.6 mV dec−1 in 1 M KOH | [68] |
FeNi NPs/NC | 270 mV in 1 M KOH | 56.84 mV dec−1 in 1 M KOH | [79] |
NiFe-DG | 358 mV in 1 M KOH | 67 mV dec−1 in 1 M KOH | [80] |
Fe-NiNC | 450 mV in 1 M KOH | 54 mV dec−1 in 1 M KOH | [81] |
FeNi-HPNC-2 | 360 mV in 0.1 M KOH | 83 mV dec−1 in 0.1 M KOH | [82] |
FeNi-SAs/DNSC | 350 mV in 1 M KOH | 55 mV dec−1 in 1 M KOH | [83] |
NiFe-N-C | 323 mV in 0.1 M KOH | 36 mV dec−1 in 0.1 M KOH | [84] |
FeNi-NPC HT | 321 mV in 0.1 M KOH | 62.9 mV dec−1 in 0.1 M KOH | [85] |
Co/Fe-SNC800 | 240 mV in 1 M KOH | 42.97 mV dec−1 in 1 M KOH | [86] |
FeCo-N4/HCS | 391 mV in 1 M KOH | 78.52 mV dec−1 in 1 M KOH | [49] |
Fe1Co3-NC-1100 | 349 mV in 0.1 M KOH | 99.93 mV dec−1 in 0.1 M KOH | [87] |
FeCo-NPC | 317 mV in 0.1 M KOH | 53.8 mV dec−1 in 0.1 M KOH | [88] |
CoDNi-N/C | 360 mV in 0.1 M KOH | 72 mV dec−1 in 0.1 M KOH | [89] |
a-NiCo/NC | 252 mV in 1 M KOH | 39 mV dec−1 in 1 M KOH | [90] |
Co1-PNC/Ni1-PNC | 390 mV in 1 M KOH | 117 mV dec−1 in 1 M KOH | [91] |
IrCo-N-C | 330 mV in 0.1 M KOH | 79 mV dec−1 in 0.1 M KOH | [92] |
Co/Ru SAs-N-C | 338 mV in 0.1 M KOH | Unknown | [93] |
FeMn-DSAC | 405 mV in 0.1 M KOH | 96 mV dec−1 in 0.1 M KOH | [94] |
CPF-Fe/Ni | 201 mV in 0.5 M H2SO4 and 194 mV in 1 M KOH | 23 mV dec−1 in 0.5 M H2SO4 and 147 mV dec−1 in 1 M KOH | [95] |
Electrocatalysts | Overpotential to Reach the Current Density of 10 mA cm−2 | Tafel Slope | Ref. | |
---|---|---|---|---|
SACs | Pt@CoS | 28 mV in 1 M KOH | 31 mV dec−1 in 1 M KOH | [13] |
W-SAC | 85 mV in 1 M KOH | 53 mV dec−1 in 1 M KOH | [14] | |
Pt1/OLCh | 38 mV in 0.5 M H2SO4 | 36 mV dec−1 in 0.5 M H2SO4 | [15] | |
Ru ADCe | 18 mV in 1 M KOH | 41 mV dec−1 in 1 M KOH | [20] | |
Metal oxide | RuO2/Co3O4 | 57 mV in 1 M KOH | 48.85 mV dec−1 in 1 M KOH | [7] |
CoO/Fe3O4 | 220 mV in 1 M KOH | 73 mV dec−1 in 1 M KOH | [57] | |
ZnCo2O4@CoMoO4 | 114 mV in 1 M KOH | 114 mV dec−1 in 1 M KOH | [58] | |
Mo-NiO/Ni nanopores | 34 mV in 1 M KOH | 49 mV dec−1 in 1 M KOH | [61] | |
2D materials | NiFe-MOF-74 | 195 mV in 1 M KOH | 136 mV dec−1 in 1 M KOH | [59] |
MoS2/NiS2 | 62 mV in 1 M KOH | 50.1 mV dec−1 in 1 M KOH | [60] | |
RuMn | 20 mV in 1 M KOH and 18 mV in 0.5 M H2SO4 | 32.2 mV dec−1 in 1 M KOH and 41.2 mV dec−1 in 0.5 M H2SO4 | [97] | |
PdNi | 59 mV in 1 M KOH | 108 mV dec−1 in 1 M KOH | [98] |
Electrocatalysts | Overpotential to Reach the Current Density of 10 mA cm−2 | Tafel Slope | Ref. | |
---|---|---|---|---|
SACs | Ag1/IrOx | 224 mV in 0.5 M H2SO4 | 50 mV dec−1 in 0.5 M H2SO4 | [16] |
Ru-N-C | 267 mV in 0.5 M H2SO4 | 52.6 mV dec−1 in 0.5 M H2SO4 | [17] | |
Mo-CoOOH | 249 mV in 1 M KOH | 60.5 mV dec−1 1 M KOH | [18] | |
Ir-NiCo2O4 NSs | 240 mV in 0.5 M H2SO4 | 60 mV dec−1 in 0.5 M H2SO4 | [19] | |
Metal oxide | NiFeOx-P | 255 mV in 1 M KOH | 27.07 mV dec−1 in 1 M KOH | [73] |
Fe-Mo5N6/MoO3-550 | 201 mV in 1 M KOH | 50.5 mV dec−1 in 1 M KOH | [74] | |
Co3O4-VCo | 262 mV in 1 M KOH | 60.5 mV dec−1 in 1 M KOH | [75] | |
Ni/Co3O4 | 311 mV in 1 M KOH | 43 mV dec−1 in 1 M KOH | [76] | |
2D materials | Ce-MOF@Pt | 340 mV in 1 M KOH | 47.9 mV dec−1 in 1 M KOH | [9] |
NiVRu-LDH | 190 mV in 1 M KOH | 83 mV dec−1 in 1 M KOH | [10] | |
CoP/Ti3C2 MXene | 280 mV in 1 M KOH | 95.4 mV dec−1 in 1 M KOH | [77] | |
LSC/K-MoSe2 | 230 mV in 1 M KOH | 79 mV dec−1 in 1 M KOH | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Wu, X. Heteronuclear Dual Metal Atom Electrocatalysts for Water-Splitting Reactions. Molecules 2024, 29, 1812. https://doi.org/10.3390/molecules29081812
Lu L, Wu X. Heteronuclear Dual Metal Atom Electrocatalysts for Water-Splitting Reactions. Molecules. 2024; 29(8):1812. https://doi.org/10.3390/molecules29081812
Chicago/Turabian StyleLu, Lu, and Xingcai Wu. 2024. "Heteronuclear Dual Metal Atom Electrocatalysts for Water-Splitting Reactions" Molecules 29, no. 8: 1812. https://doi.org/10.3390/molecules29081812
APA StyleLu, L., & Wu, X. (2024). Heteronuclear Dual Metal Atom Electrocatalysts for Water-Splitting Reactions. Molecules, 29(8), 1812. https://doi.org/10.3390/molecules29081812